
On the Complexity of Query Answering over Incomplete
XML Documents

Amélie Gheerbrant
University of Edinburgh

agheerbr@inf.ed.ac.uk

Leonid Libkin
University of Edinburgh
libkin@inf.ed.ac.uk

Tony Tan
University of Edinburgh
ttan@inf.ed.ac.uk

ABSTRACT

Previous studies of incomplete XML documents have
identified three main sources of incompleteness – in
structural information, data values, and labeling –
and addressed data complexity of answering analogs of
unions of conjunctive queries under the open world as-
sumption. It is known that structural incompleteness
leads to intractability, while incompleteness in data val-
ues and labeling still permits efficient computation of
certain answers.

The goal of this paper is to provide a complete pic-
ture of the complexity of query answering over incom-
plete XML documents. We look at more expressive
languages, at other semantic assumptions, and at both
data and combined complexity of query answering, to
see whether some well-behaving tractable classes have
been missed. To incorporate non-positive features into
query languages, we look at gentle ways of introduc-
ing negation via inequalities and/or Boolean combina-
tions of positive queries, as well as the analog of rela-
tional calculus. We also look at the closed world as-
sumption which, due to the hierarchical structure of
XML, has two variations. For all combinations of lan-
guages and semantics of incompleteness we determine
data and combined complexity of computing certain an-
swers. We show that structural incompleteness leads to
intractability under all assumptions, while by dropping
it we can recover efficient evaluation algorithms for some
queries that go beyond those previously studied.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Automata; H.2.1 [Database
Management]: Logical Design—Data Models ; H.2.3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

[Database management]: Languages—Query Lan-
guages ; I.7.2 [Document and Text Processing]:
Document Preparation—Markup languages

General Terms

Algorithms, Theory, Languages

Keywords

XML, incomplete information, query answering, certain
answers, open-world semantics, closed-world semantics

1. INTRODUCTION

The need to deal with incomplete information has in-
creased dramatically over the past decade, due to large
amounts of data on the Web [1] (which tend to be more
prone to errors than data stored in traditional relational
DBMSs) as well as the need to move data between dif-
ferent applications as, for example, in data integration
[21] and exchange [7] scenarios. Different types and
models of incompleteness have been studied too, such
as classical instances of missing information, uncertain
databases [6], and probabilistic databases [27]. While
most investigations deal with relational data, several
recent papers have attempted to model and analyze in-
completeness in XML. For example, [4] showed how to
handle incompleteness in a dynamic setting when doc-
ument’s structure is revealed by a sequence of queries,
while [12, 13] expressed incompleteness by means of de-
scription logic theories, and [20] surveyed incorporating
probabilities into XML.

An attempt to reconstruct the classical relational the-
ory of incompleteness [3, 19, 18] (in particular, issues
such as semantics of incompleteness and the complex-
ity of the main computational problems associated with
it) was done in [9]. That paper presented a very gen-
eral model of XML documents with incomplete infor-
mation, and studied several computational problems,
such as consistency of incomplete specifications, repre-
sentability of complete documents by incomplete ones,
and query answering.

In the model of [9], there are three main sources of in-
completeness:

• Incompleteness at the level of data values. This is
the same as in the relational case: nodes in XML
trees may carry attribute values, and some of those
values may not be known (i.e., nulls).

• Structural incompleteness. Some of the hierarchi-
cal structure of an XML document may not be
known. For example, we may only know that a
node w is a descendant of a node w′ without know-
ing the precise path between them.

• Labeling incompleteness. Labels of some nodes
may not be known and replaced by wildcards.

*

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

Figure 1: An incomplete XML document

Figure 1 gives an instance of an incomplete XML doc-
ument. In this document we have two nodes labeled
Author and Title, and we know their attribute values
(“Newton” and “Principia”), as well as that the latter is
next-sibling of the former. However, we do not know
what the common parent of these nodes is: it may be
the root, or another node, as the edges from the root
to those nodes are labeled ∗, meaning descendant. We
also have an Institute node, with an unknown attribute
value y, as well as another Institute node which is a child
of the Author node; its attribute is another unknown
value x. Furthermore, there is a child of the root, but
we know neither its label (indicated by wildcard) nor
its attribute value.

The semantics of such incomplete documents was given
by homomorphisms into complete XML trees; this will
be illustrated shortly and properly defined in the next
section. Such semantics corresponds to open world as-
sumption [19, 24], since it leaves a complete document
open to adding new nodes.

As the class of queries to study, [9] used XML analogs of
unions of conjunctive queries, or UCQs. In XML, con-
junctive queries are normally modeled via tree patterns
[8, 10, 17]. The choice of this class is not arbitrary: in
the relational world, UCQs can be answered over incom-
plete tables by using the standard relational evaluation
of queries; this is usually referred to as näıve evaluation
[19]. In fact, this is the largest class of relational calcu-
lus queries for which such evaluation computes certain
answers to queries [19, 22].

_

TitleAuthor
(Principia)

(x)
Institute

(Newton)

Institute
(y)

root

Figure 2: A rigid incomplete XML document

It was shown in [9] that data complexity of evaluating
UCQs over XML documents is always in coNP, and is
almost invariably coNP-complete as long as structural
incompleteness is present. There are no known bounds
on combined complexity; proofs in [9] only give nonele-
mentary complexity, but we shall see that this can be
significantly improved.

When the structure is fully known, i.e., only data values
and labels of documents could be missing, evaluation of
UCQs becomes tractable and can be done using näıve
evaluation (such incomplete trees were called rigid; an
example is shown Figure 2).

However, the picture is rather incomplete, and several
natural questions arise.

1. Can the complexity of query evaluation over arbi-
trary incomplete documents be lowered by using a
semantics based on closed, rather than open world
assumption?

2. Can we extend the language of unions of conjunc-
tive queries to obtain tractable query evaluation
(under both open and closed world assumptions)?

3. What can be said about combined complexity of
computing certain answers?

The main goal of the paper is to answer these questions.
To do so, we need to explain what we mean by closed
world assumption in XML, and define languages extend-
ing UCQs that we want to study. We now informally
introduce these.

Closed world semantics in XML In the case of
relations, closed world semantics is typically defined by
having an onto (surjective) mapping (homomorphism)
from an incomplete database to a complete one. We
shall follow the same approach, but there is one issue
that arises when we use transitive closures of axes, e.g.,
descendant relationships. Say we have just two nodes w
and w′, and we know that w′ is a descendant of w. Any
surjective mapping from such an incomplete description
will produce a document with at most two nodes. Does
it mean that under the closed world assumption we are

then forced to reduce descendant relationship to child?
On the one hand, this agrees with the intuition of not
introducing new nodes; on the other hand, it seems to
infer new child relationship which does not correspond
to closed world assumption. So which alternative should
we choose?

We believe that both in fact are reasonable, and we an-
swer all the questions for both interpretations of closed
world assumptions. More precisely, we consider three
different semantics, which are shown in Figure 3, and
are informally described below.

In Figure 3, we show documents that can be denoted by
the incomplete document from Figure 1 under three dif-
ferent assumptions. Dashed lines show homomorphisms
from the nodes of incomplete documents to the nodes
of complete ones.

• Under the open world assumption (owa), we per-
mit any homomorphism (that preserves relation-
ships between nodes and their attributes) from an
incomplete document into a complete one.

• Under the weak closed world assumption (wcwa),
we insist that the homomorphism be surjective
(onto) except when nodes are in a relationship such
as descendant: then we allow the introduction of
new nodes, but only on a path between nodes that
exist in an incomplete description. In the exam-
ple in the picture, root is mapped to the root, and
the Institute node with unknown value y into IAS.
This lets us introduce a path to it that has a book
node with a descendant author (Einstein); note
however that we cannot introduce a node for book
title (which was possible under owa) as it will not
be on the path to the IAS node.

• Under the strong closed world assumption (scwa),
we insist that the homomorphism be surjective.

Extensions of UCQs for XML Relational UCQs
correspond to the positive fragment of relational alge-
bra. Thus, extending them means introducing some
form of negation. While we can just add it in an unre-
stricted way (like relational algebra does, to capture full
power of first-order logic, FO), we look at intermediate
ways of adding negation without immediately jumping
all the way up to an XML analog of FO. There are two
such standard ways:

• we can add inequalities 6= as atomic formulae; or

• we can permit arbitrary Boolean combinations of
previously defined queries.

For example, adding 6= to UCQs we get a class UCQ 6=

of unions of conjunctive queries with inequalities. By
looking at Boolean combinations of those we get a class
BCCQ of Boolean combination of conjunctive queries,
i.e., the closure of conjunctive queries under operations

q ∩ q′, q ∪ q′, and q − q′. Combining these, we shall
obtain five languages that we study here: UCQ, UCQ 6=,
BCCQ, BCCQ6=, FO, and their XML analogs.

Results After formally defining XML with incomplete
information and query languages, we review what is
known for relational databases. In addition to recall-
ing known (and sometimes folklore but not explicitly
proven) results, we show a new result that for BCCQs,
certain answers can be computed in polynomial time.

After that, we switch to XML. We show that for ar-
bitrary incomplete documents that permit structural
incompleteness, under all assumptions, and for all the
languages, data complexity is intractable. We also es-
tablish combined complexity that in most cases is only
marginally higher than data complexity (most com-
monly just one level up in the polynomial hierarchy).

We then switch to rigid trees. For them, we show that
the complexity of all the query answering tasks is the
same as for relations. While lower bounds can be in-
ferred from the relational case, upper bounds require
work as we are dealing with more complex tree struc-
ture (we know, for instance, that they need not hold in
general with structural incompleteness).

In particular, over rigid trees, analogs of UCQs can
be answered in polynomial time, by näıve evaluation,
under both open and closed world assumptions, which
implies efficient evaluation of queries. For analogs of
BCCQs, we demonstrate a tractable query evaluation
algorithm too, with combined complexity a bit higher
(one level in the polynomial hierarchy) than for UCQs.
We then conclude by discussing practical implications
of these results.

Organization Incomplete XML documents are de-
fined in Section 2; query answering over incomplete rela-
tional and XML databases is discussed in Section 3. In
Section 4 we establish results on query answering over
arbitrary incomplete trees, for all the languages consid-
ered here, and in Section 5 we do the same for rigid
trees. Final remarks and conclusions are in Section 6.

2. INCOMPLETENESS IN XML

XML trees

To describe XML trees, we assume

• a countably infinite set C of possible data values
(notation C stands for “constants”, as opposed to
nulls), and

• a countably infinite set L of node labels (element
types). We shall normally denote labels by lower-
case Greek letters.

WCWA

(IAS)(Cambridge)

Book

TitleAuthor Author Title
(Newton) (Principia)

Institute Institute

(Einstein) (Relativity)

root

Book

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

root

(Cambridge)

Book

TitleAuthor
(Newton) (Principia)

Institute

Book

Author
(Einstein)

Institute
(IAS)

(Cambridge)

TitleAuthor
(Newton) (Principia)

Institute

root

Book
(IAS)

Institute

TitleAuthor
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

Title

*

Author
(Principia) (y)

(x)

Institute

Institute

root

(Newton)

*

*
*

*

OWA

SCWA

Figure 3: Open and (weak and strong) closed world semantics of incomplete XML

An XML tree over a finite alphabet Σ ⊂ L is a 2-sorted
structure

T = 〈D,A, ↓,→, (Pα)α∈Σ, ρ〉, (1)

where

• D is an unranked tree domain, i.e. a prefix-closed
subset of N∗ such that w · i ∈ D implies w · j ∈ D
for j < i;

• ↓ and → are the child and next-sibling relations,
for which we shall use, as is common, the infix
notation: w ↓ w · i whenever w · i ∈ D, and w · i →
w · (i+ 1) whenever w · (i + 1) ∈ D;

• each Pα is the set of elements of D labeled α (of
course we require that these partition D);

• A ⊂ C is a finite set of data values; and

• ρ : D →
⋃

k≥0
Ak assigns to each node w ∈ D a

k-tuple of data values for some k ≥ 0.

We refer to D as the domain of T , and denote it by
dom(T), and to A as the active domain (of data values)
of T and denote it by adom(T). We always assume that
A has precisely the elements of C used in T , i.e., if v ∈ A
then there is a node w such that v occurs in ρ(w).

We shall usually assume that for nodes w,w′ with the
same label, the arities of ρ(w) and ρ(w′) are the same;

this is customary for abstractions of XML documents
although not technically necessary for our results.

We shall denote the transitive closure of ↓ by ⇓ and the
transitive closure of → by ⇒.

Incomplete XML trees

To define incomplete XML documents, we assume a
countably infinite supply of null values (or variables) V .
Following [9], incompleteness can appear in documents
in the following ways:

• Data-values incompleteness. This is the same as
incompleteness in relational models: some data
values could be replaced by nulls.

• Labeling incompleteness: instead of a known label,
some nodes can be labeled with a wildcard.

• Structural incompleteness. Some of the structure
of the document may not be known (e.g., we can
use descendant edges in addition to child edges, or
following-sibling edges instead of next-sibling).

This can be captured as follows. An incomplete tree
over Σ is a 2-sorted structure

t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ, ρ〉, (2)

where

• N is a set of nodes, and V is a set of values from
C ∪ V ;

• ↓,⇓,→,⇒ are binary relations on N ;

• Pα’s are disjoint subsets of N ; and

• ρ is a function from N to
⋃

k≥0
V k.

As before, dom(t) refers to N , and adom(t) to V . We
now distinguish between adomc(t), which refers to ele-
ments of C in adom(t), and adom⊥(t), which refers to
elements of V in adom(t).

These represent incompleteness in XML as follows:

• elements of V are the usual null values;

• Pα’s do not necessarily cover all of N ; those nodes
in N not assigned a label can be thought of as
labeled with a wildcard;

• structural incompleteness is captured by relations
↓, →, ⇓, ⇒ which could be arbitrary. For exam-
ple, we may know that w ⇓ w′ without knowing
anything about the path between the two.

Semantics As is common with incomplete informa-
tion, we define semantics via homomorphisms. A ho-
momorphism h : t → T from an incomplete tree
t = 〈N, V, ↓, ⇓,→, ⇒, (Pα)α∈Σ, ρ〉 to a complete XML
tree T = 〈D,A, ↓, →, (Pα)α∈Σ′ , ρ〉, where Σ ⊆ Σ′, is
a pair of maps h = (h1, h2) where h1 : N → D and
h2 : V → A such that:

• if wRw′ in t, then h1(w)Rh1(w
′) in T , when R is

one of ↓,→,⇓,⇒ (recall that ⇓ and ⇒ are inter-
preted as descendant and following-sibling in com-
plete XML trees);

• if w ∈ Pα in t, then h1(w) ∈ Pα in T , for each
α ∈ Σ;

• h2(c) = c whenever c ∈ C; and

• h2(ρ(w)) = ρ(h1(w)) for each w ∈ N .

The semantics of an incomplete tree t is the set of all
complete trees T that it has a homomorphism into:

JtKowa = {T | exists a homomorphism t → T }.

The superscript owa means that this is the semantics
under the open world assumption; this will be explained
in detail shortly. A homomorphism shows how missing
features of t are interpreted in a complete document T .

Remark An incomplete tree may be inconsistent in the
sense that JtKowa = ∅. This however will not affect any
results we prove about query answering: as we shall see,
over incomplete trees, query answering will be in coNP

(or higher), and [10] showed that checking inconsistency
can be done in coNP. Thus we can always assume that
the input is first checked for being inconsistent (in which
case certain answers are vacuously true).

Rigid trees

As we already mentioned, [9] showed that query answer-
ing becomes tractable and can be achieved by näıve
evaluation of rigid trees. These are trees in which
no structural information is missing; that is, the only
types of missing information are nulls and wildcards.
A rigid tree is defined just as an XML tree (1), i.e.
t = 〈D,A, ↓,→, (Pα)α∈Σ, ρ〉, with only two differences:

• A is a subset of C ∪V rather than just C (i.e., nulls
are permitted), and

• the union of Pα’s need not be the entire D (some
nodes may be labeled with wildcards).

Note that the problem of inconsistency, mentioned
above, does not arise with rigid trees.

Open and closed world assumptions

Open world assumption (owa) states that a database,
or a document, is open to adding new facts (e.g., tu-
ples, nodes, associations between nodes). This is the
semantics adopted in [9], and defined above, for XML.
In the relational world it is normally expressed by hav-
ing a homomorphism from an incomplete instance into
a complete instance.

On the other hand, closed world assumption (cwa)
states that a database or a document is closed for adding
new facts. In the relational case, this is usually formal-
ized by having a homomorphism from an incomplete
instance onto a complete instance. For XML, the situa-
tion is a bit more involved however, due to the presence
of transitive closures of the child and next-sibling axes,
as was explained informally in the introduction. We
now define the notions of weak and strong closed world
assumptions formally.

Of course we can adopt the relational notion of having
an onto-homomorphism. We call this a strong closed
world assumption, or scwa. More precisely,

JtKscwa = {T | exists an onto homomorphism t → T }.

A homomorphism h = (h1, h2) is an onto homomor-
phism if both h1 and h2 are onto (surjective) maps.
(The reader may notice that it suffices to require that
only h1 be surjective.) Equivalently, we can say that
JtKscwa = {h(T) | h is a homomorphism }.

But this assumption may be too strong if we deal with
transitive closure axes. Consider, for example, an in-
complete tree with two nodes v and v′ such that v ⇓ v′.
Under scwa, it can only be mapped into 2-node trees,
while the interpretation of ⇓ says that a path between v
and v′ of length greater than 1 may be allowed. We thus
weaken the scwa, by allowing paths between nodes for
which only ⇓ or ⇒ associations exist.

Formally, we define the weak closed world assumption,
or wcwa, as follows. A homomorphism h = (h1, h2) :

t → T is called an wcwa-homomorphism if, for every
node w of T that is not in the image of h1 (i.e., not an
image of a node of t), there exist two nodes v, v′ of t
such that either

• v ⇓ v′ holds in t and h(v) ⇓ w ⇓ h(v′) holds in T ;
or

• v ⇒ v′ holds in t and h(v) ⇒ w ⇒ h(v′) holds in
T .

That is, the homomorphism h may not be surjective,
but if a node is not in the image of h, then it must be
on a horizontal or a vertical path between two nodes
that are in the image of h.

We then define

JtKwcwa = {T | exists a wcwa-homomorphism t → T }.

Clearly each surjective homomorphism is a wcwa-
homomorphism, and thus JtKscwa ⊆ JtKwcwa. Also in the
absence of transitive closure axes, as in rigid trees, there
is no difference between the two semantics, in which case
we refer just to cwa semantics, and write JtKcwa.

Fixed vs nonfixed alphabets We have made an as-
sumption that labels come from an infinite set L. A
similar, and also a reasonable assumption, is to have
a finite but sufficiently large alphabet (e.g., to assume
that no tree or query uses every single available label:
first, such an assumption is impractical, and second, it
leads to query answering abnormalities w.r.t. certain
answers [9]). More precisely, in this case we assume
that labels come from a fixed finite alphabet Lfin, and
that trees and queries do not exhaust it: for instance,
we can assume that, given a tree T and a query Q, we
can replace each label used in them by a new one.

It turns out that all the results are the same under both
assumptions, except one: combined complexity for in-
complete trees under owa goes up by one exponent in
the case of a fixed alphabet. However, we shall see
that this only happens when the query uses many wild-
cards. All lower bounds will hold even for fixed finite
alphabets. Thus, with one exception, we shall not be
specifying our assumptions for the set of possible labels.

3. QUERY ANSWERING AND INCOM-
PLETENESS

3.1 Relational queries

We now recall the basics of query answering over
databases with incomplete information. Such a
database, under the näıve interpretation of nulls, is a
database whose elements come from the domain of con-
stants C and the domain of nulls V . The semantics is
defined via homomorphisms h : V → C. Such a map is

a homomorphism between two databases D and D′ of
the same schema if, for every relation R of D and every
tuple ā of R, the tuple h(ā) is in the relation of R of
D′. As before, we view h as a map C ∪V → C extended
by letting h(c) = c for each c ∈ C.

This leads to two standard semantics:

JDKowa = {D′ | exists a homomorphism D → D′}

and

JDKcwa = {h(D) | h is a homomorphism}.

Given a relational query Q, its result on an incomplete
database is defined by means of certain answers:

certain∗(Q,D) =
⋂

{Q(D′) | D′ ∈ JDK∗}

where ∗ is either owa or cwa.

Computational problems As is common, we look at
data complexity and combined complexity of computing
query answers (in this case, certain answers under var-
ious semantics). More precisely, the problems we deal
with are as follows:

• Combined complexity of a language L. The input
consists of a database D, a query Q in L, and a
tuple of data values s̄ of the same arity as Q; the
question is whether s̄ ∈ certain∗(Q,D).

• Data complexity of a language L. In this case we
have a fixed query Q in L; the input consists of a
databaseD and a tuple of data values s̄ of the same
arity as Q, and the question is the same: whether
s̄ ∈ certain∗(Q,D).

Here ∗ ranges over our semantic assumptions (that lead
to different notions of certain answers).

Convention When we say that data complexity of
a query language L is complete for a complexity class
C (e.g., coNP-complete), we mean that (1) for every
query Q in L, its data complexity is in C, and (2) there
is a query Q0 in L whose data complexity is C-hard.

Computing certain answers For arbitrary FO
queries, the combined complexity of finding certain an-
swers is undecidable (finite validity). For one class
of queries the problem is solvable using the standard
query evaluation. We define a näıve evaluation of a
query as the standard evaluation of it followed by re-
moving tuples containing nulls. It was shown in [19]
that for unions of conjunctive queries, näıve evaluation
computes certain answers (which are in this case the
same under both owa and cwa). In fact, the result is
optimal: no larger class of queries within FO has this
property [22]. Beyond unions of conjunctive queries, al-
gorithms for finding certain answers use more complex
representations, namely conditional tables [3, 19, 18].

Much of the work on complexity of query answering
over relational databases with nulls concentrated on lan-
guages such as unions of conjunctive queries (UCQs),

data complexity combined complexity
cwa owa cwa owa

UCQ Ptime Ptime NP-complete NP-complete

UCQ 6=
coNP-complete coNP-complete

BCCQ Ptime Ptime Πp
2-complete Πp

2-complete

BCCQ6=
coNP-complete coNP-complete

FO coNP-complete undecidable Pspace-complete undecidable

Figure 4: Complexity of computing certain answers: relational case

FO, and beyond (e.g., datalog). As the gap between
UCQs and FO is very large, one might look for classes
between those two. Some results about such classes are
known: for example, finding certain answers to UCQs
with inequalities is coNP-complete [2]. On the XML
side, we shall be dealing with analogs of the following
relational languages, build up from conjunctive queries
by using Boolean operations, quantifiers, inequalities,
and quantification:

• UCQ and UCQ 6=: unions of conjunctive queries
(with inequalities, i.e. atoms x 6= y are allowed);

• BCCQ and BCCQ6=: Boolean combinations of
conjunctive queries (with inequalities). In other
words, starting with conjunctive queries (with in-
equalities) q1(x̄), . . . , qm(x̄), we can close them un-
der operations q ∪ q′, q ∩ q′ and q − q′.

• FO, which can be viewed as closure of conjunctive
queries under Boolean operations and quantifica-
tion.

While some complexity bounds (both data and com-
bined) are known for finding certain answers under both
owa and cwa, we are not aware of such results for BC-
CQs, and prove them for the sake of completeness.

Theorem 1. Data complexity of finding certain an-

swers to BCCQs is in Ptime, while for BCCQ6= it is
coNP-complete. For both classes of queries the com-
bined complexity is Πp

2-complete. These bounds hold un-
der both owa and cwa.

Proof sketch. We explain briefly the main idea
behind the Ptime algorithm for BCCQs under owa.
The key case is that of a special type of query with just
one negation, namely a Boolean query Q = q ∨ ¬q′,
where q is a union of conjunctive queries, and q′ is a
conjunctive query. Suppose we have a database D with
null values. We give an algorithm for checking whether
certainowa(Q,D) is false, i.e., whether D′ |= ¬q and
D′ |= q′ for some D′ ∈ JDKowa. This is done as follows.
First, convert q′ into its tableau, Tab(q′). Then letD[q′]
be the“disjoint union”ofD and Tab(q′) (i.e., we rename
all nulls in Tab(q′) so that they would be different from
nulls inD). Then we show that certainowa(Q,D) is false

iff certainowa(q,D[q′]) is false. Since q is a UCQ, check-
ing the latter condition can be done by näıve evaluation,
and hence in Ptime.

In the general case, when we deal with a Boolean com-
bination Q of conjunctive queries q1, . . . , qm (assume
they are Boolean), we look at all the assignments of
q1, . . . , qm to true and false that make the Boolean com-
bination false. Assume we have such a valuation that
assigns qi with i ∈ I to true and qj with j 6∈ I to
false. Then, checking whether certainowa(Q,D) = ⊥ is
witnessed by this assignment (i.e., whether there exists
D′ ∈ JDKowa so that the qi’s evaluate to true/false on
it as in the assignment) amounts to checking whether
certainowa(q ∨ ¬q′, D) = ⊥ where q =

∨

j 6∈I qj and

q′ =
∧

i∈I qi. For this we simply use the above algo-
rithm, as the query is now in the right shape. Since Q
is fixed, so is the number of assignments of the qi’s to
true/false, which gives us an overall Ptime algorithm.

For cwa, however, the algorithm is more involved,
as the basic reduction no longer works if we use
certaincwa(q,D[q′]). Indeed while always D[q′] ∈
JDKowa, often D[q′] 6∈ JDKcwa. To overcome the prob-
lem, we consider every possible way of merging tuples
in q′ with tuples in D. This yields a small (i.e., poly-
nomial in the size of D) set of new databases for which
we show that certaincwa(Q,D) is false iff there is some
D′ in that set such that certaincwa(q,D

′) is false. 2

Figure 4 summarizes what is known about both data
and combined complexity of finding certain answers for
relational queries; results are from [2, 3, 19, 28] and the
above theorem.

Note that there is a rather persistent confusion in the
literature regarding data complexity of certain answers
of FO queries. It is very common to attribute such
undecidability to Trakhtenbrot’s theorem, which is fine
for combined complexity, but not technically correct in
the case of a fixed query. While the result itself seems
to be folklore, we wanted to clear this confusion and we
shall provide in the full version a self-contained proof of
undecidability of data complexity of FO on näıve tables.

3.2 Pattern-based XML queries

We now define the analogs of the relational languages we

considered in the XML setting. As is common in the
scenarios when one needs to compute certain answers
(by means of intersection) [8, 9], we look at queries that
can only output tuples of data values.

The queries will be essentially fragments of first-order
logic over XML trees; however, to avoid the clumsiness
of a two-sorted presentation, we follow the standard ap-
proach and define them via patterns. For now, we shall
look at patterns based on the child/next-sibling axes;
extensions will be discussed later.

An example of a pattern is

α(x)/[β(x) → γ(1), δ(y) → γ(x)].

When evaluated on a tree T , it collects all instantiations
of variables x and y so that a tree has an α-node whose
data value is x, together with (1) a β-child with the
same data value x whose next sibling is a γ-node with
data value 1; and (2) a δ-child with data value y whose
next sibling is a γ-node with data value x.

Formally, patterns are given by the grammar:

π := α(z̄)/[µ, . . . , µ]
µ := π → . . . → π

where α ranges over Σ or wildcard , and z̄ is a tuple of
variables and constants. We write π(x̄) if x̄ is a tuple
of all the variables mentioned in π. Also, to simplify
notation, we shall write α(x̄)/β(ȳ) instead of the more
formal α(x̄)/[β(ȳ)].

We define the semantics with respect to an XML tree
T = 〈D,A, ↓,→, (Pα)α∈Σ, ρ〉 and a valuation ν for vari-
ables x̄ in C:

• (T,w, ν) |= α(z̄)[µ1, . . . , µn] if w ∈ Pα (whenever
α is a Σ-letter), ρ(w) = ν(z̄), and there exist n
children w1, . . . , wn of w such that (T,wi, ν) |= µi

for each i ≤ n.

• (T,w, ν) |= π1 → . . . → πm if there is a sequence
w = w1 → w2 → . . . → wm of nodes so that
(T,wi, ν) |= πi for each i ≤ m.

We shall write (T,w) |= π(ā) if (T,w, ν) |= π(x̄) where
ν assigns values ā to variables x̄.

Classes of pattern-based XML queries We now
define XML analogs of the five languages we consid-
ered in the relational case which are based on patterns.
First, we need a class of conjunctive queries (essentially
defined in [8, 10, 17]): these are obtained by closing
patterns under conjunction and existential quantifica-
tion of variables:

q(x̄) = ∃ȳ1 . . . ȳn π1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

The semantics is defined as follows. Given a tree T
and a valuation ā for variables x̄, we have T |= q(ā)
if there exist tuples b̄1, . . . , b̄n of data values and nodes
w1, . . . , wn in T so that (T,wi) |= πi(ā, b̄i) for every
i ≤ n.

If inequality atoms (u 6= v) are allowed too, in addition
to patterns, we talk about conjunctive queries with in-
equalities. The semantics extends in the natural way.

Now we define the languages we deal with.

UCQxml and UCQ 6=
xml These are defined as queries of

the form q1(x̄) ∪ . . . ∪ qm(x̄), where each qi is a
conjunctive query (with inequalities, respectively).

BCCQxml and BCCQ 6=
xml These are obtained by clos-

ing conjunctive queries (with inequalities) under
operations q ∪ q′, q ∩ q′ and q − q′.

FOxml These are obtained by closing patterns and
equality atoms under the Boolean operations and
both universal and existential quantification.

Examples We start with an example of a UCQxml

query:

q1(x) := ∃y, z α(x)/[β(y) → γ(z)]

∨

∃y α(x)/δ(y)

It selects data values x found in α-labeled nodes which
either have two consecutive children labeled β and γ
(with some data values attached to them), or a child
labeled δ (also with a data value in it). If in addition
we want to impose a requirement that the data values
in the β-node (or δ-node) be different from x, we use a

UCQ 6=
xml query:

q2(x) := ∃y, z
(

α(x)/[β(y) → γ(z)] ∧ x 6= y
)

∨

∃y
(

α(x)/δ(y) ∧ x 6= y
)

The following is an example of a BCCQxml query:

q3(x, y) := ¬∃z
(

α(z)/
[

γ(x) → β(y)
]

)

∨

∃z
(

α(x)/γ(z)/β(y)
)

It selects tuples (x, y) of data values that are either not
found in two consecutive children labeled with γ and β
of an α-node, or found on a path labeled α − γ − β, in
α and β-nodes. To require in addition that x 6= y, we
use a BCCQ6=

xml query:

q4(x, y) := ¬∃z
(

α(z)/
[

γ(x) → β(y)
]

∧ x 6= y
)

∨

∃z
(

α(x)/γ(z)/β(y) ∧ x 6= y
)

Finally, we give an example of an FOxml query:

∀y
(

α(x)/β(y) −→ ∃z γ(z)/δ(y) ∧ y 6= z
)

It selects data values x such that if they are found in
α-nodes with a β-child, then the data value y of that
child must also be found in a δ-node whose parent is
labeled γ and has a data value different from y.

Certain answers Since queries in languages intro-
duced above produce sets of tuples of data values, we
can define the usual notion of certain answers for eval-
uating them over incomplete documents. That is, for a
query Q and an incomplete tree t, we let

certain∗(Q, t) =
⋂

{Q(T) | T ∈ JtK∗},

where ∗ ranges over owa, scwa, and wcwa. The prob-
lems we consider for them are the same as in the rela-
tional case: determining data and combined complexity.

4. QUERY ANSWERING OVER ARBI-
TRARY INCOMPLETE TREES

We now look at query answering over arbitrary incom-
plete XML trees. One data complexity result was previ-
ously known, namely coNP-completeness for UCQxml

under owa [9]. We now complete the study, and present
results on both data and combined complexity for all
five languages introduced in the previous section.

Before we embark on this study, there is one natural
question we need to ask: can we obtain the desired re-
sults simply by recourse to relational query answering?
After all, incomplete XML trees are relational struc-
tures. The answer is that we cannot meaningfully adapt
relational results. The main reason is that, if we have
an incomplete tree t represented as a relational database
Dt, then JDtK is not the set of relational representations
of trees in JtK (except in some very limited cases). This
is of course due to the fact that JtK only contains trees,
but JDtK may contain databases that are not transla-
tions of trees.

To apply relational results, we would need to impose
an extra constraint that complete databases are trees.
This is very problematic as, under owa, already much
simpler constraints lead to undecidability of query an-
swering [11, 25]. Another alternative is to move from a
query Q to a query ¬tree ∨ Q, where tree expresses
that a relational database is a representation of an XML
tree. This needs a fixpoint mechanism. Thus, express-
ing the above query (that also involves ¬ and ∨) puts
us in the realm of disjunctive datalog. While known
results do give us decidability, complexity bounds we
can infer “for free” will be Πp

2 for data complexity and

coNEXP
NP for combined complexity [16] for BCCQ6=

xml

and its sublanguages. As we shall see, we can obtain
better (and often tight) complexity bounds working di-
rectly on XML trees.

4.1 Query answering under OWA

As mentioned earlier, data complexity of UCQxml is
known to be coNP-complete [9], while precise com-
bined complexity was never stated. The proof of [9]
only yields a nonelementary upper bound, but it turns
out that the actual bound is much lower. In the re-

sult below, for combined complexity, we assume that
the alphabet of labels is infinite.

Theorem 2. Over arbitrary incomplete
trees under owa, for each of the languages

UCQxml,UCQ
6=
xml,BCCQxml,BCCQ

6=
xml, data com-

plexity is coNP-complete and combined complexity is
Πp

2-complete. Furthermore, FOxml is undecidable with
respect to both data and combined complexity.

Recall the convention regarding completeness of data
complexity: stating that it is coNP-complete means
that it is always in coNP, and for some queries it is
coNP-hard. Likewise, undecidability means that data
complexity of some fixed query is undecidable. We shall
comment on the gap for combined complexity without
a bound on the number of wildcards after sketching the
proof.

Proof sketch. Since coNP-hardness of UCQxml

is known from [9], for data complexity it suffices to es-

tablish a coNP upper bound for BCCQ 6=
xml, and unde-

cidability for FOxml. For combined complexity we need
to establish Πp

2-hardness for UCQxml and a coNEXP

upper bound for BCCQ6=
xml.

We now explain the idea behind the upper bound for
combined complexity (of BCCQ6=

xml and others). The
standard way to obtain an upper bound for a query Q
(say, Boolean for this sketch) over t is to prove that if
certainowa(Q, t) is false, then there is T0 ∈ JtKowa with
some specific size bounds (in t) such that T0 |= ¬Q.
While this was done in the past for data complexity
(e.g., in [8, 9]), the bounds were extremely high in terms
of the query. So we need to reduce the size of the tree
much more carefully to establish combined complexity
bounds.

The starting point of the proof is standard: suppose we
have T ∈ JtKowa such that T |= ¬Q. For the sketch,
assume that Q = q1 ∨ . . . ∨ qn, where each qi is a con-
junctive query; that is, T |= ¬qi for each i ≤ n. Take
a homomorphism h : t → T , and add to the image of h
all nodes which are least common ancestors of nodes in
the image, plus the root. We call it the skeleton. Now
if we have any node that is not on a vertical or a hori-
zontal path between two nodes in the skeleton, we can
throw it away, together with the subtree rooted at it,
and obtain a tree T ′ that agrees with T on all the qis
(by monotonicity).

The problem with T ′ is that we may have very long
horizontal or vertical paths which still need to be cut.
This is done using the fact the we have an infinite supply
of labels, and shorter paths can be relabeled in a way
that does not satisfy any of the queries.

We then provide a Πp
2-hardness reduction for UCQxml

by coding QSAT with a ∀∗∃∗ quantifier prefix. 2

The case of a fixed alphabet The combined com-

data complexity combined complexity
scwa wcwa and owa scwa wcwa and owa

UCQxml

UCQ 6=
xml

BCCQxml

coNP-complete coNP-complete Πp
2-complete Πp

2-complete

BCCQ6=
xml

FOxml coNP-complete undecidable Pspace-complete undecidable

Figure 5: Complexity of computing certain answers over arbitrary incomplete trees

plexity result above, for languages from UCQxml to

BCCQ 6=
xml, does not work in the case of a fixed alpha-

bet. As we mentioned earlier, this is the only case when
results are different under these assumptions. We now
state the result under the assumption that labels come
from a finite but sufficiently large alphabet Lfin.

Theorem 3. Under the finite alpha-
bet assumption, the combined complexity of

UCQxml,UCQ
6=
xml,BCCQxml, and BCCQ6=

xml, un-
der owa, is in coNEXP and Πp

2-hard. Furthermore,
if the number of wildcards in the query is fixed, then it
is Πp

2-complete.

Proof sketch. The only difference in the proof is in
cutting long vertical and horizontal paths. To explain
how this is done under the fixed alphabet assumption,
suppose we have a long horizontal path u1 → . . . → ul

of nodes. It could match some of the “horizontal”query
subexpressions π1 → . . . → πm. Looking at the roots
of each pattern, we associate each such πi with a word
over Σ ∪ { }. Next we collect all words S in Σ∗ that
are instantiations of such patterns with wildcards that
the horizontal path does not match (there are at most
exponentially many of them in the size of the query).

We claim that the path u1 → . . . → ul can be cut
to length exponential in the size of the query so that
it still does not match any words in S. To see this,
we use the Aho-Corasick algorithm [5] and construct
a DFA AS that accepts words containing one word of
S as a pattern; its size is polynomial in S and hence
exponential in the query. Now take the complement
DFA AS which accepts the label of the path u1 → . . . →
ul, and use pumping to reduce it to the required size so
that none of the queries qi is satisfied (since none of
the words in S will have a match). For vertical paths,
we proceed similarly. Given the overall exponential size
of the tree (in terms of the size of the query), we get
the coNEXP bound on combined complexity. If the
number of wildcards is fixed, then the set S above is of
polynomial size, which results in a polynomial-size tree
and a Πp

2 upper bound. The Πp
2-hardness proof of the

previous theorem applies here verbatim. 2

Remark We now comment on the coNEXP-Πp
2 gap for

combined complexity. It is due to the fact that the
construction of the Aho-Corasick [5] automaton is poly-
nomial in the number of patterns, but with wildcards

(known as don’t-cares in string pattern matching litera-
ture) the size of the set may be blown up exponentially
(unless we restrict the use of wildcard in the query).

Construction of DFAs for patterns with wildcards, that
we would need to lower the bound, has so far been con-
sidered in the case of a single pattern [23], and very
recently for multi-patterns too [26]. While the latter
yields an efficient pattern-matching algorithm, it still
gives an exponential blowup if formulated in purely
automata-theoretic terms. As our technique for reduc-
ing the size of the tree depends on such automata con-
struction, at present we do not see any possibility of us-
ing our approach to reduce the bound, due to the lack
of pattern matching tools we can apply (although we
conjecture that combined complexity remains in Πp

2).

4.2 Query answering under CWA

We now move to the closed world assumption. Recall
that for arbitrary incomplete trees, there are two pos-
sible interpretations of it. Under the strong interpreta-
tion scwa, we insist that each node in a complete tree
correspond to a node in an incomplete tree. Under the
weak interpretation wcwa, new nodes may be inserted
between nodes related by ⇒ or by ⇓. Our first result is
about the weak interpretation.

Theorem 4. Under wcwa, data and combined com-
plexity of query evaluation over arbitrary incomplete
trees is the same as under owa, i.e., as described in
Theorem 2.

Note that owa upper bounds trivially apply, so the key
observation is that owa hardness results can be done
using owa only to extend paths (rather than insert ar-
bitrary trees), which corresponds to wcwa.

Under the strong assumption, complexity bounds come
down only for the case of FOxml, and stay as they were
for owa and wcwa for other languages. Note that for
arbitrary incomplete trees, we cannot yet reduce query
evaluation under scwa to the relational case, and in-
deed some bounds are different (Πp

2 for trees and NP

for relations for UCQs).

Corollary 1. Over arbitrary incomplete
trees under scwa, for each of the languages

UCQxml,UCQ
6=
xml,BCCQxml,BCCQ

6=
xml, data com-

plexity is coNP-complete and combined complexity
is Πp

2-complete. For FOxml, data complexity re-
mains coNP-complete, while combined complexity is
Pspace-complete.

For upper bounds, one simply guesses an onto homo-
morphism h so that ā 6∈ Q(h(t)). This gives a coNP

upper bound for data complexity for all languages, and
coNP-hardness already follows from [9]. Since conjunc-
tive queries with negation can be evaluated with NP

combined complexity, this also gives a Πp
2 upper bounds

for languages based on conjunctive queries (with an ad-
ditional guess which queries will be true and which will
be false for Boolean combinations). And since FOxml

can be translated into FO over a relational representa-
tion, we get the Pspace bound from the corresponding
bound for combined complexity of FO. The lower bound
is also from the relational case, by encoding relations as
XML documents.

Summary Results for arbitrary incomplete trees are
summarized in Figure 5. A quick look shows the follow-
ing:

1. Data complexity is always intractable – unlike
in the relational case, we lose polynomial data
complexity of UCQxml and BCCQxml. Com-
bined complexity is elementary (in fact at most
2-exponential) despite previous high bounds (ex-
cept for FOxml of course where it is undecidable).

2. For arbitrary trees, closed world assumption – in
either form – does not help bring down complexity.

So, as in [9], this motivates looking at the restricted case
of rigid trees, for all of the languages and assumptions.
This is what we do next.

5. QUERY ANSWERING OVER RIGID IN-
COMPLETE TREES

Recall that in rigid trees we have no missing structural
information. That is, they are of the form t = 〈D,A, ↓
,→, (Pα)α∈Σ, ρ〉, where D is a usual unranked tree do-
main, ↓ and → are child and next-sibling relations, la-
beling predicates Pα’s need not cover all of D, and ρ
assigns data values from C ∪ V .

In particular, in the absence of structural incomplete-
ness, there is no difference between scwa and wcwa,
and we shall talk just about cwa. That is, JtKcwa =
{h(t) | h is a homomorphism}.

As before, we start with the open world assumption,
and then consider the closed world assumption.

5.1 Query answering under OWA

The only previously known result on the complexity
of query answering over rigid trees under owa states
that data complexity of UCQxml queries is in Ptime

[9]. Moreover, query answering can be done by näıve
evaluation. That is, one simply computes Q(t), and
throws away tuples that contain nulls, and this guar-
antees to produce certainowa(Q, t). By translation into
relational representation, this implies NP-completeness
of combined complexity. We now complete this picture.

Theorem 5. Under owa, data complexity of
BCCQxml queries over rigid trees is in Ptime,

while for queries in UCQ6=
xml and BCCQ 6=

xml it is
coNP-complete, and for FOxml it is undecidable.
Combined complexity is NP-complete for UCQxml and

Πp
2-complete for UCQ 6=

xml,BCCQxml, and BCCQ6=
xml.

Thus, while for languages with inequalities we match
the high bounds for arbitrary incomplete trees, for one
extension of UCQxml queries we can get a polynomial-
time evaluation algorithm, namely for Boolean combi-
nation of CQs. Combined complexity bounds match the
relational case, which means they cannot be improved
for any reasonable class of XML documents.

We now explain the key ideas behind the proof of The-
orem 5. Note that in the case of BCCQs for relations,
which was tractable under both owa and cwa, the al-
gorithm was much simpler under owa. To the contrary,
for XML rigid trees, the algorithm under owa is more
complicated (but still tractable).

In the cwa case, we can indeed adapt the basic re-
duction used in the proof of Theorem 1 in a rela-
tively straightforward way. Given a tree t and a query
Q = q ∨ ¬q′ where q is a union of conjunctive queries
and q′ is a conjunctive query, we first construct a tree
pattern from q′, adding a new root node if needed. We
then form a new incomplete tree tq′ by merging the root
of this tree pattern with the root of t. As the next step,
we consider every node homomorphism from tq′ to t
(that is, a homomorphism of tree structures, that disre-
gards data values). Then for each such homomorphism,
we check whether we can merge all the labels and tuples
associated to nodes of tq′ which have the same image
in t. If the answer is yes, this yields a new rigid incom-
plete tree t′ ∈ JtKcwa which satisfies q′ and on which we
can evaluate q näıvely. The procedure yields a small
(i.e., polynomial in the size of t, for a fixed query) set
of new rigid incomplete trees for which we show that
certaincwa(Q, t) is false iff there is some t′ in that set
such that certaincwa(q, t

′) is false.

The algorithm is more involved in the owa case because,
even though we still need to consider node homomor-
phisms from tq′ to t, we more generally need to consider
the image of every tree-homomorphism from tq′ . The
problem is that such structures are often not rigid. To
overcome the problem, with each such tree we associate
a set of rigid trees, whose size grows exponentially in
the size of Q, which is fixed, and polynomially in the

data complexity combined complexity
cwa owa cwa owa

UCQxml Ptime Ptime NP-complete NP-complete

UCQ 6=
xml coNP-complete coNP-complete

BCCQxml Ptime Ptime Πp
2-complete Πp

2-complete

BCCQ6=
xml coNP-complete coNP-complete

FOxml coNP-complete undecidable Pspace-complete undecidable

Figure 6: Complexity of computing certain answers over rigid incomplete trees

size of t. This general procedure yields a “small” (i.e.,
polynomial in the size of t) set of new rigid incomplete
trees for which we show that certainowa(Q, t) is false iff
there is some t′ in that set such that certainowa(q, t

′) is
false.

5.2 Query answering under CWA

The last question is how cwa helps when we deal with
rigid trees. This is the case that is very close to rela-
tions: since the structure is fixed, every completion of a
relational representation of a rigid tree would be struc-
turally a tree. However, we still cannot apply relational
results directly, because even under scwa, working with
relational representations, we need to ensure that label-
ing predicates behave properly. But this can be done,
resulting in the following.

Theorem 6. Over rigid incomplete trees, data and
combined complexity of all languages except FOxml are
the same under cwa and under owa.
For FOxml, data complexity is coNP-complete, and
combined complexity is Pspace-complete.

For UCQxml queries, certain answers are the same un-
der owa and under cwa (and thus both can be com-
puted by näıve evaluation). For the other tractable
case of BCCQxml queries, they need not be the same,
and in fact the algorithms are more complex than the
näıve evaluation algorithm (as was remarked already,
even in the relational case such queries cannot be eval-
uated näıvely to generate certain answers, unless they
are equivalent to unions of conjunctive queries [22]).

5.3 Extensions

We now show that the tractable cases withstand the
addition of transitive closure axes to queries. That is,
we define extended patterns by:

π := α(z̄)/[µ, . . . , µ]//[µ, . . . , µ]
µ := π ; . . . ; π

where each ; is either → or ⇒. The semantics is ex-
tended as follows:

• (T,w, ν) |= α(z̄)/[µ1, . . . , µn]//[µ
′
1, . . . , µ

′
k] if w ∈

Pα (whenever α is a Σ-letter), ρ(w) = ν(z̄),
there exist n children w1, . . . , wn of w such that
(T,wi, ν) |= µi for each i ≤ n, and there exist k de-
scendantsw′

1, . . . , w
′
k ofw such that (T,w′

i, ν) |= µ′
i

for each i ≤ n,.

• (T,w, ν) |= π1 ; . . . ; πm if there is a sequence
w = w1, . . . , wm of nodes so that (T,wi, ν) |= πi

for each i ≤ m and wi → wi+1 whenever the ith
; is →, and wi ⇒ wi+1 whenever the ith ; is ⇒.

With these patterns, we define the classes of queries

well as UCQ
//,⇒
xml and BCCQ

//,⇒
xml just as UCQxml and

BCCQxml but based on extended patterns.

We now show that tractable cases of query evaluation
continue to apply to queries based on extended patterns.

Proposition 1. Data complexity of computing
certainowa(Q, t) and certaincwa(Q, t) remains polyno-

mial for queries Q in UCQ
//,⇒
xml and BCCQ

//,⇒
xml over

rigid trees.

We also remark that over rigid trees, certain answers
can be computed efficiently for an extension of UCQxml

that expresses tree-to-tree queries [15].

Summary Going to rigid trees, i.e., giving up struc-
tural incompleteness while allowing null values and
wildcards, lowers the complexity of query evaluation for
all the languages to that of their relational counterparts.
There is at least one extension of the standard tractable
class (namely Boolean combinations of CQs), but get-
ting answers in polynomial time requires changing the
algorithm.

Using cwa does not help at all, except for the strongest
language (FOxml), which is undecidable under owa as
it codes finite validity. In the case of cwa it lowers data
complexity to that of relational calculus, but combined
complexity remains intractable.

6. CONCLUSIONS

The results of this paper, together with [9], present a
complete picture of both data and combined complexity
of query answering over incomplete XML documents. In

just one case, there is a small gap for combined complex-
ity (which nonetheless present a significant improve-
ment upon previously known nonelementary bounds),
which seems to hinge upon currently unavailable tech-
niques for using automata for pattern matching (or a
new technique for reducing the size of the witness tree).

Overall, we can infer the following from our study.

1. Structural incompleteness always leads to in-
tractability of query answering (and thus should
not be allowed in practical scenarios).

2. Playing with the semantic assumptions, such as
open and closed world assumptions, does not have
a significant effect on query answering. Thus, it
probably makes sense to stick with the commonly
accepted owa in practical scenarios.

3. When incompleteness is reduced to labeling and
data values, efficient query answering is possible
in query languages that mimic relational languages
admitting efficient evaluation.

The most common such language is union of con-
junctive queries, but we showed that several ex-
tensions work as well.

So the bottom line seems to be that one should use
label and data-value incompleteness only, under owa,
as this gives the best hope for efficient query answering
for practically relevant languages.

Acknowledgment Work partially supported by EP-
SRC grant G049165 and FET-Open Project FoX, grant
agreement 233599.

7. REFERENCES

[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the
Web: From Relations to Semistructured Data and
XML. Morgan Kauffman, 1999.

[2] S. Abiteboul, O. Duschka. Complexity of
answering queries using materialized views. In
PODS 1998, pages 254–263.

[3] S. Abiteboul, P Kanellakis, and G. Grahne. On
the representation and querying of sets of possible
worlds. TCS, 78(1):158–187, 1991.

[4] S. Abiteboul, L. Segoufin, and V. Vianu.
Representing and querying XML with incomplete
information. ACM TODS, 31(1):208–254, 2006.

[5] A. V. Aho, M. Corasick. Efficient string matching:
an aid to bibliographic search. Commun. ACM
18(6):333-340 (1975).

[6] L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast
and simple relational processing of uncertain
data. In ICDE’08, pages 983–992.

[7] M. Arenas, P. Barceló, L. Libkin, F. Murlak.
Relational and XML Data Exchange. Morgan &
Claypool, 2010.

[8] M. Arenas and L. Libkin. XML data exchange:
consistency and query answering. J. ACM, 55 (2),
2008.

[9] P. Barceló, L. Libkin, A. Poggi, C. Sirangelo.
XML with incomplete information. J. ACM, 58:1
(2010).

[10] H. Björklund, W. Martens, and T. Schwentick.
Conjunctive query containment over trees. J.
Comput. Syst. Sci. 77(3): 450-472 (2011).

[11] A. Cal̀ı, D. Lembo, and R. Rosati. On the
decidability and complexity of query answering
over inconsistent and incomplete databases. In
PODS’03, pages 260–271.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini.
Semi-structured data with constraints and
incomplete information. In Description Logics,
1998.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini.
Representing and reasoning on XML documents:
a description logic approach. J. Log. Comput. 9
(1999), 295–318.

[14] M. Crochemore, W. Rytter. Jewels of Stringology:
Text Algorithms. World Scientific 2002.

[15] C. David, L. Libkin, F. Murlak. Certain answers
for XML queries. In PODS 2010, pages 191-202.

[16] T. Eiter, G. Gottlob, H. Mannila. Disjunctive
datalog. ACM Trans. Database Syst.
22(3):364-418 (1997).

[17] G. Gottlob, C. Koch, and K. Schulz. Conjunctive
queries over trees. J. ACM 53(2):238-272, 2006.

[18] G. Grahne. The Problem of Incomplete
Information in Relational Databases. Springer,
1991.

[19] T. Imieliński and W. Lipski. Incomplete
information in relational databases. J. ACM,
31(4):761–791, 1984.

[20] B. Kimelfeld, Y. Sagiv. Modeling and querying
probabilistic XML data. SIGMOD Record 37(4):
69-77 (2008).

[21] M. Lenzerini. Data integration: a theoretical
perspective. In PODS’02, pages 233–246.

[22] L. Libkin. Incomplete information and certain
answers in general data models. In PODS’11,
pages 59–70.

[23] R. Pinter. Efficient string matching with
don’t-care patterns. In Combinatorial ALgorithms
on Words, NATO ASI Series, 1985.

[24] R. Reiter. On closed world databases. In “Logic
and Databases”, H. Gallaire and J. Minker eds,
Plenum Press, 1978, pages 55–76.

[25] R. Rosati. On the finite controllability of
conjunctive query answering in databases under
open-world assumption. J. Comput. Syst. Sci.
77(3):572-594 (2011).

[26] P. Silvasti, S. Sippu, E. Soisalon-Soininen.
Evaluating linear XPath expressions by
pattern-matching automata. J. UCS
16(5):833-851 (2010).

[27] D. Suciu, D. Olteanu, C. Re, C. Koch.
Probabilistic Databases. Morgan & Claypool, 2011.

[28] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains. J.
Comput. Syst. Sci. 54(1): 113-135 (1997).

