
�

�

�

�

�

�

�

�

19

Graph Reachability and Pebble Automata over Infinite Alphabets

TONY TAN, Hasselt University and Transnational University of Limburg

Let D denote an infinite alphabet – a set that consists of infinitely many symbols. A word w =
a0b0a1b1 · · · anbn of even length over D can be viewed as a directed graph Gw whose vertices are the symbols
that appear in w, and the edges are (a0, b0), (a1, b1), . . . , (an, bn). For a positive integer m, define a language
Rm such that a word w = a0b0 · · · anbn ∈ Rm if and only if there is a path in the graph Gw of length ≤ m
from the vertex a0 to the vertex bn.

We establish the following hierarchy theorem for pebble automata over infinite alphabet. For every posi-
tive integer k, (i) there exists a k-pebble automaton that accepts the language R2k−1; (ii) there is no k-pebble
automaton that accepts the language R2k+1−2. Using this fact, we establish the following main results in
this article: (a) a strict hierarchy of the pebble automata languages based on the number of pebbles; (b) the
separation of monadic second order logic from the pebble automata languages; (c) the separation of one-way
deterministic register automata languages from pebble automata languages.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Compu-
tatio—Pebble automata; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—
Computational logic

General Terms: Languages

Additional Key Words and Phrases: Pebble automata, Graph reachability, Infinite alphabets

ACM Reference Format:
Tan, T. 2013. Graph reachability and pebble automata over infinite alphabets. ACM Trans. Comput. Logic
14, 3, Article 19 (August 2013), 31 pages.
DOI:http://dx.doi.org/10.1145/2499937.2499940

1. INTRODUCTION

Logic and automata for words over finite alphabets are relatively well understood and
recently there is a broad research activity on logic and automata for words and trees
over infinite alphabets. Partly, the study of infinite alphabets is motivated by the need
for formal verification and synthesis of infinite-state systems and partly, by the search
for automated reasoning techniques for XML. There has been a significant progress in
this area [Björklund and Schwentick 2007; Bojanczyk et al. 2011a; Demri and Lazić
2009; Kaminski and Francez 1994; Neven et al. 2004; Segoufin 2006], and this article
aims to contribute to the progress.

Roughly speaking, there are two approaches to studying languages over infinite
alphabets: logic and automata. Here is a brief summary of both approaches. For
a more comprehensive survey, we refer the reader to Segoufin [2006]. The study
of languages over infinite alphabets starts with the introduction of finite-memory
automata (FMA) in Kaminski and Francez [1994], also known as register automata

The extended abstract of this article has been published in Proceedings of LICS’09.
The author is a FWO Pegasus Marie Curie Fellow.
Author’s address: T. Tan; email: ptony.tan@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1529-3785/2013/08-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2499937.2499940

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:2 T. Tan

(RA), that is, automata with a finite number of registers. From here on, we write RAn
to denote RA with n registers.

The study of RA was continued and extended in Neven et al. [2004], in which peb-
ble automata (PA) were also introduced. Each of these models has its own advantages
and disadvantages. Languages accepted by RA are closed under standard language
operations: intersection, union, concatenation, and Kleene star. In addition, from the
computational point of view, RA are a much easier model to handle. Their emptiness
problem is decidable, whereas the same problem for PA is not. However, the PA lan-
guages possess a very nice logical property: closure under all boolean operations.

Recently there is a more general model of RA introduced in Bojanczyk et al. [2011b],
that builds on the idea of nominal sets. In this model the structure for the symbols
is richer. In addition to equality test, it allows for total order and partial order tests
among the symbols.

In Bouyer [2002] data words are introduced, which are an extension of words over
infinite alphabet. Data words are words in which each position carries both a label
from a finite alphabet, and a data value from an infinite alphabet. Bojanczyk et al.
[2011a] study the logic for data words, and introduced the so-called data automata.
It was shown that data automata define the logic ∃MSO2

(∼, <, +1), the fragment of
existential monadic second order logic in which the first order part is restricted to two
variables only, with the signatures: the data equality ∼, the order < and the successor
+1. An important feature of data automata is that their emptiness problem is decid-
able, even for infinite words, but is at least as hard as reachability for Petri nets. It
was also shown that the satisfiability problem for the three-variable first order logic is
undecidable.

Another logical approach is via the so called linear temporal logic with freeze
quantifier, introduced in Demri et al. [2005] and later also studied in Demri and Lazić
[2009]. Intuitively, these are LTL formula equipped with a finite number of registers
to store the data values. We denote by LTL↓

n[X, U], the LTL with freeze quantifier,
where n denotes the number of registers and the only temporal operators allowed
are the neXt operator X and the Until operator U. It was shown that alternating
RAn accept all LTL↓

n[X, U] languages and the emptiness problem for alternating
RA1 is decidable. However, the complexity is nonprimitive recursive. Hence, the
satisfiability problem for LTL↓

1(X, U) is decidable as well. Adding one more register or
past time operators, such as X−1 or U−1, to LTL↓

1(X, U) makes the satisfiability problem
undecidable. In Lazić [2011] a weaker version of alternating RA1, called safety
alternating RA1, is considered, and the emptiness problem is shown to be EXPSPACE-
complete.

In this article we continue the study of pebble automata (PA) for strings over infinite
alphabets introduced in Neven et al. [2004]. The original PA for strings over finite
alphabet was first introduced and studied in Globerman and Harel [1996]. Essentially
PA are finite state automata equipped with a finite number of pebbles, The pebbles are
placed on or lifted from the input word in the stack discipline—first in last out—and
are intended to mark the positions in the input word. One pebble can only mark one
position and the most recently placed pebble serves as the head of the automaton. The
automaton moves from one state to another depending on the equality tests among
data values in the positions currently marked by the pebbles, as well as the equality
tests among the positions of the pebbles.

As mentioned earlier, PA languages possess a very nice logical property: closure un-
der all boolean operations. Another desirable property of PA languages is, as shown
in Neven et al. [2004], that nondeterminism and two-way-ness do not increase the
expressive power of PA [Neven et al. 2004, Theorem 4.6]. Moreover, the class of PA

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:3

languages lies strictly in between FO(∼, <, +1) and MSO(∼, <, +1) [Neven et al. 2004,
Theorems 4.1 and 4.2].

Moreover, looking at the stack discipline imposed on the placement of the pebbles,
one can rightly view PA as a natural extension of FO(∼, <, +1). To simulate a first-
order sentence of quantifier rank k, a pebble automaton with k pebbles suffices: one
pebble for each quantifier depth. (See Proposition 2.5.)

In this article we study PA as a model of computation for the directed graph reach-
ability problem. To this end, we view a word of even length w = a0b0a1b1 · · · anbn over
an infinite alphabet as a directed graph Gw = (Vw, Ew) with the symbols that appear
in a0b0a1b1 · · · anbn as the vertices in Vw and (a0, b0), . . . , (an, bn) as the edges in Ew.
We say that the word w induces the graph Gw.

We prove that for any positive integer k, k pebbles are sufficient for recognizing the
existence of a path of length 2k − 1 from the vertex a0 to the vertex bn, but are not
sufficient for recognizing the existence of a path of length 2k+1 − 2 from the vertex a0
to the vertex bn. Based on this result, we establish the following relations among the
classes of languages over infinite alphabets which were previously unknown.

(1) A strict hierarchy of the PA languages based on the number of pebbles.
(2) The separation of monadic second order logic from the PA languages.
(3) The separation of one-way deterministic RA languages from PA languages.

Some of these results settle questions left open in Neven et al. [2004] and Segoufin
[2006].

Although, in general, the emptiness problem for PA is undecidable, we believe that
our study may contribute to the technical aspect of reasoning on classes of languages
with decidable properties. For example, in Section 4 a similar technique is used to
obtain separation result for LTL↓

1[X, U] languages, a class of languages with decidable
satisfiability problem.

Related work. A weaker version of PA, called top-view weak PA was introduced and
studied in Tan [2010], where it was also shown that the emptiness problem is decid-
able. The results in this article are not implied from that paper, as here the main
concern is separation results. In fact, some of the separation results here also hold for
the model in Tan [2010].

There is also an analogy between our result with the classical first-order quantifier
lower bounds for directed graph (s, t)-reachability which states the following: There is
a first order sentence of quantifier rank k to express the existence of a path of length
≤ m from the source node s to the target node t if and only if m ≤ 2k. See, for example,
Turán [1984].

As far as we can see, our result is actually a tighter version of the classical result for
first-order logic. It is tighter because PA is shown to be stronger than first-order logic
(Proposition 2.5). In particular pebble automata do have states, thus, enjoy the usual
benefits associated with automata, like counting the number of edges, or the number
of neighbors up to ≤ m, ≥ m, or mod m, for an arbitrary but fixed positive integer m,
without increasing the number of pebbles.

Other related results are those established in [Ajtai and Fagin 1990; Fagin et al.
1995; Schwentick 1996]. To the best of our knowledge, those results have no con-
nection with the result in this paper. In Ajtai and Fagin [1990] it is established that
(s, t)-reachability in directed graph is not in monadic NP1, while in Fagin et al. [1995]

1Monadic NP is a complexity theoretic name for existential monadic second order logic.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:4 T. Tan

and Schwentick [1996] it is established that undirected graph connectivity is not in
monadic NP. However, no lower bound on first-order quantifier rank is established.

Organization. This article is organized as follows. In Section 2 we review the
monadic second-order logic MSO(∼, <, +1) and pebble automata (PA) for words over
infinite alphabet. Section 3 is the core of the article, in which we present our main
results. In Section 4 we discuss how to adjust our results and proofs presented in Sec-
tion 3 to a weaker version of PA, called weak PA, whose relation to the logic LTL↓

1(X, U)
is presented in Section 5.

2. MODELS OF COMPUTATIONS

In Section 2.1 we recall the definition of alternating pebble automata from Neven et al.
[2004], and in Section 2.2 a logic for languages over infinite alphabets.

We shall use the following notation: D is a fixed infinite alphabet not containing the
left-end marker 	 or the right-end marker
. The input word TO an automaton is of the
form 	w
, where w ∈ D∗. Symbols of D are denoted by lower-case letters a, b, c, etc.,
possibly indexed, and words over D by lower case letters u, v, w, etc., possibly indexed.

2.1. Pebble Automata

Definition 2.1. See [Neven et al. 2004, Definition 2.3]. A two-way alternating k-
pebble automaton, (in short k-PA) is a system A = 〈Q, q0, F, μ, U〉 whose components
are defined as follows.

(1) Q, q0 ∈ Q and F ⊆ Q are a finite set of states, the initial state, and the set of final
states, respectively;

(2) U ⊆ Q − F is the set of universal states; and
(3) μ is a finite set of transitions of the form α → β such that

— α is of the form (i, P, V, q), where i ∈ {1, . . . , k}, P, V ⊆ {i + 1, . . . , k}, q ∈ Q and
— β is of the form (q, act), where q ∈ Q and

act ∈ {left, right, stay, place-pebble, lift-pebble}.
The intuitive meaning of P and V in (i, P, V, q) is that P denotes the set of pebbles
that occupy the same position as pebble i, while V the set of pebbles that read the
same symbol as pebble i. A more precise explanation can be found here.

Given a word w = a1 · · · an ∈ D∗, a configuration of A on 	w
 is a triple γ = [i, q, θ],
where i ∈ {1, . . . , k}, q ∈ Q and θ : {i, i + 1, . . . , k} → {0, 1, . . . , n, n + 1}. The function
θ defines the position of the pebbles and is called the pebble assignment of γ . The
symbols in the positions 0 and n + 1 are 	 and
, respectively. That is, we count the
leftmost position in w as position 1.

The initial configuration of A on w is γ0 = [k, q0, θ0], where θ0(k) = 0 is the initial
pebble assignment. A configuration [i, q, θ] with q ∈ F is called an accepting configura-
tion. A transition (i, P, V, p) → β applies to a configuration [j, q, θ], if

(1) i = j and p = q,
(2) P = {l > i | θ(l) = θ(i)}, and
(3) V = {l > i | aθ(l) = aθ(i)}.
We define the transition relation �A on 	w
 as follows: [i, q, θ] �A,w[i′, q′, θ ′], if there
is a transition α → (p, act) ∈ μ that applies to [i, q, θ] such that q′ = p, for all j > i,
θ ′(j) = θ(j), and

— if act = left, then i′ = i and θ ′(i) = θ(i) − 1,
— if act = right, then i′ = i and θ ′(i) = θ(i) + 1,

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:5

— if act = stay, then i′ = i and θ ′(i) = θ(i),
— if act = lift-pebble, then i′ = i + 1,
— if act = place-pebble, then i′ = i − 1, θ ′(i − 1) = 0 and θ ′(i) = θ(i).

As usual, we denote the reflexive, transitive closure of �A,w by �∗
A,w. When the au-

tomaton A and the word w are clear from the context, we shall omit the subscripts A
and w. For 1 ≤ i ≤ k, an i-configuration is a configuration of the form [i, q, θ], that is,
when the head pebble is pebble i.

Remark 2.2. Here we define PA as a model of computation for languages over infi-
nite alphabet. Another option is to define PA as a model of computation for data words.
A data word is a finite sequence of � ×D, where � is a finite alphabet of labels. There
is only a slight technical difference between the two models. Every data word can be
viewed as a word over infinite alphabet in which every odd position contains a constant
symbol. In the context of our article, we ignore the finite labels, thus, Definition 2.1 is
more convenient.

We now define how pebble automata accept words. Let γ = [i, q, θ] be a configuration
of a PA A on a word w. We say that γ leads to acceptance, if and only if either q ∈ F, or
the following conditions hold.

— if q ∈ U, then for all configurations γ ′ such that γ � γ ′, γ ′ leads to acceptance.
— if q /∈ F ∪U, then there is at least one configuration γ ′ such that γ � γ ′ and γ ′ leads

to acceptance.

A word w ∈ D∗ is accepted by A, if the initial configuration γ0 leads to acceptance. The
language L(A) consists of all data words accepted by A.

The automaton A is nondeterministic, if the set U = ∅, and it is determin-
istic, if for each configuration, there is exactly one transition that applies. If
act ∈ {right, lift-pebble, place-pebble} for all transitions, then the automaton is
one-way. It turns out that PA languages are quite robust. Namely, alternation and
two-wayness do not increase the expressive power to one-way deterministic PA, as
stated in Theorem 2.4 .

Remark 2.3. In Neven et al. [2004] the model we have defined is called strong PA.
A weaker model in which the new pebble is placed at the position of the head pebble, is
referred to as weak PA. Obviously for two-way PA, strong and weak PA are equivalent.
However, for one-way PA, strong PA is indeed stronger than weak PA. We will postpone
our discussion of weak PA until Section 4.

THEOREM 2.4. For each k ≥ 1, two-way alternating k-PA and one-way determinis-
tic k-PA have the same recognition power.

The proof of Theorem 2.4 is a straightforward adaption of the classical proof of the
equivalence between the expressive power of alternating two-way finite state automata
and deterministic one-way finite state automata [Ladner et al. 1984]. For this reason,
we omit the proofs.

The main idea is that when pebble i is the head pebble, due to the stack discipline im-
posed on placing the pebbles, all the other pebbles (pebbles i+1, . . . , k) are fixed on their
positions. Hence the transitions of pebble i, which are of the form (i, P, V, q) → (p, act),
can be viewed as transitions over the finite alphabet (P, V) ∈ 2{i+1,...,k}×2{i+1,...,k}. Thus,
the idea in Ladner et al. [1984] can be adapted to PA in a straightforward manner. The
details are available as a technical report in Tan [2009]. In view of this equivalence,
we will always assume that the pebble automata under consideration are deterministic
and one-way.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:6 T. Tan

Next, we define the hierarchy of languages accepted by PA. For k ≥ 1, PAk is the set
of all languages accepted by k-PA, and PA is the set of all languages accepted by pebble
automata. That is,

PA =
⋃
k≥1

PAk.

Normalization of a k-PA. Before we end this section, we would like to remark that
the behavior of a k-PA can be normalized in the following way. Let A be a k-PA. By
Theorem 2.4, we can assume that A is a one-way deterministic k-PA. By adding some
extra states, we can normalize the behavior of each pebble as follows. For each i ∈
{1, . . . , k}, pebble i behaves as follows.

— After pebble i moves right and i > 1, then pebble (i − 1) is immediately placed (in
position 0 reading the left end-marker).
If pebble (i−1) is not immediately placed, we can add some redundant states which
force pebble (i − 1) to be placed while remembering the original state in the redun-
dant states.

— If i < k, pebble i is lifted only when it reaches the right-end marker
 of the input.
Again, if pebble i is lifted before it reaches the right-end marker
, then we can add
some redundant states which force pebble (i − 1) to move right while remembering
the original state in the redundant states.

— Immediately after pebble i is lifted, pebble (i + 1) moves right.
If pebble (i+1) does not move right, we can add some redundant states which force
pebble (i + 1) to move right while remembering the original state in the redundant
states.

We also assume that in the automaton A only pebble k can enter a final state and it
may do so only after it reads the right-end marker
 of the input. This also can be
achieved by adding some redundant states. The normalization we have described will
help us greatly in simplifying our proofs in Section 3.2 later on.

2.2. Logic

Formally, a word w = a1 · · · an is represented by the logical structure with domain
{1, . . . , n}; the natural ordering < on the domain with its induced successor +1; and
the equivalence relation ∼ on the domain {1, . . . , n}, where i ∼ j whenever ai = aj.

The atomic formulas in this logic are of the form x < y, y = x + 1, x ∼ y. The first-
order logic FO(∼, <, +1) is obtained by closing the atomic formulas under the proposi-
tional connectives and first-order quantification over {1, . . . , n}. The second-order logic
MSO(∼, <, +1) is obtained by adding quantification over unary predicates on {1, . . . , n}.
A sentence ϕ defines the set of words

L(ϕ) = {w | w |= ϕ}.
If L = L(ϕ) for some sentence ϕ, then we say that the sentence ϕ expresses the lan-
guage L.

We use the same notations FO(∼, <, +1) and MSO(∼, <, +1) to denote the languages
expressible by sentences in FO(∼, <, +1) and MSO(∼, <, +1), respectively. That is,

FO(∼, <, +1) = {L(ϕ) | ϕ is an FO(∼, <, +1) sentence}
and

MSO(∼, <, +1) = {L(ϕ) | ϕ is an MSO(∼, <, +1) sentence}.
PROPOSITION 2.5. (See also Neven et al. [2004, Theorem 4.1]) If ϕ ∈ FO(∼, <, +1)

is a sentence with quantifier rank k, then L(ϕ) ∈ PAk.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:7

PROOF. (Sketch) First, it is straightforward that languages accepted by two-way
alternating k-PA are closed under Boolean operations. By Theorem 2.4, two-way alter-
nating and one-way deterministic k-PA are equivalent. Thus, the class PAk is closed
under Boolean operations. Therefore, it is sufficient to prove Proposition 2.5 when the
formula ϕ is of the form Qxkψ(xk), where Q ∈ {∀, ∃} and ψ(xk) is a formula of quantifier
rank k − 1.

The proof is by straightforward induction on k. A k-PA A iterates pebble k through all
possible positions in the input word w. On each iteration, the automaton A recursively
calls a (k−1)-PA A′ that accepts the language L(ψ(xk)), treating the position of pebble k
as the assignment value for xk.

The transition in the PA A′ can test the atomic formula x = y and x ∼ y; while at the
same time remembering in its states the order of the pebbles. The word w is accepted
by A, if the following holds.

— If Q is ∀, then A accepts w if and only if A′ accepts on all iterations.
— If Q is ∃, then A accepts w if and only if A′ accepts on at least one iteration.

This completes the sketch of our proof of Proposition 2.5.

We end this section with Theorem 2.6, which states that a language accepted by
pebble automaton can be expressed by an MSO(∼, <, +1) sentence.

THEOREM 2.6 [NEVEN ET AL. 2004, THEOREM 4.2]. For every PA A, there exists
an MSO(∼, <, +1) sentence ϕA such that L(A) = L(ϕA).

3. WORDS OF D∗ AS GRAPHS

This section contains the main results in this article.

(1) The strict hierarchy of PA languages based on the number of pebbles.
(2) The separation of MSO(∼, <, +1) from PA languages.
(3) The separation of one-way deterministic RA languages from PA languages.

All three results share one common idea: We view a word of even length as a directed
graph. Recall that D is an infinite alphabet, and that we always denote the symbols in
D by the lower case letters a, b, c, . . ., possibly indexed.

We consider directed graphs in which the vertices come from D. A word w =
a0b0 · · · anbn ∈ D∗ of even length induces a directed graph Gw = (Vw, Ew), where Vw
is the set of symbols that appear in w, that is, Vw = {a : a appears in w}, and the set
of edges is Ew = {(a0, b0), . . . , (an, bn)}. We also write sw = a0 and tw = bn to denote
the first and the last symbol in w, respectively. For convenience, we consider only the
words w in which sw and tw occur only once.

As an example, we take the following word w = ab bc bd cd ce de ef eg. Then sw = a
and tw = g. The graph induced by w is the Gw = (Vw, Ew), where Vw = {a, b, c, d, e, f , g}
and Ew = {(a, b), (b, c), (b, d), (c, d), (c, e), (d, e), (e, f), (e, g)}, as illustrated in the follow-
ing picture.

�a � �b�
�

���

�
�

���

�c

��
d

�
�

���

�
�

���
�e �

�f

�
�

���

�g

We need the following basic graph terminology. Let a and b be vertices in a graph
G. A path of length m from a to b is a sequence of m edges (ai1 , bi1), . . . , (aim , bim) in G

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:8 T. Tan

such that ai1 = a, bim = b and for each j = 1, . . . , m − 1, bij = aij+1 . The distance from a
to b, denoted by dG(a, b), is the length of the shortest path from a to b in G. If there is
no path from a to b in G, then we set dG(a, b) = ∞.

We now define the following reachability languages. For m ≥ 1,

Rm = {w | dGw(sw, tw) ≤ m}
and

R =
⋃

m=1,2,...

Rm.

Here we should remark that since we consider only the words w in which sw and tw
occur only once, the language R1 consists of words of length 2 with different symbols.

PROPOSITION 3.1. For each k = 2, 3, . . ., R2k−1 ∈ PAk.

The proof of this proposition is an implementation of Savitch’s algorithm [Savitch
1970] for (s-t)-reachability by pebble automata. It can be found in Section 3.1.

Lemma 3.2 is the backbone of most of the results presented in this article. For each
i = 0, 1, 2, . . ., we define ni = 2i+1 − 2. An equivalent recursive definition is n0 = 0, and
ni+1 = 2ni + 2, for i ≥ 1.

LEMMA 3.2. For every k-pebble automaton A, where k ≥ 1, there exist a word w ∈
Rnk and w /∈ R such that either A accepts both w and w, or A rejects both w and w.

The proof of Lemma 3.2 is rather long and technical. We present it in Sections 3.2
and 3.3. Meanwhile we discuss a number of consequences of this lemma. Corollary 3.3
immediately follows from the lemma.

COROLLARY 3.3. Rnk /∈ PAk.

COROLLARY 3.4. R /∈ PA.

PROOF. Assume to the contrary that R = L(A) for a k-PA A. Then, by Lemma 3.2,
there exists a word w ∈ Rnk and w /∈ R such that either A accepts both w and w, or A
rejects both w and w. Both yield a contradiction to the assumption that R = L(A).

The following theorem establishes the proper hierarchy of the PA languages.

THEOREM 3.5. For each k = 2, . . ., PAk � PAk+1.

PROOF. We contend that R2k+1−1 ∈ PAk+1 − PAk, for each k = 2, . . . , 3. That
R2k+1−1 ∈ PAk+1 follows from Proposition 3.1. That R2k+1−1 /∈ PAk follows from the
fact that nk = 2k+1 − 2 < 2k+1 − 1 and Lemma 3.2.

Another consequence of Corollary 3.4 is that the inclusion of PA in MSO(∼, <, +1)
obtained in Theorem 2.6 is proper.

THEOREM 3.6. PA � MSO(∼, <, +1).

PROOF. Without loss of generality, we may assume that MSO(∼, <, +1) contains
two constant symbols, min and max, which denote minimum and the maximum ele-
ments of the domain, respectively. For a word w = a1 · · · an, the minimum and the
maximum elements are 1 and n, respectively, and not 0 and n + 1 which are reserved
for the end-markers 	 and
.

The language R can be expressed in MSO(∼, <, +1) as follows. There exist unary
predicates Sodd and P such that either

— min + 1 = max ∧ min � max (to capture R1),

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:9

or the following holds.

— For all x, if x �= min, then x � min.
(This is to take care our assumption that the first symbol appears only once.)

— For all x, if x �= max, then x � max.
(This is to take care our assumption that the last symbol appears only once.)

— Sodd is the set of all odd elements in the domain where min ∈ Sodd and max �∈ Sodd.
— The predicate P satisfies the conjunction of the following FO(∼, <, +1) sentences:

— P ⊆ Sodd and min ∈ P and max − 1 ∈ P,
— for all x ∈ P − {max − 1}, there exists exactly one y ∈ P such that x + 1 ∼ y, and
— for all x ∈ P − {min}, there exists exactly one y ∈ P such that y + 1 ∼ x.

Now, the theorem follows from Corollary 3.4.

Remark 3.7. Combining Theorems 2.4 and 3.6, we obtain that MSO(∼, <, +1) is
stronger than two-way alternating PA. This settles a question left open in [Neven et al.
2004] whether MSO(∼, <, +1) is strictly stronger than two-way alternating PA.

Next, we define a restricted version of the reachability languages. For a positive
integer m ≥ 1, the language R+

m consists of all words of the form

c0c1 · · ·︸︷︷︸
u1

c1c2 · · ·︸︷︷︸
u2

c2c3 · · · · · · · · · · · · · · · cm−3cm−2 · · ·︸︷︷︸
um−2

cm−2cm−1 · · ·︸︷︷︸
um−1

cm−1cm

where for each i ∈ {0, . . . , m − 1}, the symbol ci does not appear in ui and ci �= ci+1. The
language R+ is defined as

R+ =
⋃

m=1,2,...

R+
m.

Remark 3.8. Actually, in the proof of Lemma 3.2 we show that for every k-PA A,
there exist a word w ∈ R+

nk
and w /∈ R+ such that either A accepts both w and w, or A

rejects both w and w. Therefore, R+ �∈ PA.

The following theorem answers a question left open in Neven et al. [2004] and
Segoufin [2006]: Can one-way deterministic FMA be simulated by pebble automata?
(FMA stands for finite-memory automata, the original name of register automata as
introduced in Kaminski and Francez [1994]. We refer the reader to Kaminski and
Francez [1994, Definition 1] for the formal definition of FMA.)

THEOREM 3.9. The language R+ is accepted by one-way deterministic FMA, but is
not accepted by pebble automata.

PROOF. Note that R+ is accepted by a one-way deterministic FMA with two regis-
ters.2 On input word w = c0c1 · · · cn−1cn, the automaton stores c1 in the first register
and then moves right (using the second register to scan the input symbols) until it
finds a symbol ci = c1. If it finds one, then it stores ci+1 in the first register and moves
right again until it finds another symbol ci′ = ci+1. It repeats the process until either
of the following holds.

— The symbol in the second last position cn−1 is the same as the content of the first
register, or,

— it cannot find a symbol currently stored in the first register.

2Here we use the original definition of FMA as introduced in [Kaminski and Francez 1994]. If we use
the definition of register automata (RA) as in [Demri and Lazić 2009; Segoufin 2006], then one register is
sufficient to accept R+.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:10 T. Tan

In the former case, the automaton accepts the input word w, and in the latter
case it rejects. By Remark 3.8, the language R+ is not a PA language. This proves
Theorem 3.9.

3.1. Proof of Proposition 3.1

In this section we prove Proposition 3.1. Before we proceed with the proof, we remark
that when processing an input word w, an automaton A can remember in its state
whether a pebble is currently at an odd- or even-numbered position in w. Moreover,
we always denote the input word w by a0b0 · · · anbn – that is, we denote the symbols
on the odd positions by ai’s and the symbols on the even position by bi’s. We can also
assume that the automaton always rejects words of odd length.

We are going to construct a k-PA A that accepts R2k−1. Essentially the automaton A
consists of the following subautomata.

— An i-PA Aj,j′
i , for each i ∈ {1, . . . , k − 1} and j, j′ ∈ {i + 1, . . . , k}.

The purpose of each automaton Aj,j′
i is to detect the existence of a path ≤ 2i −1 from

the vertex seen by pebble j to the vertex seen by pebble j′.
— An i-PA A∗,j

i , for each i ∈ {1, . . . , k − 1} and j ∈ {i + 1, . . . , k}.
The purpose of each automaton A∗,j

i is to detect the existence of a path ≤ 2i −1 from
the vertex sw to the vertex seen by pebble j.

— An i-PA Aj,∗
i , for each i ∈ {1, . . . , k − 1} and j ∈ {i + 1, . . . , k}.

The purpose of the automaton Aj,∗
i is to detect the existence of a path ≤ 2i − 1 from

vertex seen by pebble j to the vertex tw.

We are going to show how to construct those subautomata Aj,j′
i , Aj,∗

i and A∗,j
i by induc-

tion on i.
The basis is i = 1. The construction of Aj,j′

1 , Aj,∗
1 and A∗,j

1 is as follows.

— The automaton Aj,j′
1 performs the following.

(1) It checks whether the symbols seen by pebbles j and j′ are the same, which
means that there is a path of length 0 from the vertex seen by pebble j to the
vertex seen by pebble j′.

(2) Otherwise, it iterates pebble 1 on every odd position in w checking whether
there exists an index l such that al is the same symbol seen by pebble j. If there
is, it moves to the right one step to read bl and checks whether it is the same
symbol seen by pebble j′. This means that there is a path of length 1 from the
vertex seen by pebble j to the vertex seen by pebble j′.

— The automaton A∗,j
1 simply puts pebble 1 on the second position of w to read b0 and

checks whether it is the same symbol seen by pebble j. (Here we use the assumption
that sw occurs only once in w, which implies that there cannot be a path of length
0 in this case.)

— The automaton Aj,∗
1 simply puts pebble 1 on the second last position of w to read

an and checks whether it is the same symbol seen by pebble j. (Here we use the
assumption that tw occurs only once in w, which implies that there cannot be a
path of length 0 in this case.)

For the induction step, we describe the construction of the automata Aj,j′
i , Aj,∗

i and

A∗,j
i as follows.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:11

— The automaton Aj,j′
i performs the following. It iterates pebble i on each position in

the input word w.
(1) When pebble i is on the odd position reading the symbol al, it invokes the au-

tomaton Aj,i
i−1 to check whether there exists a path of length ≤ 2i−1 − 1 from the

vertex seen by pebble j to the vertex al.
(2) If there is such a path, it moves pebble i one step to the right reading the symbol

bl. It then invokes the automaton Ai,j′
i−1 to check whether there exists a path of

length ≤ 2i−1 − 1 from the vertex bl to the vertex seen by pebble j′.
Now there exists a path of length ≤ 2i − 1 from the vertex seen by pebble j to the
vertex seen by pebble j′ if and only if there exists an index l such that (i) there exists
a path of length ≤ 2i−1 − 1 from the vertex seen by pebble j to the vertex al, and
(ii) there exists a path of length ≤ 2i−1 − 1 from the vertex bl to the vertex seen by
pebble j′. This implies the correctness of our construction of Aj,j′

i .

— The automaton A∗,j
i performs the following. It iterates pebble i on each position in

the input word w.
(1) When pebble i is on the odd position reading the symbol al, it invokes the au-

tomaton A∗,i
i−1 to check whether there exists a path of length ≤ 2i−1 − 1 from the

vertex sw to the vertex al.
(2) If there is such a path, it moves pebble i one step to the right reading the symbol

bl. It then invokes the automaton Ai,j
i−1 to check whether there exists a path of

length ≤ 2i−1 − 1 from the vertex bl to the vertex seen by pebble j′.
It follows immediately that A∗,j

i checks the existence of a path ≤ 2i − 1 from the
vertex sw to the vertex seen by pebble j.

— The automaton Aj,∗
i performs the following. It iterates pebble i on each position in

the input word w.
(1) When pebble i is on the odd position reading the symbol al, it invokes the au-

tomaton Aj,i
i−1 to check whether there exists a path of length ≤ 2i−1 − 1 from the

vertex seen by pebble j to the vertex al.
(2) If there is such a path, it moves pebble i one step to the right reading the symbol

bl. It then invokes the automaton Ai,∗
i−1 to check whether there exists a path of

length ≤ 2i−1 − 1 from the vertex bl to the vertex tw.
It follows immediately that A∗,j

i checks the existence of a path ≤ 2i − 1 from the
vertex seen by pebble j to the vertex tw.

Now the automaton A performs the following. It iterates pebble k on each position
in the input word w.

(1) When pebble k is on the odd position reading the symbol al, it invokes the automa-
ton A∗,k

k−1 to check whether there exists a path of length ≤ 2k−1 − 1 from the vertex
sw to the vertex al.

(2) If there is such a path, it moves pebble k one step to the right reading the symbol
bl. It then invokes the automaton Ak,∗

k−1 to check whether there exists a path of
length ≤ 2k−1 − 1 from the vertex bl to the vertex tw.

Hence, A is the desired automaton for R2k−1 and this completes the proof of Proposi-
tion 3.1.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:12 T. Tan

Fig. 1. The full graph is the graph Gnk,m. The graph depicted by w(nk, m) is also this graph but without
the nodes inside the dashed box and the edges adjacent to them.

3.2. Proof of Lemma 3.2

The proof of Lemma 3.2 is rather long and technical. This section and the next are
devoted to it.

Recall that for each i ∈ {0, 1, 2, . . .}, we define ni = 2i+1 − 2. An equivalent recursive
definition is n0 = 0, and ni = 2ni−1 + 2, when i ≥ 1.

Let A = 〈Q, q0, μ, F〉 be a strong k-PA. By Theorem 2.4, we can assume that A is
a one-way deterministic k-PA. Moreover, we can normalize the behavior of A as ex-
plained at the end of Section 2.1.

We define the following integers: β0 = 1, β1 = |Q|, and for i ≥ 2,3

βi = |Q|! ×βi−1!

For the rest of this section and the next, we fix the integers k and m, where k is the
number of pebbles of A and m = βk+1.

We define the following graph Gnk,m = (Vnk,m, Enk,m). The set Vk,m consists of the
following vertices.

— a0, a1, . . . , ank ;
— b0, b1, . . . , bnk−1;
— c1,i, . . . , cnk−1,i, for each i = 1, . . . , m − 1; and
— d1,i, . . . , dnk−1,i, for each i = 1, . . . , m − 1,

where a0, . . . , ank , b0, . . . , bnk−1, c1,1, . . . , cnk−1,m−1, d1,1, . . . , dnk−1,m−1 are all different.
The set Ek,m consists of the following edges.

— (a0, a1), (a1, a2), . . . , (ank−1, ank);
— (b0, b1), (b1, b2), . . . , (bnk−2, bnk − 1);
— (c1,i, c2,i), (c2,i, c3,i), . . . , (cnk−2,i, cnk−1,i), for each i = 1, . . . , m − 1; and
— (d1,i, d2,i), (d2,i, d3,i), . . . , (dnk−2,i, dnk−1,i), for each i = 1, . . . , m − 1.

Figure 1 illustrates the graph Gnk,m.

3! denotes factorial.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:13

Now consider the following word w(nk, m):

w(nk, m) = a0a1C1b0b1D1 · · · · · · ank−2ank−1Cnk−1bnk−2bnk−1Dnk−1ank−1ank (1)

where for each i = 0, 1, . . . , nk − 2,

— Ci = ci,1ci+1,1 · · · ci,m−1ci+1,m−1;
— Di = di,1di+1,1 · · · di,m−1di+1,m−1.

This word w(nk, m) induces the graph Gnk,m, that is, Gw(nk,m) = Gnk,m and sw(nk,m) = a0
and tw(nk,m) = ank .

Now let

w(nk, m) = a0a1C1b0b1D1 · · · · · · ank−2ank−1Cnk−1bnk−2bnk−1. (2)

That is, the word w(nk, m) is obtained by deleting the suffix Dnk−1ank−1ank from
w(nk, m).

The graph Gw(nk,m) is also illustrated in the graph in Figure 1, the graph Gw(nk,m) is
without the nodes inside the dashed box and the edges adjacent to them.

Note that sw(nk,m) = a0 and tw(nk,m) = bnk−1. Obviously, w(nk, m) ∈ Rnk , while
w(nk, m) /∈ R.

To prove Lemma 3.2, we are going to prove the following proposition.

PROPOSITION 3.10. The automaton A either accepts both w(nk, m) and w(nk, m),
or rejects both w(nk, m) and w(nk, m).

The proof is rather complicated. It consist of five claims and their interdependence
is illustrated as follows.4

Proposition 3.10

�

Claim 4 	 Proof by induction
The basis is proved as Claim 3

�Claim 1

�

Claim 2 �	
�

Proof by
simultaneous induction

�����

Claim 5

In the proof we will need quite a number of notions which, for the sake of readability,
are listed here one-by-one before we define them properly.

— The notions of K(l) and L(l).
— The notion of successor of a pebble assignment.
— The notion of compatibility between two pebble assignments.

4We are going to prove Claims 2 and 5 by induction simultaneously. This will be made precise in Section 3.3.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:14 T. Tan

The notions of K(l) and L(l). For l ∈ {0, 1, . . . , nk −1}, we define the integers K(l) and
L(l) which are illustrated as follows.

	 of length L(l) �

w(nk, m) = a0a1 C1 b0b1 D1 · · · · · · · · · Cl−1 bl−2bl−1 Dl−1 al−1al Cl bl−1bl Dl alal+1 · · · · · ·
	

of length K(l)
�	

of length
4(m − 1) + 2

�

of length K(l + 1)	 �

Formally, for l ∈ {0, 1, . . . , nk},

K(l) =
{

0, if l = 0
4m(l − 1) + 2, if l ≥ 1

and for l ∈ {0, 1, . . . , nk},

L(l) =
{

K(l + 1) − 2, if l ≤ nk − 1
K(nk), otherwise.

In particular, K(nk) is precisely the length of the word w(nk, m) and L(0) = 0.

The notion of successor of a pebble assignment. Let θ be an assignment of peb-
bles i, i + 1, . . . , k of A on a word w. That is, θ is a function from {i, i + 1, . . . , k} to
{0, 1, . . . , |w| + 1}. (Recall that positions 0 and |w| + 1 contain the left- and right-end
markers 	 and
, respectively.) If 0 ≤ θ(i) ≤ |w|, we define Succi(θ) = θ ′, where for each
j ∈ {i, i + 1, . . . , k},

θ ′(j) =
{

θ(j) if j ≥ i + 1
θ(i) + 1 if j = i

The notion of compatibility between two configurations. Let i ≥ 1 and [i, q, θ] and
[i, q, θ] be configurations of A on w(nk, m) and w(nk, m), respectively, when pebble i is
the head pebble. For an integer l ∈ {0, 1, . . . , nk}, we say that the configurations [i, q, θ]
and [i, q, θ] are compatible with respect to l, if

— q = q;

and for each j ∈ {i, . . . , k},

— either θ(j) ≤ K(l) or θ(j) ≥ L(l + ni);
— either θ(j) ≤ K(l) or θ ≥ L(l + ni) − 2m;
— if θ(j) ≤ K(l), then θ(j) ≤ K(l) and θ(j) = θ(j);
— if θ(j) ≤ K(l), then θ(j) ≤ K(l) and θ(j) = θ(j);
— if θ(j) ≥ L(l + ni), then θ(j) ≥ L(l + ni) − 2m and θ(j) = θ(j) + 2m;
— if θ(j) ≥ L(l + ni) − 2m, then θ(j) ≥ L(l + ni) and θ(j) = θ(j) + 2m.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:15

We give an illustration of the compatibility of two configurations of an 8-PA on w(n8, m)
and w(n8, m), respectively, with respect to l. The index 	 is l + n5.

K(l)
No pebble here︷ ︸︸ ︷

L()

w(nk, m) = �5 �8 al−1al · · · alal+1 · · · · · · b	−2b	−1 · · · a	−1a	 · · · b	−1b	 · · · a	a	+1
�7 �6

︸ ︷︷ ︸
No pebble here L() − 2m

w(nk, m) = �5 �8 al−1al · · · alal+1 · · · · · · b	−2b	−1 · · · a	−1a	 · · · b	−1b	
�7

2m	
�6

�5 �6 �7 �8 are pebbles 5, 6, 7, and 8, respectively.

CLAIM 1. Suppose that [i, q, θ] and [i, q, θ] are configurations of A on w(nk, m)
and w(nk, m), respectively. If [i, q, θ] and [i, q, θ] are compatible with respect to some
l ∈ {0, . . . , nk}, then

(1) for all h ∈ {0, . . . , K(l + ni−1 + 2)} and for all p ∈ Q, the configuration [i − 1, p, θ ∪
{(i−1, h)}] (on w(nk, m)) and the configuration [i−1, p, θ ∪{(i−1, h)}] (on w(nk, m))
are compatible with respect to l + ni−1 + 2;

(2) for all h ∈ {L(l + ni−1), . . . , K(nk)} and for all p ∈ Q, the configuration [i − 1, p, θ ∪
{(i − 1, h)}] (on w(nk, m)) and the configuration [i − 1, p, θ ∪ {(i − 1, h − 2m)}] (on
w(nk, m)) are compatible with respect to l.

PROOF. It follows from the fact that ni = 2ni−1 + 2. We prove it by picture here. For
case (1), the proof is as follows. Let l′ = l + ni.

w(nk, m) = al−1al

K(l)

No pebble here︷ ︸︸ ︷
K(l + ni−1 + 2)

al+ni−1+1al+ni−1+2 bl′−1bl′ · · ·

L(l′)

al′ al′+1

︸ ︷︷ ︸
Pebble i−1 is here

︸ ︷︷ ︸
No pebble
here

L(l′) − 2m

w(nk, m) = al−1al al+ni−1+1al+ni−1+2 bl′−1bl′

There is no pebble on the positions between K(l + ni−1 + 2) and L(l′) in the word
w(nk, m) as well as on the positions between K(l + ni−1 + 2) and L(l′) − 2m in the word
w(nk, m) due to the assumption that [i, q, θ] and [i, q, θ] are compatible with respect to
l. Since l′ − (l + ni−1 + 2) = ni−1, the configuration [i − 1, p, θ ∪ {(i − 1, h)}] (on w(nk, m))
and the configuration [i−1, p, θ ∪{(i−1, h)}] (on w(nk, m)) are compatible with respect
to l + ni−1 + 2, for all h ∈ {0, . . . , K(l + ni−1 + 2)} and for all p ∈ Q.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:16 T. Tan

For case (2), the proof is as follows. We let l′′ = l + ni−1.

K(l)

No pebble here︷ ︸︸ ︷
Pebble i − 1

is here︷ ︸︸ ︷
L(l′′)

w(nk, m) = al−1al bl′′−1bl′′ · · · al′′ al′′+1

︸ ︷︷ ︸
No pebble here

L(l′′) − 2m

w(nk, m) = al−1al bl′′−1bl′′︸ ︷︷ ︸
Pebble i−1 is here

There is no pebble on the positions between K(l) and L(l′′) in the word w(nk, m) as
well as on the positions between K(l) and L(l′′) − 2m in the word w(nk, m) due to the
assumption that [i, q, θ] and [i, q, θ] are compatible with respect to l. Hence, case (2)
follows immediately. This completes the proof of Claim 1.

Remark 3.11. Let [i, q, θ] and [i, q, θ] be configurations of A on w(nk, m) and
w(nk, m), respectively and assume that they are compatible with respect to an inte-
ger l. Let j, j′ ∈ {i, i + 1, . . . , k} and let

— x and y denote the symbols seen by pebbles j and j′, respectively, on w(nk, m) ac-
cording to the configuration θ , and

— x and y denote the symbols seen by pebbles j and j′, respectively, on w(nk, m) ac-
cording to the configuration θ .

Then x = y if and only if x = y.
The reason is as follows. Since [i, q, θ] and [i, q, θ] are compatible with respect to l,

we have the following four cases.

(a) θ(j) ≤ K(l) and θ(j′) ≤ K(l).
In this case, θ(j) = θ(j) and θ(j′) = θ(j′) and we immediately have x = y if and only
if x = y.

(b) θ(j) ≤ K(l) and θ(j′) ≥ L(l + ni).
In this case, θ(j) = θ(j) and θ(j′) = θ(j′) − 2m. Now in w(nk, m) and w(nk, m)
each symbol appears at most twice and they are of distance 4m − 2 apart. Since
L(l + ni) − K(l) > 4m − 2, we have x �= y. Similarly, L(l + ni) − 2m − K(l) > 4m − 2,
hence x = y.

(c) θ(j) ≥ L(l + ni) and θ(j′) ≤ K(l).
The proof is similar to case (b).

(d) θ(j) ≥ L(l + ni) and θ(j′) ≥ L(l + ni).
In this case, θ(j) = θ(j)− 2m and θ(j′) = θ(j′)− 2m and we immediately have x = y
if and only if x = y.

Now this immediately implies that for every transition α → β of the automaton A, it
applies to [i, q, θ] if and only if it applies to [i, q, θ].

The following claim is important. However, due to the complexity of its proof, we
postpone it until Section 3.3.

CLAIM 2. For each i ∈ {1, . . . , k}, and for every run of A on w(nk, m):

[i, p0, θ0] �∗
A,w(nk,m)[i, p1, θ1] �∗

A,w(nk,m) · · · · · · �∗
A,w(nk,m) [i, pN+1, θN+1] (3)

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:17

where

— N = K(nk) = length of w(nk, m);
— θ0(i) = 0;
— θN+1(i) = N + 1;
— θh+1 = Succi(θh), for each h ∈ {0, . . . , N} – that is, for each j ∈ {i + 1, . . . , k}, θ0(j) =

· · · = θN+1(j) and θh(i) = h, for each h ∈ {0, . . . , N + 1};
if l is an integer such that

(1) if i = k, then l = 0; and
(2) if i �= k, then l is an integer such that for each j ∈ {i + 1, . . . , k}, either θ0(j) ≤ K(l),

or θ0(j) ≥ L(l + ni) + 1,

then there exist two positive integers ν0 and ν such that

— ν = πβi−1!, where 1 ≤ π ≤ |Q|;
— K(l + ni−1 + 1) + 1 ≤ ν0 ≤ K(l + ni−1 + 1) + βi;
— for each h where ν0 ≤ h ≤ K(l + ni−1 + 2) − ν, we have ph = ph+ν .

In particular, since βi+1 = |Q|! ×βi! and m = βk+1, we have ν divides βi+1, and thus ν
also divides m. Therefore, pK(l+ni−1+2)−2−2m = pK(l+ni−1+2)−2.

We give an illustration of the intuitive meaning of the indexes l, ν0, ν in Claim 2 for
i �= k. Let l be the integer assumed in the hypothesis of Claim 2. (For simplicity, we do
not put the indexes on the a’s.)

w(nk, m) =

K(l)

aa

Pebbles i+1,...,k are not here︷ ︸︸ ︷
L(l + ni)

aa

K(l + ni + 1)

aa

K(l + ni + 2)

aa

ν0

︸ ︷︷ ︸
(∗)

The meaning of Claim 2 is that in region (∗) pebble i enters the same state every ν
steps.

CLAIM 3. Let

[1, p0, θ0] �A,w(nk,m) · · · · · · [1, pN , θN] �A,w(nk,m) [1, pN+1, θN+1]

be a run of A on w(nk, m), where N is the length of w(nk, m) and θ0(1) = 0, and θj+1 =
Succ1(θj), for each j ∈ {0, . . . , N}; and let

[1, r0, θ0] �A,w(nk,m) · · · · · · [1, rM, θM] �A,w(nk,m) [1, rM+1, θM+1]

be a run of A on w(nk, m), where M is the length of w(nk, m) and θ0(1) = 0, and θ j+1 =
Succ1(θ j), for each j ∈ {0, . . . , M}.

If [1, p0, θ0] and [1, r0, θ0] are compatible with respect to an l ∈ {0, . . . , nk − n1}, then
pN+1 = rM+1.

PROOF. Consider the run

[1, p0, θ0] �A,w(nk,m) · · · · · · [1, pN , θN] �A,w(nk,m) [1, pN+1, θN+1] ,

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:18 T. Tan

where θ0(1) = 0, and θj+1 = Succ1(θj), for each j ∈ {0, . . . , N}; and the run

[1, r0, θ0] �A,w(nk,m) · · · · · · [1, rM, θM] �A,w(nk,m) [1, rM+1, θM+1] ,

where θ0(1) = 0, and θ j+1 = Succ1(θ j), for each j ∈ {0, . . . , M}.
Suppose that [1, p0, θ0] and [1, r0, θ0] are compatible with respect to an integer l.

This means that p0 = r0. We are going to show that pN+1 = rM+1 in three stages. (In
the following let l′ = l + 2.)

Stage 1. pK(l′) = rK(l′).
To prove this, we show that ph = rh, for each h ∈ {0, . . . , K(l′)}. The proof is by
induction on h. The proof for the base case, h = 0, follows from compatibility of
[1, p0, θ0] and [1, r0, θ0].
For the induction step, suppose that ph = rh. By Remark 3.11, a transition α → β
applies to [1, ph, θh] if and only if it applies to [1, rh, θh]. Hence, ph+1 = rh+1.
Stage 2. pK(l′)−2 = pK(l′)−2m−2 = rK(l′)−2m−2.
In Stage 1, we already show that pK(l′)−2m−2 = rK(l′)−2m−2. That pK(l′)−2 =
pK(l′)−2m−2 follows from Claim 2.
Stage 3. pN+1 = rM+1.
We are going to prove that ph = rh−2m, for each h ∈ {K(l′) − 2, . . . , N + 1}.
The proof is by induction on h. The proof for the base case, h = K(l′) − 2, is already
shown in Step 2.
For the induction step, suppose that ph = rh−2m. By Remark 3.11, a transition
α → β applies to [1, ph, θh] if and only if it applies to [1, rh−2m, θh−2m]. Thus, ph+1 =
rh+1.

This completes the proof of Claim 3.

The following claim is the generalization of Claim 3 which implies Proposition 3.10.

CLAIM 4. For each i ∈ {1, . . . , k}, the following holds. Let

[i, p0, θ0] �∗
A,w(nk,m) · · · · · · [i, pN , θN] �∗

A,w(nk,m) [i, pN+1, θN+1]

be a run of A on w(nk, m), where N is the length of w(nk, m) and θ0(i) = 0, and θj+1 =
Succi(θj), for each j ∈ {0, . . . , N}; and let

[i, r0, θ0] �∗
A,w(nk,m) · · · · · · [i, rM, θM] �∗

A,w(nk,m) [i, rM+1, θM+1]

be a run of A on w(nk, m), where M is the length of w(nk, m) and θ0(i) = 0, and θ j+1 =
Succi(θ j), for each j ∈ {0, . . . , M}.

If [i, p0, θ0] and [i, r0, θ0] are compatible with respect to an l ∈ {0, . . . , nk − ni}, then
pN+1 = rM+1.

PROOF. The proof is by induction on i. The basis is i = 1, which we have already
proved in Claim 3.

For the induction hypothesis, we assume that Claim 4 holds for the case of i − 1. We
are going to show that it holds for the case of i. The line of reasoning is almost the
same as Claim 3. For completeness, we present it here.

Consider the following run

[i, p0, θ0] �∗
A,w(nk,m) · · · · · · [i, pN , θN] �∗

A,w(nk,m) [i, pN+1, θN+1]

and

[i, r0, θ0] �∗
A,w(nk,m) · · · · · · �∗

A,w(nk,m) [i, rM+1, θM+1] .

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:19

By the assumption that [i, p0, θ0] and [i, r0, θ0] are compatible, we have p0 = r0. We
are going to prove that pN+1 = rM+1 in three stages. Let l′ = l + ni−1 + 2.

Stage 1. pK(l′)−2 = rK(l′)−2.
To prove this subclaim, we show that ph = rh, for each h ∈ {0, . . . , K(l′)}. The proof
is by induction on h. The proof for the base case p0 = r0 follows from the fact that
[i, p0, θ0] and [i, r0, θ0] are compatible.
For the induction step, suppose that ph = rh. By the normalization of the automa-
ton A, the run is of the form:

[i, ph, θh] �A,w(nk,m)[i − 1, p′
0, θ ′

0] �∗
A,w(nk,m) · · · · · · �∗

A,w(nk,m) [i − 1, p′
N+1, θ ′

N+1]

and

[i, rh, θh] �A,w(nk,m)[i − 1, r′
0, θ ′

0] �∗
A,w(nk,m) · · · · · · �∗

A,w(nk,m) [i, r′
M+1, θ ′

M+1] ,

where θ ′
h(i − 1) = h for each h ∈ {1, . . . , N + 1} and θ

′
h(i − 1) = h for each h ∈

{1, . . . , M + 1}.
By determinism of A, we have p′

0 = r′
0. Then, by Claim 1, since 0 ≤ h ≤ K(l′), we

have [i − 1, p′
0, θ ′

0] and [i − 1, r′
0, θ ′

0] compatible with respect to l′. By the induction
hypothesis of Claim 4, we have p′

N+1 = r′
M+1. Then, by determinism of A, we have

ph+1 = rh+1.
Stage 2. pK(l′)−2 = pK(l′)−2m−2 = rK(l′)−2m−2.
In Stage 1 we already have pK(l′)−2m−2 = rK(l′)−2m−2. Claim 2 implies that
pK(l′)−2 = pK(l′)−2m−2.
Stage 3. pN+1 = rM+1.
By Stage 2, we have pK(l′)−2 = rK(l′)−2m−2. We are going to prove that ph = rh−2m,
for each h ∈ {K(l′) − 2, . . . , N + 1}.
The proof is by induction on h. The proof for the base case, h = K(l′), follows from
Stage 2.
For the induction step, suppose that ph = rh−2m. By the normalization of the au-
tomaton A, we assume that the run is of the form:

[i, ph, θh] �A,w(nk,m)[i − 1, p′
0, θ ′

0] �∗
A,w(nk,m) · · · · · · �∗

A,w(nk,m) [i − 1, p′
N+1, θ ′

N+1]

and

[i, rh−2m, θh−2m] �A,w(nk,m)[i−1, r′
0, θ ′

0] �∗
A,w(nk,m) · · · · · · �∗

A,w(nk,m) [i, r′
M+1, θ ′

M+1] ,

where θ ′
h(i − 1) = h for each h ∈ {1, . . . , N + 1} and θ

′
h(i − 1) = h for each h ∈

{1, . . . , M + 1}.
That we have [i, ph, θh] �A,w(nk,m)[i − 1, p′

0, θ ′
0] and [i, rh−2m, θh] �A,w(nk,m)[i −

1, r′
0, θ ′

0] is due to the normalization of the automaton A described in the begin-
ning of Section 3.2.
By determinism of A, we have p′

0 = r′
0. Then, by Claim 1, since h ≥ K(l′), we

have [i − 1, p′
0, θ ′

0] and [i − 1, r′
0, θ ′

0] compatible with respect to l. By the induction
hypothesis of Claim 4, we have p′

N+1 = r′
M+1. Then, by determinism of A, we have

ph+1 = rh+1−2m.

This completes the proof of Claim 4.

PROOF. (of Proposition 3.10) We simply apply Claim 4, in which i = k, and both
p0, r0 are the initial state q0 of A. Note that the initial configurations of A on w(nk, m)
and w(nk, m) are the same, thus, they are compatible.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:20 T. Tan

3.3. Proof of Claim 2

In this section we are going to prove Claim 2. The proof is also rather long and techni-
cal. We need the following definition.

Definition 3.12. In the following, let i ∈ {1, . . . , k}.
(1) An assignment θ : {i, . . . , k} �→ {0, 1, . . . , K(nk) + 1} of pebbles i, i + 1, . . . , k on

w(nk, m) is called a pebble-i assignment.
(2) For two pebble-i assignments θ1 and θ2, we say that they have the same pebble

ordering, if for each j, j ′ ∈ {i, i + 1, . . . , k}, θ1(j) ≤ θ1(j ′) if and only if θ2(j) ≤ θ2(j ′).

In this section we are going to prove Claim 2 together with Claim 5. In fact, we are
going to prove both claims simultaneously. (We will give the structure of the proofs
later on.)

CLAIM 5. Let [i, q, θ1] and [i, q, θ2] be configurations of A on w(nk, m) such that

(1) θ1 and θ2 have the same pebble ordering;
(2) for each j ∈ {i, . . . , k}, θ1(j) ≤ θ2(j);
(3) there exist integers l1, l2, l3, l4 and π such that l1 ≤ l2 ≤ l3 ≤ l4 and 1 ≤ π < m

βi−1!
and for each j ∈ {i, . . . , k},
(a) if θ1(j) ≤ K(l1) or θ1(j) ≥ L(l4) + 1, then θ1(j) = θ2(j);
(b) if θ2(j) ≤ K(l1) or θ2(j) ≥ L(l4) + 1, then θ1(j) = θ2(j);
(c) l2 − l1 ≥ ni−1 + 1;
(d) l4 − l3 ≥ ni−1 + 1;
(e) Image(θ1) ∩ ({K(l1) + 1, . . . , K(l2)} ∪ {L(l3) + 1, . . . , L(l4)}) = ∅;
(f) Image(θ2) ∩ ({K(l1) + 1, . . . , K(l2)} ∪ {L(l3) + 1, . . . , L(l4)}) = ∅;
(g) if θ1(j) ∈ {K(l2)+1, . . . , L(l3)}, then θ2(j) ∈ {K(l2)+1, . . . , L(l3)} and θ2(j)−θ1(j) =

πβi−1!;
(h) if θ2(j) ∈ {K(l2)+1, . . . , L(l3)}, then θ1(j) ∈ {K(l2)+1, . . . , L(l3)} and θ2(j)−θ1(j) =

πβi−1!.

If [i, q, θ1] �∗[i, p, Succi(θ1)] and [i, q, θ2] �∗[i, r, Succi(θ2)], then p = r.

We give an intuitive meaning of Claim 5. Consider the following illustration, where
θ1 and θ2 are configurations on w(nk, m) with the same pebble ordering.

K(l1)

K(ni−1)�	
K(l2) L(l3)

K(ni−1)�	
L(l4)

θ1 : CbbDaa · · · · · · aaCbbDDaa aaCbbDaa · · · · · · aaCbbDD

︸ ︷︷ ︸
region (�)

︸ ︷︷ ︸
No pebble here

︸ ︷︷ ︸
region (
)

︸ ︷︷ ︸
No pebble here

︸ ︷︷ ︸
region (�)

θ2 : CbbDaa · · · · · · aaCbbDDaa aaCbbDaa · · · · · · aaCbbDD

The meanings of l1, l2, l3, l4 and π are such that for each j ∈ {i, . . . , k},
— if pebble j are found in region (�) on both configurations θ1 and θ2, then θ1(j) = θ2(j);
— if pebble j are found in region (
) on both configurations θ1 and θ2, then θ2(j)−θ1(j) =

πβi−1!;
— if pebble j are found in region (�) on both configurations θ1 and θ2, then θ2(j) = θ1(j).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:21

On both configurations θ1 and θ2 no pebbles are found in the region between K(l1) + 1
and K(l2) as well as in between L(l3) + 1 and L(l4). Claim 5 states that both configu-
rations [i, q, θ1] and [i, q, θ2] are essentially the “same.” In the sense that if [i, q, θ1] �∗
[i, p, Succi(θ1)] and [i, q, θ2] �∗ [i, r, Succi(θ2)], then p = r.

The proofs of both Claims 2 and 5 use a rather involved inductive argument. In fact,
we are going to prove both claims simultaneously by induction. The induction step
on the proof of each claim uses the induction hypothesis of both claims. The overall
structure of the proofs of both Claims 2 and 5 is as follows.

(1) We prove the base case i = 1 of Claim 2.
(2) We prove the base case i = 1 of Claim 5.
(3) For the induction hypothesis, we assume that both Claims 2 and 5 hold for the

case i.
(4) For the induction step, we prove Claim 2 for the case i + 1.

This step uses the hypothesis that both Claims 2 and 5 hold for case i.
(5) For the other induction step, we prove Claim 5 for the case i + 1.

As in Step 4, this step uses the hypothesis that both Claims 2 and 5 hold for case i.

PROOF OF THE BASE CASE i = 1 FOR CLAIM 2. Let l be an integer such that for
each j ∈ {2, . . . , k}, either θ(j) ≤ K(l) or θ(j) ≥ L(l + 2), where the number 2 comes
from n1 = 2.

The symbols in Cl+1blbl+1Dl+1 are different from all the symbols seen by peb-
bles 2, . . . , k. We are going to show that when reading Cl+1blbl+1Dl+1, pebble 1 enters
into a loop of states. See the following illustration.

	 of length L(l + 2) �

w(nk, m) = a0a1 · · · · · · · · · al−1al · · · · · · alal+1 Cl+1 blbl+1 Dl+1 al+1al+2 · · · · · · al+2al+3 · · ·
	

of length K(l)
� ︸ ︷︷ ︸

With pebble 1 reading Cl+1blbl+1Dl+1

the states of A becomes periodic

On reading the segment Cl+1blbl+1Dl+1, the transitions used are of the form
(1, ∅, ∅, s) → (s′, right). Due to the determinism of the automaton A, there exist in-
tegers ν0 and ν such that ν0, ν ≤ |Q| and for each h where ν0 ≤ h ≤ K(l + ni−1 + 2) − ν,
we have ph = ph+ν . In particular, since β2 = |Q|! ×β1!, we have ν divides β2. Fur-
thermore, β2 also divides m = βk+1, thus, ν divides m, therefore, pK(l+ni−1+2)−2−2m =
pK(l+ni−1+2)−2.

PROOF OF THE BASE CASE i = 1 FOR CLAIM 5. Suppose [1, q, θ1] and [1, q, θ2] are
configurations of A on w(nk, m) and l1, l2, l3, l4, π are integers such that the conditions
(1), (2), (3.a)-(3.h) hold. Moreover, suppose also that

[1, q, θ1] � [1, p, Succ1(θ1)] and [1, q, θ2] � [1, r, Succ1(θ2)] .

We are going to show that p = r.
By conditions (3.e) and (3.f), there can only be three cases: θ1(1) ≤ K(l1), K(l2)+ 1 ≤

θ1(1) ≤ L(l3), and θ1(1) ≥ L(l4) + 1.

Case 1. θ1(1) ≤ K(l1).
By condition (3.a), we have θ1(1) = θ2(1). By conditions (1), (2), (3.a) and (3.b), for
any j ∈ {2, . . . , k}, we have

θ1(j) = θ1(1) if and only if θ2(j) = θ2(1). (4)

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:22 T. Tan

By condition (3.c), l2 − l1 ≥ 1. Moreover, no symbol in Cl2bl2−1bl2Dl2 · · · ank−1ank

appears in a0a1 · · · al1−1al1 , and by conditions (3.e) and (3.f), no pebbles are placed
on Cl1 · · · al2−1al2 . Therefore, for any j ∈ {2, . . . , k},

pebbles j and 1 read the same symbol in the configuration [1, q, θ1]
if and only if

pebbles j and 1 read the same symbol in the configuration [1, q, θ2]
(5)

Thus, by Equalities 4 and 5, the same transition applies to both [1, q, θ1] and
[1, q, θ2]. Since A is deterministic, we have p = r.
Case 2. K(l2) + 1 ≤ θ1(1) ≤ L(l3).
That is, θ2(1) = θ1(1) + πβi−1!, where 1 ≤ πβi−1! < m. By the same conditions (3.g)
and (3.h), for any j ∈ {2, . . . , k},

θ1(j) = θ1(1) if and only if θ2(j) = θ2(1). (6)

By condition (3.c), l2 − l1 ≥ 1. Moreover, any symbol in Cl2bl2−1bl2Dl2 · · · ank−1ank
does not appear in a0a1 · · · al1−1al1 . Therefore, for any j ∈ {2, . . . , k}, if pebbles j and
1 read the same symbol in the configuration [1, q, θ1], then K(l2)+1 ≤ θ1(j) ≤ L(l3);
and similarly, if pebbles j and 1 read the same symbol in the configuration [1, q, θ2],
then K(l2) + 1 ≤ θ2(j) ≤ L(l3). By conditions (3.g) and (3.h), θ2(j) = θ1(j) + πβi−1!.
Due to the definition of w(nk, m), we have

pebbles j and 1 read the same symbol in the configuration [1, q, θ1]
if and only if

pebbles j and 1 read the same symbol in the configuration [1, q, θ2]
(7)

Thus, by Equalities 6 and 7, the same transition applies to both [1, q, θ1] and
[1, q, θ2]. Since A is deterministic, we have p = r.
Case 3. θ1(1) ≥ L(l4) + 1.
The proof is similar to the one for Case 1 above, thus, omitted.

This completes the proof of the base case i = 1 for Claim 5.

The induction hypothesis. Both Claims 2 and 5 hold for case i.

The induction step for Claim 2. We are going to show that Claim 2 holds for the case
i + 1.

Suppose we have the following run:

[i + 1, p0, θ0] �∗
A,w(nk,m)[i + 1, p1, θ1] �∗

A,w(nk,m) · · · · · · �∗
A,w(nk,m) [i + 1, pN+1, θN+1]

Let l be the integer as stated in Claim 2. Since m > |Q|βi!, there exists a pair (η, η′) of
indexes such that

— K(l + ni + 1) + 1 ≤ η < η′ ≤ K(l + ni + 2) − 2;
— η′ − η = πβi!, where 1 ≤ π ≤ |Q|;
— pη = pη′ .

We pick such pair (η, η′) in which η is the smallest. We claim that ν0 = η and ν = η′ − η
are the desired two integers in Claim 2.

We are going to show that for each h ∈ {ν0, . . . , K(l + ni + 2) − 2 − ν},
if ph = ph+ν , then ph+1 = ph+ν+1. (8)

Since by definition of ν0 and ν, we already have pν0 = pν0+ν , this immediately implies
that for each h ∈ {ν0, . . . , K(l + ni + 2) − 2 − ν}, ph = ph+ν .

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:23

To prove Equality 8, suppose ph = ph+ν . Consider the following run:

— [i + 1, ph, θh] � [i, s0, θh ∪ {(i, 0)}];
— [i, s0, θh ∪ {(i, 0)}] �∗ · · · �∗ [i, sN+1, θh ∪ {(i, N + 1)}]
— [i, sN+1, θh ∪ {(i, N + 1)}] � [i + 1, s′, θh] � [i + 1, ph+1, θh+1].

and the following run:

— [i + 1, ph+ν , θh+ν] � [i, t0, θh+ν ∪ {(i, 0)}];
— [i, t0, θh+ν ∪ {(i, 0)}] �∗ · · · �∗ [i, tN+1, θh+ν ∪ {(i, N + 1)}]
— [i, tN+1, θh+ν ∪ {(i, N + 1)}] � [i + 1, t′, θh] � [i + 1, ph+ν+1, θh+ν+1].

Since ph = ph+ν and A is deterministic, we have s0 = t0. Our aim is to prove that
sN+1 = tN+1. To this end, there are a few steps.

Step 1 (Application of the hypothesis that Claim 5 holds for the case i). For each j
∈ {0, . . . , K(l + ni−1 + 2)}, we claim that sj = tj.
To apply the induction hypothesis that Claim 5 for the case i, we take the integers

l1 = l + ni−1 + 2
l2 = l + ni + 1
l3 = l2
l4 = l + ni+1

Recall that l is the integer such that every pebble, except pebbles i and (i + 1), are
located either ≤ K(l), or ≥ L(l + ni+1). Recall also that ν = πβi!.
It is straightforward to show that l2 − l1 ≥ ni−1 + 1 and l4 − l3 ≥ ni−1 + 1, and all
the conditions (1), (2) and (3.a)–(3.h) hold. Since s0 = t0, applying the hypothesis
for each j ∈ {0, . . . , K(l + ni−1 + 2)} – that Claim 5 hold for the case i – we have
sj = tj.
Step 2 (Application of the hypothesis that Claim 2 holds for the case i). For each j
∈ {K(l + ni−1 + 1) + 1, . . . , K(l + ni−1 + 2) − 2}, in the configuration [i, sj, θh ∪ {(i, j)}]
the integer l satisfies the condition that each pebbles i + 1, . . . , k are located either
≤ K(l), or L(l + ni).
Applying the induction hypothesis that Claim 2 holds for the case i, there exist two
integers ν′

0 and ν′ such that
— K(l + ni−1 + 1) + 1 ≤ ν′

0 ≤ K(l + ni−1 + 1) + βi;
— 1 ≤ ν′ ≤ βi;
— sj = sj+ν′ , for each j ∈ {K(l + ni−1 + 1) + 1, . . . , K(l + ni−1 + 2) − ν′ − 2}.

In particular, ν′ divides βi+1, by definition of βi+1, thus, sj = sj+ν , for each j ∈
{K(l + ni−1 + 1) + 1, . . . , K(l + ni−1 + 2) − ν − 2}.
Similarly, we can show that tj = tj+ν , for each j ∈ {K(l + ni−1 + 1) + 1, . . . , K(l +
ni−1 + 2) − ν − 2}.
Step 3 (Application of the hypothesis that Claim 5 holds for the case i). For each j
∈ {K(l + ni−1 + 1) + ν0, . . . , L(ni + 2 + ni−1 + 1)}, we claim that sj = tj+ν .
To apply the induction hypothesis that Claim 5 for the case i, we take the following
integers.

l1 = l
l2 = l + ni−1 + 1
l3 = l + ni + 2 + ni−1 + 1
l4 = l + ni+1

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:24 T. Tan

It is straightforward to show that l2 − l1 ≥ ni−1 + 1 and l4 − l3 ≥ ni−1 + 1, and all
the conditions (1), (2) and (3.a)–(3.h) hold.
From Steps 1 and 2, we already have

sK(l+ni−1+1)+ν0 = tK(l+ni−1+1)+ν0

sK(l+ni−1+1)+ν0+ν = tK(l+ni−1+1)+ν0+ν

sK(l+ni−1+1)+ν0 = sK(l+ni−1+1)+ν0+ν

Applying the hypothesis for each j ∈ {K(l+ni−1 +1)+ν0, . . . , L(ni +2+ni−1 +1)−ν}
– that Claim 5 hold for the case i – on the configurations [i, sj, θh ∪ {(i, j)}] and
[i, tj+ν , θh ∪ {(i, j + ν)}], we have sj = tj+ν .
Step 4 (Application of the hypothesis that Claim 2 holds for the case i). For each j
∈ {K(l + ni + 2 + ni−1 + 1) + 1, . . . , K(l + ni + 2 + ni−1 + 2) − 2}, in the configu-
ration [i, sj, θh ∪ {(i, j)}] the integer l + ni + 2 satisfies the condition that each peb-
bles i+1, . . . , k are located either ≤ K(l+ni +2), or ≥ L(l+ni +2+ni) = L(l+ni+1).
Applying the induction hypothesis that Claim 2 holds for the case i, there exist two
integers ν′′

0 and ν′′ such that
— K(l + ni + 2 + ni−1 + 1) + 1 ≤ ν′′

0 ≤ K(l + ni + 2 + ni−1 + 1) + βi;
— 1 ≤ ν′′ ≤ βi;
— sj = sj+ν′′ , for each j ∈ {K(l+ni+2+ni−1+1)+1, . . . , K(l+ni+2+ni−1+1)−ν′′−2}.

In particular, ν′′ divides βi+1, and by definition of βi+1, thus, sj = sj+ν , for each
j ∈ {K(l + ni + 2 + ni−1 + 1) + 1, . . . , K(l + ni + 2 + ni−1 + 2) − ν − 2}.
Similarly, we can show that tj = tj+ν , for each j ∈ {K(l+ni+2+ni−1+1)+1, . . . , K(l+
ni + 2 + ni−1 + 2) − ν − 2}. In particular, we have

sK(l+ni+2+ni−1+2)−2 = tK(l+ni+2+ni−1+2)−2.

By definition of L(·) and K(·), this is equivalent to stating that

sL(l+ni+2+ni−1+1) = tL(l+ni+2+ni−1+1).

Step 5 (Application of the hypothesis that Claim 5 holds for the case i). For each j
∈ {L(l + ni−1 + 1), . . . , N + 1}, we claim that sj = tj.
To apply the induction hypothesis that Claim 5 for the case i, we take the integers

l1 = l
l2 = l + ni−1 + 1
l3 = l2
l4 = l3 + ni−1 + 1

It is straightforward to show that l2 − l1 ≥ ni−1 + 1 and l4 − l3 ≥ ni−1 + 1, and all
the conditions (1), (2) and (3.a)–(3.h) hold.
By Step 4, we already have sL(l+ni+2+ni−1+1) = tL(l+ni+2+ni−1+1). Applying the hy-
pothesis for each j ∈ {L(l + ni−1 + 1), . . . , N + 1} – that Claim 5 hold for the case i –
on the configurations [i, sj, θh ∪ {(i, j)}] and [i, tj, θh ∪ {(i, j)}], we have sj = tj.

From here, as sN+1 = tN+1 and A is deterministic, we have s′ = t′. And again, by the
deterministism of A, this implies ph+1 = ph+1+ν . This completes the induction step for
Claim 2.

The induction step for Claim 5. We are going to show that Claim 5 holds for the case
i + 1.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:25

Suppose [i + 1, q, θ1] and [i + 1, q, θ2] are configurations of A on w(nk, m) such that
the conditions (1), (2), (3.a)–(3.g) hold.

Consider the following run:

— [i + 1, q, θ1] � [i, s0, θh ∪ {(i, 0)}];
— [i, s0, θh ∪ {(i, 0)}] �∗ · · · �∗ [i, sN+1, θ1 ∪ {(i, N + 1)}]
— [i, sN+1, θ1 ∪ {(i, N + 1)}] � [i + 1, s′, θ1] � [i + 1, p, Succi+1(θ1)].

and the following run:

— [i + 1, q, θ2] � [i, t0, θ2 ∪ {(i, 0)}];
— [i, t0, θ2 ∪ {(i, 0)}] �∗ · · · �∗ [i, tN+1, θ2 ∪ {(i, N + 1)}]
— [i, tN+1, θ2 ∪ {(i, N + 1)}] � [i + 1, t′, θ2] � [i + 1, r, Succi+1(θ2)].

We are going to show that p = r. It can be proved in a similar manner as in the proof
of the induction step of Claim 2, thus, omitted.

Briefly, the proof is divided into the same Steps 1–5. The reasoning on each step still
applies in this induction step, and at the end we obtain sN+1 = tN+1, thus, s′ = t′ and
p = r.

4. WEAK PA

There is an analogue of our results from the previous section to another, but weaker,
version of pebble automata. In the model defined in Section 2, the new pebble is placed
in the beginning of the input word. This model is called strong PA in Neven et al.
[2004]. An alternative would be to place the new pebble at the position of the most
recent one. The model defined this way is usually referred as weak PA. Formally, it
is defined by setting θ ′(i − 1) = θ(i) (and keeping θ ′(i) = θ(i)) in the case of act =
place-pebble in the definition of the transition relation in Definition 2.1.

We give the formal definition here.

Definition 4.1. A one-way alternating weak k-pebble automaton, (in short weak k-
PA) is a system A = 〈Q, q0, F, μ, U〉 whose components are defined as follows.

(1) Q, q0 ∈ Q and F ⊆ Q are a finite set of states, the initial state, and the set of final
states, respectively;

(2) U ⊆ Q − F is the set of universal states; and
(3) μ is a finite set of transitions of the form α → β such that

— α is of the form (i, P, V, q), where i ∈ {1, . . . , k}, P, V ⊆ {i + 1, . . . , k}, q ∈ Q and
— β is of the form (q, act), where q ∈ Q and

act ∈ {right, place-pebble, lift-pebble}.
The definitions of pebble assignment, configurations, initial and final configurations

as well as application of a transition on configurations are the same as defined in the
case of strong PA in Section 2.1.

We define the transition relation �A on 	w
 as follows: [i, q, θ] �A,w [i′, q′, θ ′], if there
is a transition α → (p, act) ∈ μ that applies to [i, q, θ] such that q′ = p, for all j > i,
θ ′(j) = θ(j), and

— if act = right, then i′ = i and θ ′(i) = θ(i) + 1,
— if act = lift-pebble, then i′ = i + 1,
— if act = place-pebble, then i′ = i − 1, θ ′(i − 1) = θ(i) and θ ′(i) = θ(i).

Note the difference on the definition of θ ′ for the case of act = place-pebble from the
one in the case of strong PA in Section 2.1.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:26 T. Tan

THEOREM 4.2. [Tan 2010, Theorem 3] For each k ≥ 1, one-way alternating, nonde-
terministic and deterministic weak k-PA have the same recognition power.

However, weak k-PA is weaker than strong k-PA. For example, R2k−1 is not a weak
k-PA language, see Lemma 4.3.

Let

wPAk = {L | L is accepted by a weak k-PA}
and

wPA =
⋃
k≥1

wPAk

The following lemma is the weak PA version of Proposition 3.1 and Corollary 3.3.

LEMMA 4.3. For each k = 1, 2, . . ., R+
k ∈ wPAk, but R+

k+1 /∈ wPAk.

PROOF. First, we prove that R+
k ∈ wPAk. The weak k-PA A that accepts R+

k works
as follows. On an input word w = a0b0 · · · anbn, it works as follows.

(1) It places pebble k on the second position to read the symbol b0.
(2) For each i = k − 1, . . . , 1, it does the following.

(a) Place pebble i, and non-deterministically moves it right until it finds an odd
position that contains the same symbol read by pebble i + 1.

(b) If it finds such position, it moves pebble i one step to the right.
(c) If it cannot find such position, it rejects the input word.

(3) If at the end, pebble 1 is on the last position, then the automaton accepts the input
word.

It is quite straightforward to show that the automaton Ak accepts R+
k .

Now we prove that R+
k+1 /∈ wPAk. Suppose to the contrary that there is a weak k-PA

A that accepts R+
k+1. By adding some extra states, we can normalize the behavior of

each pebble as follows. For each i ∈ {1, . . . , k}, pebble i behaves as follows.

— After pebble i moves right, then pebble (i − 1) (when i > 1) is immediately placed
(in position 0 reading the left end-marker).

— If i < k, pebble i is lifted only when it reaches the right-end marker
 of the input.
— Immediately after pebble i is lifted, pebble (i + 1) moves right.

We also assume that in the automaton A only pebble k can enter a final state and it
may do so only after it reads the right-end marker
 of the input.

We let m = βk+1, as defined in Section 3.2, where β0 = 1, β1 = |Q|, and for i ≥ 2,

βi = |Q|! ×βi−1!

Also recall that the words w(k + 1, m) and w(k + 1, m) are defined as follows.

w(k + 1, m) = a0a1C1b0b1D1 · · · · · · ak−1akCkbk−1bkDkakak+1

w(k + 1, m) = a0a1C1b0b1D1 · · · · · · ak−1akCkbk−1bk,

where for each i = 1, . . . , k,

— Ci = ci,1ci+1,1 · · · ci,m−1ci+1,m−1;
— Di = di,1di+1,1 · · · di,m−1di+1,m−1.

Obviously w(k + 1, m) ∈ R+
k+1, while w(k + 1, m) /∈ R+. We establish the following

claim that immediately implies R+
k+1 /∈ wPAk.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:27

CLAIM 6. The automaton A either accepts both w(k+1, m) and w(k+1, m), or rejects
both w(k + 1, m) and w(k + 1, m).

PROOF. The proof is similar to the proof of Proposition 3.10. So we simply sketch it
here. Let

[k, p0, θ0] �∗
A,w(nk,m) · · · · · · �∗

A,w(k,m) [k, pN+1, θN+1]

be a run of A on w(k+1, m), where N is the length of w(k+1, m) and θj(k) = j, for each
j ∈ {0, . . . , N + 1}.

Let

[k, r0, θ0] �∗
A,w(k+1,m) · · · · · · �∗

A,w(k+1,m) [k, rM+1, θM+1]

be a run of A on w(k+1, m), where M is the length of w(k+1, m) and θj(k) = j, for each
j ∈ {0, . . . , M + 1}.

Now p0 = r0, as both are the initial state of A. We are going to show that pN+1 =
rM+1. It consists of three steps.

Step 1. pm = rm.
This step is similar to Claim 4 proved in Section 3.2. That is, suppose [k, q, θ]
and [k, q, θ] are configurations on w(k + 1, m) and w(k + 1, m), respectively, and
0 ≤ θ(k) = θ(k) ≤ m. If

[k, q, θ] �∗
A,w(k+1,m)

[k, p, Succk(θ)]

[k, q, θ] �∗
A,w(k+1,m)

[k, r, Succk(θ)]

then p = r.5
Step 2. rm = pm = p2m.
This step is similar to Claim 2 stated in Section 3.2. That is, there exist two integers
ν0 and ν such that for every h ∈ {m + ν0, . . . , 2m − ν}, we have ph = ph+ν .
The main idea is that since the integer m is big enough, there exists an integer ν
such that on every ν steps, pebble k will enter into the same state. The integer m
is defined so that it is divisible by every possible such ν, thus, implies pm = p2m.
That rm = pm is deduced from the previous step.
Step 3. pN+1 = rM+1.
Here we make use of the fact that A is a weak PA. From previous step we have
p2m = rm. On the configuration [k, p2m, θ2m] of A on w(k+1, m), pebble k only “sees”
a1a2C2b1b2D2 · · · ak−1akCkbk−1bkDkakak+1; while on the configuration [k, rm, θm]
of A on w(k + 1, m), pebble k only “sees” b0b1D1 · · · ak−1akCkbk−1bk.
Since a1a2C2b1b2D2 · · · ak−1akCkbk−1bkDkakak+1 and b0b1D1 · · · ak−1akCkbk−1bk
are essentially the same, we have p2m+1 = rm+1. Similarly, from p2m+1 = rm+1,
we also can conclude that p2m+2 = rm+2 and then p2m+3 = rm+3 and so on until we
get pN+1 = rM+1.

This completes the proof of Lemma 4.3.

Lemma 4.3 immediately implies the strict hierarchy for wPA languages.

THEOREM 4.4. For each k = 1, 2, . . ., wPAk � wPAk+1.

5The only difference between this proof and the proof of Claim 4 is that here the induction hypothesis is that
for each 1 ≤ i ≤ k − 1, weak i-PA cannot differentiate between w(i + 1, m) and w(i + 1, m); while in Claim 4
the induction hypothesis is strong i-PA cannot differentiate between w(ni, m) and w(ni, m).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:28 T. Tan

5. LINEAR TEMPORAL LOGIC WITH ONE REGISTER FREEZE QUANTIFIER

In this section we recall the definition of Linear Temporal Logic (LTL) augmented with
one register freeze quantifier [Demri and Lazić 2009]. We consider only one-way tem-
poral operators “next” X and “until” U, and do not consider their past time counterparts.
Moreover, in Demri and Lazić [2009] the LTL model is defined over data words. Since
in this article we essentially ignore the finite labels, the LTL model presented here also
ignores the finite labels. However, the result here can be adopted in a straightforward
manner for the data word model.

Roughly, the logic LTL↓
1(X, U) is the standard LTL augmented with a register to store

a symbol from the infinite alphabet. Formally, the formulas are defined as follows.

— Both True and False belong to LTL↓
1(X, U).

— ↑ is in LTL↓
1(X, U).

— If ϕ, ψ are in LTL↓
1(X, U), then so are ¬ϕ, ϕ ∨ ψ and ϕ ∧ ψ .

— If ϕ is in LTL↓
1(X, U), then so is Xϕ.

— If ϕ is in LTL↓
1(X, U), then so is ↓ ϕ.

— If ϕ, ψ are in LTL↓
1(X, U), then so is ϕUψ .

Intuitively, the predicate ↑ is intended to mean that the current symbol is the same as
the symbol in the register, while ↓ ϕ is intended to mean that the formula ϕ holds when
the register contains the current symbol. This will be made precise in the definition of
the semantics of LTL↓

1(X, U).
An occurrence of ↑ within the scope of some freeze quantification ↓ is bounded by it;

otherwise, it is free. A sentence is a formula with no free occurrence of ↑.
Next, we define the freeze quantifier rank of a sentence ϕ, denoted by fqr(ϕ).

— fqr(True) = fqr(False) = fqr(↑) = 0.
— fqr(Xϕ) = fqr(¬ϕ) = fqr(ϕ), for every ϕ in LTL↓

1(X, U).
— fqr(ϕ ∨ ψ) = fqr(ϕ ∧ ψ) = fqr(ϕUψ) = max(fqr(ϕ), fqr(ψ)), for every ϕ and ψ in

LTL↓
1(X, U).

— fqr(↓ ϕ) = fqr(ϕ) + 1, for every ϕ in LTL↓
1(X, U).

Finally, we define the semantics of LTL↓
1(X, U). Let w = a1 · · · an be a word. For a

position l = 1, . . . , n, a symbol a and a formula ϕ in LTL↓
1(X, U), w, l |=a ϕ means that ϕ

is satisfied by w at position l when the content of the register is a. As usual, w, l �|=a ϕ
means the opposite. The satisfaction relation is defined inductively as follows.

— w, l |=a True and w, l �|=a False, for all l = 1, 2, 3, . . . and a ∈ D.
— w, l |=a ϕ ∨ ψ if and only if w, l |=a ϕ or w, l |=a ψ .
— w, l |=a ϕ ∧ ψ if and only if w, l |=a ϕ and w, l |=a ψ .
— w, l |=a ¬ϕ if and only if w, l �|=a ϕ.
— w, l |=a Xϕ if and only if 1 ≤ l < n and w, l + 1 |=a ϕ.
— w, l |=a ϕUψ if and only if there exists l′ ≥ l such that w, l′ |=a ψ and w, l′′ |=a ϕ,

for all l′′ = i, . . . , l′ − 1.
— w, l |=a ↓ϕ if and only if w, l |=al ϕ
— w, l |=a ↑ if and only if a = al.

For a sentence ϕ in LTL↓
1(X, U), we write w, 1 |= ϕ, if w, 1 |=a ϕ for some a ∈ D. Note

that since ϕ is a sentence, all occurrences of ↑ in ϕ are bounded. Thus, it makes no
difference which data value a is used in the statement w, 1 |=a ϕ of the definition of
w, 1 |= ϕ. We define the language L(ϕ) by L(ϕ) = {w | w, 1 |= ϕ}.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:29

THEOREM 5.1. For every sentence ψ ∈ LTL↓(X, U), there exists a weak k-PA Aψ ,
where k = fqr(ψ) + 1, such that L(Aψ) = L(ψ).

PROOF. Let ψ be an LTL↓
1(X, U) sentence. We construct an alternating weak k-PA

Aψ , where k = fqr(ψ)+1 such that given a word w, the automaton Aψ “checks” whether
w, 1 |= ψ . Aψ accepts w if it is so. Otherwise, it rejects.

Intuitively, the computation of w, 1 |= ψ is done recursively as follows. The automa-
ton Aψ “consists of” the automata Aϕ for all sub-formula of ψ .

— If ψ = ϕ ∨ ϕ′, then Aψ nondeterministically chooses one of Aϕ or Aϕ′ and proceeds
to run one of them.

— If ψ = ϕ ∧ ϕ′, then Aψ splits its computation (by conjunctive branching) into two
and proceeds to run both Aϕ and Aϕ′ .

— If ψ = Xϕ, Aψ moves to the right one step. If it reads the right-end marker
, then
it rejects immediately. Otherwise, it proceeds to run Aϕ .

— If ψ =↑, then Aψ checks whether the symbol seen by its head pebble is the same as
the one seen by the second last placed pebble. If it is not the same, then it rejects
immediately.

— If ψ =↓ ϕ, then Aψ places a new pebble and proceeds to run Aϕ .
— If ψ = ϕUϕ′, then Aψ repeatedly does the following.

(1) It splits its computation (by conjunctive branching) into two.
(2) In one branch it runs Aϕ .
(3) In the other it moves one step to the right and starts on Step 1 again.

It repeatedly performs (1)–(3) until it nondeterministically decides to run Aϕ′ .
— If ψ = ¬ϕ, then Aψ runs the complement of Aϕ . The complement of Aϕ can be

constructed by switching the accepting states into non-accepting states and the
non-accepting states into accepting states, as well as, switching the universal states
into nonuniversal states and the non-universal states into universal states.

Note that since fqr(ϕ) = k, on each computation path the automaton Aψ only needs to
place the pebble k times, thus, Aψ requires only (k + 1) pebbles.

Now it is a straightforward induction on the length of ϕ to show that

w, l |=a ϕ if and only if the configuration [i, q, θ] leads to acceptance,

where

— i = fqr(ϕ) + 1;
— q is the initial state of Aϕ ;
— θ is a pebble assignment where θ(i) = l and θ(j) ≤ l, for each j ∈ {i + 1, . . . , k + 1};
— a is the symbol seen by pebble (i + 1), if i �= k + 1. (If i = k + 1, then a can be an

arbitrary symbol.)

From here, it immediately follows that L(Aψ) = L(ψ).

Our next results deal with the expressive power of LTL↓
1(X, U) based on the freeze

quantifier rank. It is an analog of the classical hierarchy of first order logic based
on the ordinary quantifier rank. We start by defining an LTL↓

1(X, U) sentence for the
language R+

m defined in Section 3.

LEMMA 5.2. For each k = 1, 2, 3, . . ., there exists a sentence ψk in LTL↓
1(X, U) such

that L(ψk) = R+
k and fqr(ψ1) = 1; and fqr(ψk) = k − 1, when k ≥ 2.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

19:30 T. Tan

PROOF. First, we define a formula ϕk such that fqr(ϕk) = k − 1 and for every word
w = d1 · · · dn, for every i = 1, . . . , n,

w, i |=di ϕk if and only if di · · · dn ∈ R+
k . (9)

We construct ϕk inductively as follows.

— ϕ1 = X(¬ ↑) ∧ ¬(X(X True)).
— For each k = 1, 2, 3, . . .,

ϕk+1 = X(¬ ↑) ∧ X
(

↓ X
(
(¬ ↑)U(↑ ∧ϕk)

))
Note that since fqr(ϕ1) = 0, then for each k = 1, 2, . . ., fqr(ϕk) = k − 1.

It is straightforward to show that ϕk satisfies Equation (9). The desired sentence ψk
is defined as follows.

— ψ1 =↓ (
X(¬ ↑) ∧ ¬(X(X True))

)
.

— For each k = 2, 3, . . .,

ψk = ↓ (X(¬ ↑)) ∧ X
(

↓ X
(
(¬ ↑)U(↑ ∧ϕk−1)

))
Obviously, fqr(ψ1) = 1. For k ≥ 2, fqr(ϕk−1) = k − 2, thus, fqr(ψk) = k − 1.

LEMMA 5.3. For each k = 1, 2, . . ., the language R+
k+1 is not expressible by a sentence

in LTL↓
1(X, U) of freeze quantifier rank (k − 1).

PROOF. By Lemma 4.3, R+
k+1 is not accepted by weak k-PA. Then, by Theorem 5.1,

R+
k+1 is not expressible by LTL↓

1(X, U) sentence of freeze quantifier rank (k − 1).

Combining both Lemmas 5.2 and 5.3, we obtain that for each k = 1, 2, . . ., the lan-
guage Rk+1 separates the class of LTL↓

1(X, U) sentences of freeze quantifier rank k from
the class of LTL↓

1(X, U) sentences of freeze quantifier rank (k − 1). Formally, we state it
as follows.

THEOREM 5.4. For each k = 1, 2, . . ., the class of sentences in LTL↓
1(X, U) of freeze

quantifier rank k is strictly more expressive than those of freeze quantifier rank (k − 1).

ACKNOWLEDGMENTS

The author would like to thank the anonymous referees of both the conference and the journal versions for
their careful reading and comments which greatly improve the article. The author also would like to thank
Michael Kaminski for his support and guidance when this work was done.

REFERENCES

Ajtai, M. and Fagin, R. 1990. Reachability is harder for directed than for undirected finite graphs. J. Symb.
Logic 55, 1, 113–150.

Björklund, H. and Schwentick, T. 2007. On notions of regularity for data languages. In Proceedings of the
International Symposium on Foundations of Computation Theory. 88–99.

Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., and Segoufin, L. 2011a. Two-variable logic on data
words. ACM Trans. Comput. Logic 12, 4, 27.

Bojanczyk, M., Klin, B., and Lasota, S. 2011b. Automata with group actions. In Proceedings of the Annual
IEEE Symposium on Logic in Computer Science. 355–364.

Bouyer, P. 2002. A logical characterization of data languages. Inf. Process. Lett. 84, 2, 75–85.
Demri, S. and Lazić, R. 2009. LTL with the freeze quantifier and register automata. ACM Trans. Comput.

Logic 10, 3.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

�

�

�

�

�

�

�

�

Graph Reachability and Pebble Automata over Infinite Alphabets 19:31

Demri, S., Lazić, R., and Nowak, D. 2007. On the freeze quantifier in constraint LTL: Decidability and
complexity. Inf. Comput. 205, 1, 2–24.

Fagin, R., Stockmeyer, L. J., and Vardi, M. Y. 1995. On monadic NP vs. monadic co-NP. Inf. Comput. 120, 1,
78–92.

Globerman, N. and Harel, D. 1996. Complexity results for multi-pebble automata and their logics. Theor.
Comput. Sci. 169, 161–184.

Kaminski, M. and Francez, N. 1994. Finite-memory automata. Theor. Comput. Sci. 134, 2, 329–363.
Ladner, R. E., Lipton, R. J., and Stockmeyer, L. J. 1984. Alternating pushdown and stack automata. SIAM

J. Comput. 13, 1, 135–155.
Lazić, R. 2011. Safety alternating automata on data words. ACM Trans. Comput. Logic 12, 2, 10.
Neven, F., Schwentick, T., and Vianu, V. 2004. Finite state machines for strings over infinite alphabets. ACM

Trans. Comput. Logic 5, 3, 403–435.
Savitch, W. J. 1970. Relationships between nondeterministic and deterministic tape complexities. J. Comput.

Syst. Sci. 4, 2, 177–192.
Schwentick, T. 1996. On winning Ehrenfeucht games and monadic NP. Ann. Pure Appl. Logic 79, 1, 61–92.
Segoufin, L. 2006. Automata and logics for words and trees over an infinite alphabet. In Proceedings of the

International Workshop on Computer Science Logic. 41–57.
Tan, T. 2009. Determinizing two-way alternating pebble automata over infinite alphabets. Tech rep., De-

partment of Computer Science, Technion – Israel Institute of Technology.
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-list.cgi/2009/CS.

Tan, T. 2010. On pebble automata for data languages with decidable emptiness problem. J. Comput. Syst.
Sci. 76, 8, 778–791.

Turán, G. 1984. On the definability of properties of finite graphs. Discrete Math. 49, 3, 291–302.

Received October 2011; revised April 2012, November 2012; accepted December 2012

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 19, Publication date: August 2013.

