
A note on two-pebble automata
over infinite alphabets

Michael Kaminski Tony Tan

Department of Computer Science
Technion – Israel Institute of Technology

Haifa 32000
Israel

Abstract

It is shown that the emptiness problem for 2-PA languages is un-
decidable and that 2-PA are weaker than 3-PA.

1 Introduction

Pebble automata (PA) over infinite alphabets were introduced in [7] and later
found applications in XML, see [6].

As it has been shown in [7], the notion of PA over infinite alphabets is
very robust. In addition to equivalence of various models of PA, the set of
languages they accept is closed under all boolean operations. However, the
emptiness problem for these languages is undecidable.

Reducing Hilbert’s tenth problem to the emptiness problem for 2-PA
languages, we prove that the latter is undecidable.1 We also present an
example of a 3-PA language that is not accepted by 2-PA. To the best of our
knowledge, this is the first separation example concerning PA.

This note is organized as follows. In the next section we recall the defini-
tion of PA. Section 3 deals with 2-PA languages. In particular, we show that
these languages are not necessarily semi-linear, their emptiness problem is

1It should be noted that reductions of Hilbert’s tenth problem for proving undecidability
are very rare in Computer Science.

undecidable, and present an example of a 3-PA language that is not accepted
by 2-PA.

2 Pebble automata

First we recall the definition of pebble automata from [7]. We shall use the
following notation: Σ is a fixed infinite alphabet not containing the left-end
marker / or the right-end marker .. The input word to the automaton is of
the form /w., where w ∈ Σ∗. We also assume that Σ contains the symbol $
that will be used as a delimiter.

Symbols of Σ are denoted by low case letters a, b, c, etc., possibly indexed,
and words over Σ are denoted by low case letters u, v, w, etc., possibly
indexed.

Definition 1 A non-deterministic two-way k-PA over Σ is a tuple A =
〈Q, q0, F, µ〉 whose components are defined as follows.

• Q, q0 ∈ Q and F ⊆ Q are a finite set of states, the initial state, and
the set of final states, respectively; and

• µ is a finite set of transitions of the form α → β such that

– α is of the form (i, a, P, V, q) or (i, P, V, q), where i ∈ {1, . . . , k},
a ∈ Σ ∪ {/, .}, P, V ⊆ {1, . . . , i− 1}, and

– β is of the form (q, action), where q ∈ Q and

action ∈ {left, right, place-pebble, lift-pebble}.

Transitions of the form (i, a, P, V, q) → β are called (i, a, P, V)-transitions
and Transitions of the form (i, P, V, q) → β are called (i, P, V)-transitions.

Given a word w = a1 · · · an ∈ Σ∗, a configuration of A on /w. is a triple
[i, q, θ], where i ∈ {1, . . . , k}, q ∈ Q and θ : {1, . . . , i} → {0, 1, . . . , n, n + 1}.2
The function θ defines the position of the pebbles and is called pebble assign-
ment. A configuration [i, q, θ] with q ∈ F is called an accepting configuration.

A transition (i, a, P, V, p) → β applies to a configuration [j, q, θ], if

2The symbols at the 0 and n + 1 positions are / and ., respectively, and we assume
that A “knows” these symbols.

2

(1) i = j and p = q,

(2) V = {l < i : aθ(l) = aθ(i)},
(3) P = {l < i : θ(l) = θ(i)}, and

(4) aθ(i) = a.

A transition (i, P, V, q) → β applies to a configuration [j, q, θ], if condi-
tions (1)–(3) above hold and no transition of µ of the form (i, a, P, V, q) → β
applies to [j, q, θ].

We define the transition relation ` as follows: [i, q, θ] ` [i′, q′, θ′], if there
is a transition α → (p, action) that applies to [i, q, θ] such that q′ = p,
θ′(j) = θ(j) for all j < i, and if

• action = left, then i′ = i and θ′(i) = θ(i)− 1,

• action = right, then i′ = i and θ′(i) = θ(i) + 1,

• action = lift-pebble, then i′ = i− 1,

• action = place-pebble, then i′ = i+1, θ′(i) = θ(i), and θ′(i+1) = 0.

As usual, we denote the transitive closure of ` by `∗. A word w ∈ Σ∗ is
accepted by A, if [1, q0, θ0(1) = 0] `∗ [i, q, θ], for some accepting configuration
[i, q, θ] of A on /w., i.e., q ∈ F . The language L(A) consists of all words
accepted by A.

The automaton A is deterministic, if in each configuration at most one
transition applies. If action ∈ {right, lift-pebble, place-pebble} for all
transitions, then the automaton is one-way.

Theorem 2 ([7, Theorem 4.6]) For each k ≥ 1, non-deterministic two-way
k-PA, deterministic two-way k-PA, non-deterministic one-way k-PA, and
deterministic one-way k-PA all have the same recognition power.

Theorem 3 ([7, Theorem 5.4]) The emptiness problem for 3-PA languages
is undecidable.3

3In fact, it was shown in [7] that the emptiness problem is undecidable for 5-PA.
However, a closer examination of the proof shows that it applies to 3-PA as well.

3

The proof of [7, Theorem 5.4] is based on the reduction of the Post cor-
respondence problem ([8], see also [3, pp. 193–201]) to the emptiness problem
for PA languages. Roughly speaking, one of the major technical steps in the
proof relies on the fact that the language

Lord = {a1a2 · · · an$a1a2 · · · an : n ≥ 1,

ai 6= $, for each i = 1, 2, . . . , n, and ai 6= aj, whenever i 6= j}
is accepted by 3-PA. In contrast, this language is not accepted by 2-PA, see
Proposition 12 in the next section. This, together with a relative simplicity
of 2-PA, might lead to the conjecture that the emptiness problem for 2-PA
languages is decidable. However, Theorem 4 in the next section shows that
(surprisingly?) the emptiness problem for 2-PA languages is undecidable
either.

3 Two-pebble automata

This section deals with 2-PA. Its major result is Theorem 4 below.

Theorem 4 The emptiness problem for 2-PA languages is undecidable.

For the proof of Theorem 4 we reduce Hilbert’s tenth problem (existence
of solutions of Diophantine equations) to the emptiness problem for 2-PA
languages. Namely, we show that the set of solutions of a Diophantine equa-
tion is accepted by a 2-PA. Since the former is undecidable ([4], see also [2]
or [5]), the latter is undecidable as well.

We precede the proof of Theorem 4 with a number of examples exhibiting
an unexpectedly strong recognition power of 2-PA. These examples are rather
simple, but despite their simplicity, they are the backbones of our subsequent
results concerning 2-PA.

The first example deals with the language Ldiff consisting of all words in
which every symbol from Σ occurs at most one time:

Ldiff = {a1 · · · an : n ≥ 1, ai 6= $, for each i = 1, . . . , n, and

ai 6= aj, whenever i 6= j}.

4

The words of Ldiff will be used for representation of positive integers in
“unary” notation: a word w ∈ Ldiff represents the integer |w|.4 Of course in
such way a positive integer has infinitely many equivalent representations,
but as we shall see in the sequel, the integer equality can be tested by 2-PA.

Example 5 The language Ldiff is accepted by a 2-PA that works as follows.
Pebble 1 advances through the input from left to right. At each step it
verifies that the symbol under it is not $, and then pebble 2 scans the input
and verifies that the input symbol under pebble 1 differs from all the others,
see also [7, the example in Section 2.4 and Theorem 4.1].

Example 6 below employs the following notation. For two words u, v ∈ Σ∗

we write u ∼ v, if one is a permutation of the other.

Example 6 Let

Lperm = {u$v : u, v ∈ Ldiff and u ∼ v}.
This language is accepted by 2-PA that works as follows. Pebble 1 advances
through the input from left to right. In each step pebble 2 scans the input and
finds the symbol under pebble 1 on the other “half” of the input.5 Verifying
that both u and v are in Ldiff can be done in two swaps, see Example 5.6

Our next example shows that positive integers represented by elements
of Ldiff can be tested for equality by 2-PA.

Example 7 Let Leq consist of all words of the form

u$a1b1 · · · anbn$v,

where

• u, v ∈ Ldiff,

• a1 · · · an ∼ u, and

• b1 · · · bn ∼ v.

4Cf. [1, Section 7], where a similar representation was used for the proof of undecidabil-
ity of the emptiness problem languages accepted by a kind of a register automata called
po-2-DFA1.

5Naturally, the first half of the input consists of the symbols occurring before “$” and
the second half of the input consists of the symbols occurring after it.

6Recall that we are dealing with two-way automata.

5

This language is accepted by 2-PA that, like in Example 5, verifies that
both u and v are in Ldiff, and then, like in Example 6, verifies that a1 · · · an ∼
u and b1 · · · bn ∼ v.

The following example shows that 2-PA can accept non-semi-linear lan-
guages.

Example 8 Let Lsq consist of all words of the form

u$a1v1$a2v2$ · · · $anvn,

where

• u ∈ Ldiff, and

• u ∼ a1 · · · an ∼ v1 ∼ · · · ∼ vn.

By Example 6, Lsq is accepted by 2-PA, because the membership test
involves only verifying permutations of words. Obviously,

{|w| : w ∈ Lsq} = {n2 + 3n− 1 : n = 1, 2, . . .}
is not semi-linear.

The reduction of Hilbert’s tenth problem is based on Examples 9 and 10
below which illustrate the core idea lying behind the proof. Namely, these
examples show that 2-PA can test atomic integer equalities.

Example 9 Let Ladd be the language consisting of all words of the form

uva1c1 · · · amcm$b1cm+1 · · · bncm+n$w,

where

A1. u, v, w ∈ Ldiff,

A2. a1 · · · am ∼ u,

A3. b1 · · · bn ∼ v, and

A4. c1 · · · cm+n ∼ w.

Obviously,
|u|+ |v| = |w|.

The language Ladd is accepted by a 2-PA similar to that described in
Example 6.

6

Example 10 Let Lmult be the language consisting of all words of the form

uva1c1,1b1,1 · · · c1,nb1,n$ · · · $amcm,1bm,1 · · · cm,nbm,n$w,

where

M1. u, v and w are in Ldiff,

M2. a1 · · · am ∼ u,

M3. bi,1 · · · bi,n ∼ v, for each i = 1, . . . , m, and

M4. c1,1 · · · c1,n · · · cm,1 · · · cm,n ∼ w.

Obviously,
|u| × |v| = |w|.

Like in Example 5 it can be shown that two pebbles are sufficient to verify
condition M1; and like in Example 6 it can be shown that two pebbles are
sufficient to verify conditions M2–M4. Thus, Lmult is accepted by 2-PA.

Example 11 below is a straightforward extension of Example 9.

Example 11 Let m be a positive integer and let Ladd,m be the language
consisting of all words of the form

v1$ · · · vma1,1b1 · · · a1,|v1|b|v1|$ · · · $am,1b|v1|+···+|vm−1|+1 · · · am,|vm|b|v1|+···+|vm|$v,

where

A1m. v1, . . . , vm, v ∈ Ldiff,

A2m. ai,1 · · · ai,|vi| ∼ vi, i = 1, . . . , m, and

A3m. b1 · · · b|v1|+···+|vm| ∼ v.

Obviously,
|v1|+ · · ·+ |vm| = |v|.

The language Ladd,m is accepted by a 2-PA similar to that described in
Example 6.

At last, we have arrived at the proof of Theorem 4. The intuition lying
behind the proof is as follows. Examples 7, 9, and 10 show how, by verifying
only permutations of words, 2-PA can simulate the equality test and can

7

verify the results of the arithmetic operations: addition and multiplication,
respectively. For the proof of Theorem 4 we (quite naturally) extend these
examples to testing results of polynomial evaluation, or, more precisely, to
languages corresponding to polynomial evaluation. Loosely speaking, the
language Lf corresponding to a polynomial f(x1, . . . , xm) with positive inte-
ger coefficients consist of all words of the form

v1$ · · · vm · · · “an evaluation of f(|v1|, . . . , |vm|)” · · · $w,

where v1, . . . , vm, w ∈ Ldiff and |w| = f(|v1|, . . . , |vm|). Since only permuta-
tions of words are needed to simulate the evaluation of f(|v1|, . . . , |vm|), Lf

is accepted by 2-PA, see the proof of Theorem 4 below.

Proof of Theorem 4 We start with recalling Hilbert’s tenth problem that
can equivalently be restated as follows. Given two polynomials f ′(x1, . . . , xm)
and f ′′(x1, . . . , xm) with positive integer coefficients, do there exist positive
integers n1, . . . , nm such that

f ′(n1, . . . , nm) = f ′′(n1, . . . , nm)? (1)

It was shown in [4] (see also [2] or [5]) that Hilbert’s tenth problem is
undecidable.

First, using Example 10, we show that 2-PA can recognize the values of
monomials over positive integers. For this, with each sequence of monomials
M1(x1, . . . , xm), . . . , Mk(x1, . . . , xm) over positive integers we associate the
language LM1,...,Mk

defined by the following recursion.

• If M1(x1, . . . , xm) is a constant n, then LM1 consists of all words of the
form

v1$ · · · vmv,

where v1, . . . , vm, v ∈ Ldiff and |v| = n, i.e., for all v1, . . . , vm ∈ Ldiff,
M1(|v1|, . . . , |vm|) = |v| (= n).

• If M1(x1, . . . , xm) is of the form xjM(x1, . . . , xm), then LM1 consists of
all words of the form

v1$ · · · vm · · · $v′$a1c1,1b1,1 · · · c1,nb1,n$ · · · $amcm,1bm,1 · · · cm,nbm,n$v,

where

– v1$ · · · vm · · · $v′ ∈ LM , i.e., |v′| = M(|v1|, . . . , |vm|);

8

– a1 · · · am ∼ vj;

– bi,1 · · · bi,n ∼ v′, for each i = 1, . . . , m; and

– c1,1 · · · c1,n · · · cm,1 · · · cm,n ∼ v.

That is,

|v| = |vj||v′| = |vj|M(|v1|, . . . , |vm|) = M1(|v1|, . . . , |vm|).

Assume that the language LM1,...,Mk
has been defined, and let Mk+1 be

a constant n. Then LM1,...,Mk+1
consists of all words of the form w$v, where

w ∈ LM1,...,Mk
, v ∈ Ldiff, and |v| = n.

If Mk+1(x1, . . . , xm) is of the form xjM(x1, . . . , xm), then LM1,...,Mk+1
is

defined similarly to the second clause of the definition of LM1 .
Now, let

f ′(x1, . . . , xm) = M ′
1(x1, . . . , xm) + · · ·+ M ′

k′(x1, . . . , xm)

and let

f ′′(x1, . . . , xm) = M ′′
1 (x1, . . . , xm) + · · ·+ M ′′

k′′(x1, . . . , xm),

where M ′
i′(x1, . . . , xm), i′ = 1, . . . , k′, and M ′′

i′′(x1, . . . , xm), i′′ = 1, . . . , k′′, are
monomials. Then, like in Example 11, we can “extend” LM ′

1,...,M ′
k′ ,M

′′
1 ,...,M ′′

k′′
to

the language Lf ′,f ′′ that for each m-tuple v1, . . . , vm ∈ Ldiff contains a word
of the form

v1$ · · · vm · · · $w′$w′′,

where |w′| = f ′(|v1|, . . . , |vm|) and |w′′| = f ′′(|v1|, . . . , |vm|).7
Finally, let Lf ′=f ′′ be the languages consisting of all words of the form

v1$ · · · vm · · · $w′$w′′$a′1a
′′
1 · · · a′na′′n,

where

• v1$ · · · vm · · · $w′$w′′ ∈ Lf ′,f ′′ ,

• a′1 · · · a′n ∼ w′, and

7Note that delimited patterns of LM ′
1,...,M ′

k′ ,M
′′
1 ,...,M ′′

k′′
can be detected by using just

the finite memory (states) of an appropriate 2-PA.

9

• a′′1 · · · a′′n ∼ w′′.

Then, like in Example 7, one can show that Lf ′=f ′′ is accepted by 2-PA.
Since, obviously, (1) has a solution if and only if Lf ′=f ′′ is non-empty, our

reduction (and, therefore, the proof of Theorem 4) is complete. 2

We conclude this paper with a negative result related to the language
Lord defined in the end of Section 2.

Proposition 12 The language Lord is not accepted by 2-PA.

Proof Assume to the contrary that Lord is accepted by an s-state 2-PA A.
By Theorem 2, we may assume that A is one-way and deterministic. We
may also assume that A is normalized as follows:

• after each move of pebble 1, A places pebble 2;

• pebble 2 is lifted only when it reaches the end of the input; and

• immediately after pebble 2 is lifted, pebble 1 moves right.

Consider the word

u = a1 · · · an$a′1 · · · a′n ∈ Lord,
8

where n > s5. Since u ∈ Lord = L(A), there is an accepting run of A on u.
In that run, with each integer i = 1, . . . , n, we associate a quintuple of states
〈qi

1, q
i
2, q

i
3, q

i
4, q

i
5〉 that is defined as follows.

• qi
1 is the state in which pebble 1 arrives at ai.

• qi
2 is the state in which pebble 1 leaves ai.

• qi
3 is the state in which pebble 1 arrives at a′i.

• qi
4 is the state in which pebble 1 is above ai and pebble 2 arrives at $.

• qi
5 is the state in which pebble 1 is above a′i and pebble 2 arrives at $.

8We use primes to differentiate between occurrences of a symbol before and after $.

10

Since n > s5, there exist states qk, k = 1, . . . , 5, and two indices i and j,
i < j, such that

〈qi
1, q

i
2, q

i
3, q

i
4, q

i
5〉 = 〈qj

1, q
j
2, q

j
3, q

j
4, q

j
5〉 = 〈q1, q2, q3, q4, q5〉. (2)

We contend that the word

v = a1 · · · ai · · · aj · · · an$a′1 · · · a′j · · · a′i · · · a′n,

obtained from u by switching a′i and a′j, is also accepted byA, in contradiction
with L(A) = Lord.

To proceed we need the following notation. Let w′ be a non-empty prefix
of w. We denote by R(w′, w) the state in the run of A on w in which pebble 1
leaves the rightmost symbol of w′.

For example, in this notation,

• R(a1 · · · ai−1, u) = q1,

• R(a1 · · · ai, u) = q2,

• R(a1 · · · an$a′1 · · · a′i−1, u) = q3, and

• R(u, u) is a final state of A.

We shall prove that
R(v, v) = R(u, u), (3)

which would imply v ∈ L(A), in contradiction with v 6∈ Lord.
We start with the proof of the relationship between the runs of A on u

and v given by equations (4)–(12) below, see also Figure 1 on the next page
for a graphical representation of these equations.

R(a1 · · · ai−1, v) = R(a1 · · · ai−1, u) = q1 (4)

R(a1 · · · ai, v) = R(a1 · · · aj, u) = q2 (5)

R(a1 · · · aj−1, v) = R(a1 · · · aj−1, u) = q1 (6)

R(a1 · · · aj, v) = R(a1 · · · ai, u) = q2 (7)

R(a1 · · · aj, v) = R(a1 · · · aj, u) = q2 (8)

R(a1 · · · an$a′1 · · · a′i−1, v) = q3 = R(a1 · · · an$a′1 · · · a′i−1, u) = q3 (9)

R(a1 · · · an$a′1 · · · a′i−1a
′
j, v) = R(a1 · · · an$a′1 · · · a′i−1a

′
i, u) (10)

R(a1 · · · an$a′1 · · · a′j−1, v) = R(a1 · · · an$a′1 · · · a′j−1, u) = q3 (11)

R(a1 · · · an$a′1 · · · a′j · · · a′i, v) = R(a1 · · · an$a′1 · · · a′i · · · a′j, u) (12)

11

v a1 · · · ai−1 ai ai+1 · · · aj−1 aj aj+1 · · · an$a′1 · · · a′i−1 a′j a′i+1 · · · a′j−1 a′i a′j+1 · · · a′n

u a1 · · · ai−1 ai ai+1 · · · aj−1 aj aj+1 · · · an$a′1 · · · a′i−1 a′i a′i+1 · · · a′j−1 a′j a′j+1 · · · a′n

6

?

(4)
q1

JJ]

J
J

J
J

J
J

J
Ĵ

(5)
q2

6

?

(6)
q1

Á

À

(7)
q2

6

?

(8)
q2

6

?

(9)
q3

6

?

(10)

6

?

(11)
q3

6

?

(12)

Figure 1: Equations (4)–(12) are illustrated by the corresponding arrows.
The states adjacent to each arrow indicates the value of the function R.

Proof of (4): With pebble 1 above a1 · · · ai−1, pebble 2 alone cannot detect
that a′i and a′j have switched places, because they differ from all a1, . . . , ai−1.
Thus, pebble 1 leaves the subword a1 · · · ai−1 and arrives at ai in the same
state q1 on both u and v.

Proof of (5): Pebble 1 arrives at aj on u in the state q1, which, by (4) and (2),
is the state in which pebble 1 arrives at ai on v.

In addition, since a1 · · · an ∈ Ldiff, by (2), pebble 2 arrives at $ on u
(where pebble 1 reads aj) in the state q4 – the same state in which pebble 2
arrives at $ on v (where pebble 1 reads ai). Therefore, since in v a′i and a′j
have switched places, after leaving $, the behavior of pebble 2 on the pattern
a′1 · · · a′j · · · a′i · · · a′n of v (where pebble 1 reads ai) is the same as that of
pebble 2 on the pattern a′1 · · · a′i · · · a′j · · · a′n of u (where pebble 1 reads aj).
Thus, pebble 1 leaves aj on u in the same state in which pebble 1 leaves ai

on v, namely, in the state q2, see (2).

Proof of (6): The proof is similar to that of (4). By (5) and (2),

R(a1 · · · ai, v) = R(a1 · · · aj, u) = q2 = R(a1 · · · ai, u).

With pebble 1 above ai+1 · · · aj−1, pebble 2 alone cannot detect that a′i and
a′j have switched places, because they differ from all ai+1, . . . , aj−1. Thus,
pebble 1 arrives at aj in the same state q1 on both u and v.

Proof of (7): The proof is similar to that of (5). Pebble 1 arrives at ai on u
in the state q1, in which, by (2) and (6), pebble 1 arrives at aj on v.

In addition, since a1 · · · an ∈ Ldiff,, by (2), pebble 2 arrives at $ on u
(where pebble 1 reads ai) in the state q4 – the same sate in which pebble 2

12

arrives at $ on v (where pebble 1 reads aj). Therefore, since in v a′i and a′j
have switched places, after leaving $, the behavior of pebble 2 on the pattern
a′1 · · · a′j · · · a′i · · · a′n of v (where pebble 1 reads ai) is the same as that of
pebble 2 on the pattern a′1 · · · a′i · · · a′j · · · a′n of u (where pebble 1 reads aj).
Thus, pebble 1 leaves ai on u in the same state in which pebble 1 leaves aj

on v, namely, in the state q2.

Proof of (8): As we have seen in the proofs of (5) and (7), pebble 1 leaves aj

on both u and v in the state q2.

Proof of (9): The proof is similar to that of (4). By (8), pebble 1 leaves aj on
both u and v in the same state. With pebble 1 above aj+1 · · · an$a′1 · · · a′i−1,
pebble 2 alone cannot detect that a′i and a′j have switched places, because
they differ from all aj+1, . . . , an, $, a

′
1, . . . , a

′
i−1. Thus, pebble 1 arrives at a′i

on u in the state q3 – the same state in which pebble 1 arrives at a′j on v.

Proof of (10): By (9), pebble 1 arrives at a′i on u in the same state in which
pebble 1 arrives at a′j on v, namely, in the state q3, see (2).

Thus, by (2), pebble 2 arrives at $ on u (where pebble 1 reads a′i) in
the state q5 – the same state in which pebble 2 arrives at $ on v (where
pebble 1 reads a′j). Since pebble 1 is in the same position on both u and
v and a′1, . . . , a

′
n are pairwise different, pebble 2 leaves a′n on u in the same

state in which pebble 2 leaves a′n on v.

Proof of (11): By (10), pebble 1 leaves a′i on u in the same state in which
pebble 1 leaves a′j on v.

With pebble 1 above a′i+1 · · · a′j−1, pebble 2 alone cannot detect that a′i
and a′j have switched places, because they differ from all a′i+1, . . . , a

′
j−1. Thus,

pebble 1 leaves a′i and arrives at a′j on u in the same state in which pebble 1
leaves a′j and arrives at a′i on v, namely, in the state q3.

Proof of (12): The proof is similar to that of (10). By (11), pebble 1 arrives
at a′j on u in the same state in which pebble 1 arrives at a′i on v, namely, in
the state q3, see (2).

Thus, by (2), pebble 2 arrives at $ on u (where pebble 1 reads a′i) in
the state q5 – the same state in which pebble 2 arrives at $ on v (where
pebble 1 reads a′j). Since pebble 1 is in the same position on both u and
v and a′1, . . . , a

′
n are pairwise different, pebble 2 leaves a′n on u in the same

state in which pebble 2 leaves a′n on v.

13

Now we are ready for the proof of (3). By (12), pebble 1 leaves a′j on
u in the same state in which pebble 1 leaves a′i on v. With pebble 1 above
a′j+1 · · · a′n, pebble 2 alone cannot detect that a′i and a′j have switched places,
because they differ from all a′j+1, . . . , a

′
n. Thus, A finishes the computation

on both u and v in the same state. 2

References

[1] C. David. Mots et données infinies. Master’s thesis, Université Paris 7,
LIAFA, 2004.

[2] M. Davis. Hilbert’s tenth problem is unsolvable. The American Mathe-
matical Monthly, 80:233–269, 1973.

[3] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Reading, MA, 1979.

[4] Ju.V. Matijasevič. Enumerable sets are diophantine. Soviet Mathematics.
Doklady, 11:354–358, 1970.

[5] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA,
1993.

[6] F. Neven. Automata, logic, and XML. In J. Bradfield, editor, Computer
Science Logic: 16th International Workshop, CSL 2002, volume 2471 of
Lecture Notes in Computer Science, pages 2–26, Berlin, 2002. Springer.

[7] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings
over infinite alphabets. ACM Transactions on Computational Logic,
5:403–435, 2004.

[8] E.L. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52:264–268, 1946.

14

