
Tree Automata over Infinite Alphabets

Michael Kaminski and Tony Tan

Department of Computer Science, Technion – Israel Institute of Technology,
Haifa 32000, Israel

{kaminski,tantony}@cs.technion.ac.il

Dedicated to Boris (Boaz) Trakhtenbrot
on the occasion of his 85th birthday.

Abstract. A number of models of computation on trees labeled with
symbols from an infinite alphabet is considered. We study closure and
decision properties of each of the models and compare their computation
power.

1 Introduction

In recent years a new application area for regular word and tree languages has
evolved during one of the most important developments in World Wide Web
(WWW) – the emergence of the Extensible Markup Language (XML). For many
purposes, XML documents are modeled as labeled finite trees, where the finite
set of labels corresponds to the set of element names allowed in the document.
Thus, concepts from regular word and tree languages became important in XML
research; see [1,8,11,9,12,14,18].

However, this abstraction ignores an important aspect of XML – the presence
of attributes attached to the leaves of trees. Since attributes may assume values
from an infinite set, modeling XML documents by trees over a finite alphabet
is not adequate in any scenario. Therefore, a more natural way to model XML
documents in this setting is to allow, besides the finite set of element labels,
an infinite set of possible data values. Consequently, there is a need to extend
the notion of regular and tree languages in such a way that, on one hand, as
many as possible settings involving attributes can be captured and (most of) the
desirable properties of the language class are retained on the other.

In this paper we extend finite-memory automata; see [2,5,6], to tree automata
over infinite alphabets.

It should be noted, however, that there is a different model of computa-
tion over infinite alphabets, called pebble automata over infinite alphabets; see
[8,10,13]. They are “orthogonal” to finite-memory automata. Also, the tree walk-
ing automata with pebbles ([8]) naturally extend to infinite alphabets for type-
checking purposes. In our opinion, all these automata are inappropriate for
modeling XML. This is because the tree languages they accept lack basic deci-
sion properties, though, unlike the language considered in this paper, they are
closed under complement. However, for practical purposes it is very common to

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 386–423, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tree Automata over Infinite Alphabets 387

ask whether an XML scheme admits even one document. Since the emptiness
problem for pebble automata is undecidable, using these automata for modeling
XML documents is, at least, arguable.

In our extension of finite-memory automata to trees each head scanning a
symbol at the tree node is equipped with a finite number of registers. This
number is the same for all heads of the automaton. There are two ways to scan
an input tree: top-down from the root to the leaves; see [15], and bottom-up
from the leaves to the root; see [4,17].1 When moving top-down from a parent
node to its children, the automaton splits the head and the corresponding set of
registers; and when moving bottom-up from the child nodes to their parent node,
the automaton replaces the two2 heads by one and merges the corresponding set
of registers by forgetting some of their contents. Whereas the definition of a
top-down finite-memory tree automata is very natural: the split results in two
heads each carrying a set of registers with the same contents, the definition of
the bottom-up one is less obvious, because it requires an automaton to merge
two sets of registers whose contents may be quite different and even disjoint.

In addition, there are (at least) two possibilities of updating the content of
the automaton registers. One possibility is to replace the content of one of the
registers with the currently scanned new input symbol, as was done in [5,6], and
the other is to replace the content of one of the registers with any new symbol
from the infinite input alphabet, as was done in [2]. That is, in the latter case,
the automaton does not necessarily have to arrive to the symbol in order to
store it in its registers. Such ability will be referred to as a nondeterministic
reassignment.

The above two distinctions result in four models of finite-memory tree au-
tomata which we consider in our paper. It appears that both top-down and
bottom-up models with deterministic reassignment (the first possibility) are not
strong enough for modeling XML. The former cannot even accept the tree lan-
guage consisting of all trees having two different leaves labeled with the same
symbol; see Example 2,3 whereas the latter cannot accept a very simple tree lan-
guage consisting of all trees whose root label differs from the labels of all other
nodes. In fact, unlike in the case of a finite alphabet, the computation powers of
these two models are incomparable.

In contrast with the above, the computation models with nondeterministic
reassignment, which are stronger than those with the deterministic one, seem
to be appropriate for modeling XML. We show that top-down and bottom-up
tree automata with nondeterministic reassignment have the same computation
power (which indicates that the definition is robust) and are proper extensions

1 Recall that in Computer Science trees grow top-down.
2 This paper deals with binary trees, only. Since finite branching trees can be encoded

by binary trees in a standard manner, our computation models naturally generalize
to unranked trees.

3 For some purposes, an XML document might require certain integrity constraints.
For example, it might require that the value at a certain position of a document also
occurs (or differs from the value) at some other position.

388 M. Kaminski and T. Tan

of the deterministic reassignment models. In particular, the tree languages from
the above two examples are accepted by tree automata with nondeterministic
reassignment.

Also, we establish some closure and decision properties of tree languages ac-
cepted by tree automata with deterministic and nondeterministic reassignment
and show how these tree languages are related to context-free languages over
infinite alphabets introduced in [2]. This relationship is of importance, because
the latter are tightly connected to Document Type Definitions which define XML
documents.

The paper is organized as follows. In the next section we give a rough review
of XML concepts. Section 3 contains the notation used throughout this paper.
In Sect. 4 and 5 we introduce the tree automata with deterministic and non-
deterministic reassignment, respectively. Section 6 deals with decision problems
related to our models of computation. In Sect. 7 we establish a relationship be-
tween the tree languages defined in this paper and the context-free languages
introduced in [2]. Finally, Appendices A and B contain the proof of equivalence
of top-down and bottom-up tree automata with nondeterministic reassignment
and Appendix C summarizes the closure properties of tree languages accepted
by our tree automata.

2 Basic Notions of XML

In this section we briefly sketch the core idea of XML and its connection to tree
languages. This is done via an example below. Readers interested in the details
are referred to [16] or [19].

Consider the following XML document that displays information about a
factory.

<factory name = "super">
<section name = "productions">

<product id = 011>
<No.> 1 </No.>
<label> notebook </label>

</product>
<product id = 294>

<No.> 2 </No.>
<label> pencil </label>

</product>
</section>
<section name = "advertisement">

<product id = 011>
<No.> 1 </No.>
<label> notebook </label>

</product>
</section>

</factory>

Tree Automata over Infinite Alphabets 389

Like in the case of HTML, the building blocks of XML are elements which
are delimited by the start- and end-tags. A start-tag of a product-element, for
example, is <product> and the end-tag is </product>. Everything in between
<product> and </product> constitutes a product-element.

An element can be nested into another one. For example, the element <No.>
1 </No.> is a subelement of the outer product-element. Elements may also
have attributes. These are name value pairs separated by the equality sign. For
example, <product id = 011> indicates that the value of the id attribute of
that particular product-element is 011.

An XML document can be viewed as a tree in a natural way. Fig. 1 below
shows the above XML document in form of a tree.

factory[name = "super"]
�

�
�

�
�

�
��

�
�

�
�

�
�

��
production

�
�

�
�

��

�
�

�
�

��

advertisement

product

[id = 011]

�
�
�
�
�

�
�

�
�

�

product

[id = 294]

�
�
�
�
�

�
�

�
�

�

product

[id = 011]

�
�
�
�
�

�
�

�
�

�
No. name No. name No. name

1 notebook 2 pencil 1 notebook

Fig. 1. A tree representation of an XML document

XML documents can be defined by Document Type Definitions (DTDs). These
are, basically, extended context-free grammars (cf. context-free grammars over
infinite alphabets in Sect. 7), i.e., context-free grammars with regular expressions
at the right-hand sides. For example, the DTD in Fig. 2 defines the scheme of
an XML document for a “factory.”

This DTD specifies that the element factory is the outermost and consists
of the production- and the advertisement-elements. Each of them, in turn,

390 M. Kaminski and T. Tan

<!DOCTYPE factory [

<!ELEMENT factory (production, advertisement)>

<!ELEMENT production (product)*>

<!ELEMENT advertisement (product)*>

<!ELEMENT product (No.,name) | ε >

<!ELEMENT No. (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST factory name #PCDATA>

<!ATTLIST product id #PCDATA>

]>

Fig. 2. The DTD scheme for the XML document in Fig. 1

consists of a finite number of product-elements. A product-element can either
consist of nothing (i.e., the empty word ε), or of the No.- and the name-elements.
The No.- and name-elements do not consist of any other elements, but a word, as
the term #PCDATA indicates. The DTD also indicates that the factory- and
the product-elements have attributes attached to it: name and id, respectively.
These attributes take the data value #PCDATA, that is a word.

Furthermore, in addition to conforming to the DTD, an XML document may
require some constraints imposed on the data values of the attributes. For ex-
ample, the DTD factory may require that the advertised product is produced
by the factory itself. This constraint is defined by the following formula in which
the binary predicate Parent(x, y) is, naturally, read as “x is the parent of y” and
y is the advertised product.

∃x(Parent(x, y) ∧ x.label = advertisement∧ y.label = product) →

∃u∃v(Parent(u, v) ∧ u.label = production∧ v.label = product∧ v.id = y.id)

So, any product-element that appears under the advertisement-element
must also appear under the production-element. As product-element is identi-
fied by its id-attribute, the number of possible product-elements is unbound.

3 Notation

We fix an infinite alphabet Σ not containing # that is reserved to denote an
empty register. For a word w = w1w2 · · · wr over Σ ∪{#}, we define the content
of w, denoted [w], by [w] = {wj �= # : j = 1, 2, . . . , r}. That is, [w] consists of
all symbols of Σ which appear in w.

A word w1 · · ·wr such that wi = wj and i �= j imply wi = # is called an
assignment. That is, an assignment is a word over Σ ∪ {#} where each sym-
bol from Σ appears at most one time. Assignments represent the contents of the

Tree Automata over Infinite Alphabets 391

registers of an automaton: the symbol in the ith register is wi. If wi = #, then
the ith register is empty. The set of all assignments of length r is denoted by
Σr �=.

A set of words T ⊆ {0, 1}∗ is called a (binary) tree if it satisfies the following
two conditions.

– For each n ∈ T and each prefix n′ of n, n′ ∈ T . That is, T is prefix closed.
– If n ∈ T , then either both or none of {n0, n1} are in T .

We write n1 � n2, if n1 is a prefix of n2.
Elements of a tree are called nodes. The root of the tree is the empty word

ε. A node n of a tree T is called a leaf, if neither of {n0, n1} belongs to T . If
n is not a leaf, then nodes n0 and n1 are called the left and right children of
n, respectively, and n is called the parent of both n0 and n1. A node n1 is an
ancestor of n2, or n2 is a descendant of n1, if n1 � n2.

The hight of a node n in a tree T is the length of n. The root ε is of hight 0.
The hight of a tree T is the hight of the longest node of T .

A Σ-tree is a map σ from a tree into Σ. The set of all Σ-trees is denoted by
T (Σ). We denote by dom(σ) = T , the domain of σ : T → Σ.

Finally, let σ : T → Σ be a Σ-tree and let n1, n2, . . . , nm be the list of all
leaf nodes of T in the lexicographical order. The Σ-word σ(n1)σ(n2) · · · σ(nm)
is called the frontier of σ and is denoted by �(σ).

4 Tree Automata with Deterministic Reassignment

In this section we define the tree version of finite memory automata (FMA)
introduce in [6], both the top-down and bottom-up cases. We start with the
top-down case, which is a straightforward extension of the ordinary word FMA.

4.1 Top-Down Finite-Memory Automata with Deterministic
Reassignment

Definition 1. (Cf. [6, Definition 1].) A top-down finite-memory automaton with
deterministic reassignment (↓-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where

– S is finite set of states.
– s0 ∈ S is the initial state.
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment to the r registers of A.
– ρ : S → {1, 2, . . . , r} is a function from S into {1, 2, . . . , r} called the deter-

ministic reassignment. The intuitive meaning of ρ is as follows. If A is in
a state p and the input symbol appears in no register, then the automaton
reassigns the ρ(p)th register with the input symbol.

– μ ⊆ S×{1, 2, . . . , r}×S2 is the transition relation, whose elements are called
transitions and are also written in the form

(p, i) → (p0, p1),

392 M. Kaminski and T. Tan

where p, p0, p1 ∈ S and i ∈ {1, 2, . . . , r}. Intuitively, in a Σ-tree σ the tran-
sition (p, i) → (p0, p1) “applies” at a node n if n is labeled with the state p
and the content of the ith register is σ(n). Subsequently, the children n0 and
n1 of n are labeled with the states p0 and p1, respectively.

– F ⊆ S × {1, 2, . . . , r} is the set of final relations.

Like in the case of FMA, an actual state of A is a state of S together with the
content of all registers. That is, A has infinitely many states which are pairs
(p, w), where p ∈ S and w ∈ Σr �= is the content of the registers of A. These are
called configurations of A. The set of all configurations of A is denoted by Sc.
The pair (s0, u), denoted sc

0, is called the initial configuration.
The transition relation μ induces the following relation μc on Sc×Σ×(Sc×Sc),

whose elements are written in the form

(p, w), σ → (p0, w0), (p1, w1),

where p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.

Then (p, w), σ → (p0, w0), (p1, w1) belongs to μc if and only if the following
conditions are satisfied.

– If σ = wi ∈ [w], then w0 = w1 = w and (p, i, (p0, p1)) ∈ μ.
– If σ �∈ [w], then w0,ρ(p) = w1,ρ(p) = σ, w0,i = w1,i = wi for each i �= ρ(p),

and (p, ρ(p), (p0, p1)) ∈ μ.

The set of final relations F defines the set of final “Σ-relations” F c. A pair
((p, w), σ) ∈ F c if the following holds.

– If σ = wi, then (p, i) ∈ F ; and
– if σ �∈ [w1w2 · · · wr], then (p, ρ(p)) ∈ F .

A run of A on a Σ-tree σ : T → Σ is a mapping R : T → Sc such that

– R(ε) = sc
0 (recall that sc

0 = (s0, u) is the initial configuration of A) and
– for each non-leaf node n ∈ T , (R(n), σ(n)) → (R(n0), R(n1)) ∈ μc.

We say that A accepts a Σ-tree σ : T → Σ, if there exists a run R of A on σ,
called an accepting run, such that for each leaf n of T , (R(n), σ(n)) ∈ F c. The
set of all trees accepted by A is denoted by L(A).

Example 1. Let Aε = 〈{s0, p}, s0, ##, ρ, μ, {(s0, 1), (p, 2)}〉, where

– ρ(s0) = 1, ρ(p) = 2, and
– μ = {(s0, 1, (p, p)), (p, 2, (p, p))}.

Then L(Aε) = Lε, where

Lε = {σ : T → Σ : for each n ∈ T \ {ε}, σ(n) �= σ(ε)}.

For example, an accepting run R : T → {s0, p}×Σ2�= of Aε on a Σ-tree σ : T →
Σ such that for each n ∈ T \ {ε}, σ(n) �= σ(ε) is defined by

Tree Automata over Infinite Alphabets 393

– R(ε) = (s0, ##),
– R(0) = (p, σ(ε)#),
– R(1) = (p, σ(ε)#), and
– for n �= ε and i = 0, 1, R(ni) = (p, σ(ε)σ(n)).

Example 2. In this example we show that the tree language

L2 =
{

σ : T → Σ :
there exist two different leaves n′, n′′ ∈ T
such that σ(n′) = σ(n′′)

}

is not accepted by a top-down finite-memory automaton.
Indeed, assume to the contrary there exists a top-down tree finite-memory

automaton A = 〈S, s0, u, ρ, μ, F 〉 that accepts L2. In particular, A accepts the
Σ-tree σ : {ε, 0, 1} → Σ, where σ(ε) �= σ(0) and σ(0) = σ(1) �∈ [u]. Let R
be an accepting run of A on σ and R(0) = (q, w), Then, σ(0) �∈ [w], implying
(q, ρ(q)) ∈ F .

Consider the Σ-tree σ′ : {ε, 0, 1} → Σ, where σ′(ε) = σ(ε), σ′(0) �= σ(0),
σ′(0) �∈ [u] ∪ {σ(ε)}, and σ′(1) = σ(1). Then R is also a run of A on σ′. Since
σ′(ε) = σ(ε), R(0) = (q, w). In addition, σ′(0) �∈ [w] and (q, ρ(q)) ∈ F imply
σ′ ∈ L(A). However, this contradicts L(A) = L2.

4.2 Bottom-Up Finite-Memory Automata with Deterministic
Reassignment

To define bottom-up automata we need to choose r symbols (to fill r registers at
the parent node) out of, possibly, 2r symbols stored in the registers at the child
nodes. Such a choice is based on the notion of a type defined below.

Definition 2. An r-type is a subset t of {1, 2, . . . , r} × {1, 2, . . . , r} such that
for all (i0, i1), (j0, j1) ∈ t,

(i0, i1) �= (j0, j1) implies both i0 �= i1 and j0 �= j1.

The set of all r-types is denoted by Tr.
For two assignments w0 = w0,1w0,2 · · ·w0,r and w1 = w1,1w1,2 · · · w1,r we

define the type t(w0, w1) by

t(w0, w1) = {(i′, i′′) : w0,i′ = w1,i′′}.4

A function f : {1, . . . , r} → {0, 1} × {1, . . . , r} is said to be a valid selector
for an r-type t if for all 1 ≤ i < j ≤ r,

f(i) = (0, i′) and f(j) = (1, j′) imply (i′, j′) �∈ t.

Intuitively, f is used to select r registers out of 2r registers for the assignment at
the parent node. If f(i) = (0, i′), then the content of the ith register at the parent
node comes from the i′th register of the left child. Similarly, if f(i) = (1, i′), then
4 That is, the elements of t(w0, w1) indicate the registers with the same content. It

follows from the defintion of an assignment that the type t(w0, w1) is well defined.

394 M. Kaminski and T. Tan

the content of the ith register at the parent node comes from the i′th register
of the right child. By definition, if f is a valid selector for an r-type t, then the
resulting assignment does not have two registers with the same content.

A triple of assignments (u, v, w) is an instance of (t, f), where t ∈ Tr and f
is a valid selector for t if

– t = t(u, v), and
– w = w1 · · ·wr is defined by

wi =
{

uj if f(i) = (0, j)
vj if f(i) = (1, j) ,

where u = u1 · · · ur and v = v1 · · · vr.

Intuitively, the assignment w is the result of merging the assignments u and
v according to the the function f . Since f is a valid selector for t, w does not
have two registers with the same content.

Definition 3. A bottom-up finite-memory automaton with deterministic reas-
signment (↑-FMA) is a system A = 〈S, s0, u, ρ, τ, μ, F 〉, where

– S is a finite set of states.
– s0 ∈ S is the initial state.
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment to the r registers of A.
– ρ : S → {1, 2, . . . , r} is the deterministic reassignment.
– μ ⊆ (S × {1, 2, . . . , r})2 × S is the transition relation, whose elements are

transitions and are also written in the form

(p0, k0), (p1, k1) → p,

where p0, p1, p ∈ S and k0, k1 ∈ {1, 2, . . . , r}. The intuitive meaning of tran-
sition (p0, k0), (p1, k1) → p is as follows. In a Σ-tree σ it “applies” at nodes
n0 and n1 labeled states p0 and p1, respectively, if the content of the k0th
register at node n0 is σ(n0) and the content of the k1th register at node n1
is σ(n1). Then the label of n is p.

– τ is a merging relation whose elements are of the form

((p0, k0), (p1, k1), t, f),

where p0, p1 ∈ S and k0, k1 ∈ {1, 2, . . . , r}, t ∈ Tr, and f is a valid selector
for t. The intuitive meaning of an element ((p0, k0), (p1, k1), t, f) of τ is
as follows. In a Σ-tree σ it “applies” at nodes n0 and n1 labeled p0 and
p1, respectively, if the content of the k0th register at node n0 is σ(n0) and
the content of the k1th register at node n1 is σ(n1) and the type of the
assignments at n0 and n1 is t. Then the assignments are merged according
to f .

– F ⊆ S × {1, 2, . . . , r} is the set of final relations.

Tree Automata over Infinite Alphabets 395

The transition relation μ induces the following relation μc on (Sc × Σ)2 × Sc

whose elements are also written in the form

(p0, w0, σ0), (p1, w1, σ1) → (p, w),

where p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.

Then (p0, w0, σ0), (p1, w1, σ1) → (p, w) belongs to μc if and only if there exist
v0, v1 ∈ Σr �= , v0 = v0,1v0,2 · · · v0,r and v1 = v1,1v1,2 · · · v1,r, (p0, k0), (p1, k1) →
p ∈ μ, and ((p0, k0), (p1, k1), t, f) ∈ τ such that the following conditions are
satisfied.

– If σ0 ∈ [w0], then v0 = w0. Otherwise,

v0,i =
{

w0,i if i �= ρ(p0)
σ0 if i = ρ(p0)

.

– Similarly, if σ1 ∈ [w1], then v1 = w1. Otherwise,

v1,i =
{

w1,i if i �= ρ(p1)
σ1 if i = ρ(p1)

.

– v0,k0 = σ0 and v1,k1 = σ1.5

– t = t(v0, v1).
– (v0, v1, w) is an instance of (t, f).

A run of A on a Σ-tree σ : T → Σ is a mapping R : T → Sc such that

– for each leaf n of T , R(n) = sc
0 (recall that sc

0 = (s0, u) is the initial config-
uration of A), and

– for each non-leaf node n ∈ T , (R(n0), σ(n0)), (R(n1), σ(n1)) → R(n) ∈ μc.

The set of final relations F defines the following set final “Σ-relations” F c. A
pair ((p, w), σ) is in F c if the following holds.

– If σ = wi, then (p, i) ∈ F ; and
– if σ �∈ [w1w2 · · · wr], then (p, ρ(p)) ∈ F .

We say that A accepts a Σ-tree σ : T → Σ if there exists a run R of A on σ,
called an accepting run, such that (R(ε), σ(ε)) ∈ F c. The set of all trees accepted
by A is denoted by L(A).

Example 3. (Cf. Example 1.) The set of Σ-trees Lε from Example 1 is not ac-
cepted by bottom-up finite-memory automata.

Indeed, assume to the contrary Lε is accepted by an r-register bottom-up
automaton A with the initial assignment u. Consider a tree σ ∈ Lε, where σ(ε) �∈
[u] and σ(n1) �= σ(n2), whenever n1 �= n2. During the course of computation,
5 Note that if σ0 �∈ [w0] (respectively, σ1 �∈ [w1]), then k0 = ρ(p0) (respectively,

k1 = ρ(p1)).

396 M. Kaminski and T. Tan

till the last step, σ(ε) does not appear in the registers of A. When A reaches the
root, it reassigns one of the registers with σ(ε) and verifies whether one of the
final Σ-relations holds.

Assume, in addition, that the range of σ contains more than r different sym-
bols. Therefore, when A reaches the root of the tree, there is a node n such that
σ(n) is no longer in the registers of A. If we replace σ(ε) with σ(n), A would
still accept the obtained Σ-tree, in contradiction with L(A) = Lε.

Example 4. (Cf. Example 2.) The set of Σ-trees L2 from Example 2 is accepted
by a bottom-up finite-memory automaton that operates as follows. It “guesses”
two different nodes, remembers their labels, and carries them up to the node
where the paths from the two guessed nodes meet. At this meeting node the
automaton checks whether the labels at the two guessed nodes are the same.

5 Tree Automata with Nondeterministic Reassignment

In this section we introduce the notion of tree automata with nondeterministic
reassignment – both for the top-down and the bottom-up cases. Unlike the de-
terministic reassignment automata which may only reassign one of their registers
with the current input symbol, these automata are allowed to reassign a number
of registers with arbitrary symbols from Σ. That is, the reassignment function
ρ : S → 2{1,...,r} mapping the states from S into the power set 2{1,...,r}.

5.1 Top-Down Finite-Memory Automata with Nondeterministic
Reassignment

Definition 4 below is the top-down tree counterpart of the infinite-alphabet push-
down automata introduced in [2] and the look-ahead finite-memory automata
introduced in [20].

Definition 4. A top-down finite-memory automaton with nondeterministic re-
assignment (↓-NR-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where all compo-
nents of A, except ρ, are as Definition 1. The nondeterministic reassignment ρ
is a function from S into 2{1,2,...,r}. The intuitive meaning of ρ is as follows.
In state p the automaton may reassign the registers whose indices belong to ρ(p)
with any pairwise different symbols of Σ. Of course, these symbols must differ
from those in the registers whose indices do not belong to ρ(p).

The transition relation μc on Sc × Σ × (Sc × Sc) is defined similarly to that
of top-down finite-memory automata. Let p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Then (p, w), σ → (p0, w0), (p1, w1) belongs to μc if and only if the following
conditions are satisfied. Let w = w1w2 · · ·wr , w0 = w0,1w0,2 · · ·w0,r, and w1 =
w1,1w1,2 · · ·w1,r. Then

– w0 = w1,
– for all i �∈ ρ(p), w0,i (= w1,i) = wi,

Tree Automata over Infinite Alphabets 397

– for some k = 1, 2, . . . , r, w0,k = σ (= w1,k), and
– (p, k) → (p0, p1) ∈ μ.

To extend F onto Sc×Σ we need one more bit of notation. For two assignments
v, w ∈ Σr �= , v = v1 · · · vr and w = w1 · · · wr, and S ⊆ {1, . . . , r}, we write
v =S w if for all i �∈ S, vi = wi. That is, v and w are equal “modulo” the
symbols in the positions in S.

The set of final “Σ-relations” F c is defined as follows. A pair ((p, w), σ) ∈ F c

if for some w′ ∈ Σr �= , w′ = w′
1w

′
2 · · ·w′

r, such that w =ρ(p) w′, σ = w′
i, and

(p, i) ∈ F .
Now a run and acceptance of for ↓-NR-FMAs are defined exactly as for ↓-

FMAs.

Example 5. (Cf. Example 2.) The set of Σ-trees L2 from Example 2 is accepted
by a ↓-NR-FMA that operates as follows. In the root of the input it “guesses”
the symbol that appears at two different nodes and then (nondeterministically)
verifies that the guess is correct.

Proposition 1. If a set of Σ-trees is accepted by a ↓-FMA, then it is also
accepted by a ↓-NR-FMA.

Proof. Given a ↓-FMA A = 〈S, s0, u, ρ, μ, F 〉, consider the following two ↓-NR-
FMAs A− = 〈S′, s−0 , u, ρ′, μ′, F ′〉 and A+ = 〈S′, s+

0 , u, ρ′, μ′, F ′〉, where

– S′ =
⋃

s∈S

{s−, s+};6

– ρ′(s−) = ∅ and ρ′(s+) = {ρ(s)}, p ∈ S;
– μ′ is the union of

• {(s−, i, s∓0 , s∓1) : (s, i, s0, s1) ∈ μ} and
• {(s+, ρ(s), s∓0 , s∓1) : (s, ρ(s), s0, s1) ∈ μ};

and
– F ′ =

⋃
s∈F

{s−, s+}.

It can be easily seen that L(A) = L(A) ∪ L(A+). Indeed, both automata are
allowed to make a nondeterministic reassignment (according to ρ) only in states
of the form s+, but they have to use it immediately. Consequently, the reassigned
symbol must be the current input. Thus, actually, both of them behave like A,
except, possibly, the first move at the root of the input Σ-tree.

Since ↓-NR-FMA languages are closed under union; see Appendix C, the
proposition follows. ��

5.2 Bottom-Up Finite-Memory Automata with Nondeterministic
Reassignment

Definition 5 below is the “bottom-up” counterpart of Definition 4.

6 That is, S′ consists of two copies of S.

398 M. Kaminski and T. Tan

Definition 5. A bottom-up finite-memory automaton with nondeterministic
reassignment (↑-NR-FMA) is a system A = 〈S, s0, u, ρ, τ, μ, F 〉, where all com-
ponents of A, but ρ are as Definition 1 and the nondeterministic reassignment
ρ is a function from S into 2{1,2,...,r}.

The relation μc on Sc × Σ × (Sc × Sc) is defined similarly to that of bottom-up
finite-memory automata. The only difference is that each head may reassign non-
deterministically a set of their registers before merging. Namely, for p, p0, p1 ∈ S
and w, w0, w1 ∈ Σr �= , (p0, w0, σ0), (p1, w1, σ1) → (p, w) belongs to μc if and
only if the following holds.

Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.
Then there exist assignments v0 = v0,1 · · · v0,r and v1 = v1,1 · · · v1,r, a transition
(p0, k0), (p1, k1) → p ∈ μ, and a merging relation ((p0, k0), (p1, k1), t, f) ∈ τ such
that

– v0,i = w0,i for all i �∈ ρ(p0);
– v1,i = w1,i for all i �∈ ρ(p1);
– v0,k0 = σ0 and v1,k1 = σ1;
– t = t(v0, v1); and
– (v0, v1, w) is an instance of (t, f).

That is, for the assignment w at the parent node, f selects r out of 2r values
of the “reassigned”assignments at the child nodes.

The set of final relations F defines the set of final “Σ-relations” F c. A pair
((p, w), σ) ∈ F c if for some w′ ∈ Σr �= , w′ = w′

1w
′
2 · · · w′

r, such that w =ρ(p) w′

σ = w′
i, and (p, i) ∈ F .

Example 6. (Cf. Example 3.) The set of Σ-trees Lε from Example 1 is accepted
by a ↑-NR-FMA that operates as follows. In each leaf of the input the automaton
“guesses” the symbol that appears at the root. Then, going down, it verifies that
the input symbols are different from those at the leaves and that the “guessed”
symbols are the same. Finally, when arriving to the root the automaton verifies
that the guess is correct, i.e., the guessed symbol is one that appears at the root.

Proposition 2. If a set of Σ-trees is accepted by a ↑-FMA, then it is also
accepted by a ↑-NR-FMA.

The proof of Proposition 2 is similar to that of Proposition 1 and is omitted.

5.3 The Main Result

We conclude this section with the main result of our paper stating that top-
down and bottom-up finite-memory automata with nondeterministic reassign-
ment have the same computation power.

Theorem 1. A set of Σ-trees is accepted by a ↓-NR-FMA if and only if it
is accepted by a ↑-NR-FMA. Moreover, the conversions of a ↓-NR-FMA to its
equivalent ↑-NR-FMA and vice versa are effective.

Tree Automata over Infinite Alphabets 399

The proof of Theorem 1 is long and technical. It is presented in the appendices
in the end of this paper.

Corollary 1. Both ↓-FMA and ↑-FMA can be simulated by either of ↓-NR-FMA
or ↑-NR-FMA.

Note that by Examples 1, 2, 3, and 4, the inclusions provided by Corollary 1 are
proper.

6 Decision Properties

In this section we show that the membership and emptiness problems for ↓-
NR-FMAs are decidable. Thus, by Theorem 1 and Propositions 1 and 2, these
problems are decidable for all other models of automata introduced in this paper.
We also show that the universality and, consequently, the inclusion problems are
undecidable for all models of automata introduced in this paper.

Propositions 3 and 4 below deal with decidability of the membership and
emptiness problems. The former asks whether a given ↓-NR-FMA accepts a
given Σ-tree, and the latter asks whether the language of a given ↓-NR-FMA is
empty.

Proposition 3. The membership problem for ↓-NR-FMAs is decidable.

Proof. Let A = 〈S, s0, u, ρ, μ, F 〉 be a ↓-NR-FMA and let σ : T → Σ be a Σ-
tree. We contend that σ ∈ L(A) if and only if there is an accepting run of A on
σ in which the assignment at each node belongs to Σ

r �=
0 , where

Σ0 = σ(T) ∪ [u] ∪ {#} ∪ {θ1, θ2, . . . , θr}, θi �∈ σ(T), i = 1, 2, . . . , r.

The “if” direction is immediate, and for the proof of the “only if” direction
we just replace the symbols which appear in an accepting run of A on σ , but
do not belong to σ(T)∪ [u]∪{#} with appropriate elements of {θ1, θ2, . . . , θr}.7

Therefore, given an input Σ-tree σ : T → Σ, we may restrict ourselves to the
configurations of A from S ×Σ

r �=
0 , which brings us to an ordinary finite alphabet

tree automaton. Since the membership problem for the latter is decidable, the
proposition follows. ��

Proposition 4. The emptiness problem for ↓-NR-FMAs is decidable.

The proof of Proposition 4 is based on Lemma 1 below.

Lemma 1. Let A = 〈S, s0, u, ρ, μ, F 〉 be an r-register ↓-NR-FMA such that
L(A) �= ∅ and let Σr = {θ1, θ2, . . . , θr} be an r-element subset of Σ that in-
cludes [u]. Then there is a Σ-tree σ : T → Σr in L(A).

Proof. Let σ : T → Σ ∈ L(A) and let R : T → Sc be an accepting run of
A on σ. To construct a Σ-tree σ : T → Σr in L(A) we need the function
I : T → {1, 2, . . . , r} defined below.
7 Obviously, such symbols can be introduced by reassignment, only.

400 M. Kaminski and T. Tan

– For a non-leaf node n ∈ T , if R(n0) = (p, w1w2 · · · wr) and σ(n) = wi, then
I(n) = i.

– For a leaf node n ∈ T , if R(n) = (p, w1w2 · · · wr) and w′ ∈ Σr �= , w′ =
w′

1w
′
2 · · · w′

r, is such that w =ρ(p) w′, σ = w′
i, and (p, i) ∈ F , then I(n) = i.

Let u = u1 · · · ur. We may assume that for each i = 1, 2, . . . , r, ui �= # implies
ui = θi. Then a Σ-tree σr : T → Σr satisfying the lemma is defined by σr(n) =
θI(n), n ∈ T . This Σ-tree is accepted by the run of A whose state components are
the same as of R and that always reassigns the i registerwith Θi, i = 1, 2, . . . , r. ��

Proof. (of Proposition 4) Let A = 〈S, s0, u, ρ, μ, F 〉 be an r-register ↓-NR-FMA
and let Σr = {θ1, θ2, . . . , θr} be an r-element subset of Σ that includes [u]. It
follows from Lemma 1 that L(A) �= ∅ if and only if there is a Σ-tree σ : T → Σr

in L(A).
Since on the inputs σ : T → Σr the configurations of A belong to S × Σ

r �=
r ,

the emptiness of A is reduced to the emptiness of an ordinary finite alphabet tree
automaton that is is decidable. ��

It was shown that in [13] the universality problem of finite-memory automata
is undecidable.8 Consequently, this problem is also undecidable for all above
models of tree automata.

Proposition 5. The universality problem for ↓-FMAs and ↑-FMAs is undecid-
able.

Corollary 2. The inclusion problem for ↓-FMAs and ↑-FMAs is undecidable.

7 Context-Free Languages over Infinite Alphabets and
Their Relationship with Tree Automata

In this section we recall the definition of quasi context-free languages from [2]
and show how they are related to the tree languages introduced in this paper.

In short, a quasi context-free grammar is a context-free grammar, where each
variable carries the same number r of of registers. The terminal alphabet of
a grammar G is the set {1, 2, . . . , r}. Let V be the set of variables of G. The
productions of G are of the form

(A, k) → α1α2 · · · αn,

where 1 ≤ k ≤ r and αi ∈ V ∪ {1, . . . , r}, i = 1, 2, . . . , n. The above production
allows us

– to replace the content of the kth register carried by A with any symbol of
Σ that differs from the symbols stored in the other registers,9 and

8 That is, is undecidable whether a given finite-memory automaton accepts Σ∗.
9 Actually, automata with nondeterministic reassignment were motivated by [2].

Tree Automata over Infinite Alphabets 401

– to replace A with the word β1 · · · βn, where βi is the content of the jth
register, if αi = j, and is αi, if αi is a variable, i = 1, 2, . . . , n.

The language generated by G consists of all words in Σ∗ obtained by repeatedly
applying the productions of G, starting with the start variable. It is called a
quasi context-free language, cf. DTDs in Sect. 2. The precise definition of quasi
context-free grammars and languages is as follows.

Definition 6. ([2, Definition 1]) An infinite-alphabet context-free grammar is
a system G = 〈V, u, R, S〉, where

– V is a finite set of variables disjoint with Σ;
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment;
– R ⊆ (V × {1, 2, . . . , r}) × (V ∪ {1, 2, . . . , r})∗ is a set of productions, whose

elements are written in the form (A, i, a) as (A, i) → a, where A ∈ V ,
i = 1, 2, . . . , r, and a ∈ (V ∪ {1, 2, . . . , r})∗; and

– S ∈ V is the start variable.

For A ∈ V , w = w1w2 · · · wr ∈ Σr �= , and X = X1X2 · · ·Xn ∈ (Σ ∪ (V ×
Σr �=))∗, we write (A, w) ⇒ X if there exist a production (A, i) → a ∈ R,
a = a1a2 · · · an ∈ (V ∪{1, 2, . . . , r})∗, and a symbol σ �∈ [w] \ {wi} such that the
condition below is satisfied.

Let w′ ∈ Σr �= be obtained from w by replacing wi with σ. Then, for j =
1, 2, . . . , n the following holds.

– If aj = k for some k = 1, 2, . . . , r, then Xj = w′
k.

– If aj = B for some B ∈ V , then Xj = (B, w′).

For two words X and Y over Σ ∪ (V × Σr �=), we write X ⇒ Y if there exist
words X1, X2, and X3 over Σ ∪ (V × Σr �=) and (A, w) ∈ V × Σr �= , such that
X = X1(A, w)X2, Y = X1X3X2, and (A, w) ⇒ X3.

As usual, the reflexive and transitive closure of ⇒ is denoted by ⇒∗. The
language L(G) generated by G is defined by L(G) = {σ ∈ Σ∗ : (S, u) ⇒∗ σ}
and is referred to as a quasi-context-free language.

Example 7. Let G be a 1-register grammar with the set of variables V = {S},
the initial assignment #, and the following two production.

(S, 1) → 1S1 | ε.

Then L(G) = {σσR | σ ∈ Σ∗}.10 For example, the word σ1σ2σ3σ3σ2σ1 is
derived as follows.

(S, #) ⇒ σ1(S, σ1)σ1 ⇒ σ1σ2(S, σ2)σ2σ1

⇒ σ1σ2σ3(S, σ3)σ3σ2σ1 ⇒ σ1σ2σ3σ3σ2σ1.

10 As usual, σR is the reversal of σ.

402 M. Kaminski and T. Tan

We end this paper with the theorem below that relates quasi context-free
languages to the tree languages introduced in this paper. Recall that for a Σ-
tree σ : T → Σ, the frontier �(σ) of σ is the word σ(n1)σ(n2) · · · σ(nm),
where n1, n2, . . . , nm is the list of all leaf nodes of T in the lexicographical order.
Below the set frontiers of all elements of a set of Σ-trees L is denoted by �(L):
�(L) = {�(σ) : σ ∈ L}.

Theorem 2. Let L be a tree language accepted by a top-down (or bottom-up)
finite-memory automaton A with a deterministic (or non-deterministic) reas-
signment. Then �(L) is quasi-context-free language.

Conversely, for every quasi-context-free language L, there exists a top-down (or
bottom-up) finite-memory automata A with deterministic (or non-deterministic)
reassignment such that �(L(A)) = L.

We omit the proof that is quite straightforward. For example, any Σ- tree σ
accepted by a ↓-FMA A, after an appropriate modification, can be thought of
as a derivation tree of the word �(σ). Conversely, given a quasi context-free
grammar G, we may assume that all derivation trees of the words in L(G) are
binary.11 Therefore, the set of productions of G can be thought of as the set of
transition of a ↓-FMA A, implying that �(L(A)) is exactly the language generated
by G.

Acknowledgment

This research was supported by the Jewish communities of Germany research
fund, by the Technion vice-president fund for the promotion of research at the
Technion, and by a grant from the Software Technology Laboratory (STL) in
the Department of Computer Science, the Technion. In addition, the work of the
second author was supported by the Raphael and Miriam Mishan Fellowship.

References

1. Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of
XSLT. Information and System 27(1), 21–39 (2002)

2. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Informatica 35, 245–267 (1998)

3. Comon, H., et al.: Tree Automata Techniques and Applications (2005),
http://www.grappa.univ-lille3.fr/tata/

4. Doner, J.E.: Tree acceptors and some of their applications. Journal of Computer
and System Sciences 4, 406–451 (1970)

5. Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings of the 31th
Annual IEEE Symposium on Foundations of Computer Science, pp. 683–688. IEEE
Computer Society Press, Los Alamitos (1990)

11 It is well known that any tree can be converted to a binary tree that preserves the
order of the leaves.

http://www.grappa.univ-lille3.fr/tata/

Tree Automata over Infinite Alphabets 403

6. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 138, 329–363 (1994)

7. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets.
Fundamenta Informaticae 69, 301–318 (2006)

8. Milo, T., Suciu, D., Vianu, V.: Type checking for XML transformers. Journal of
Computer and System Sciences 66, 66–97 (2003)

9. Neven, F., Schwentick, T.: Expressive and efficient pattern languages for tree-
structured data. In: Proceedings of the Nineteenth International Symposium on
Principles of Database Systems, pp. 145–156. ACM Press, New York (2000)

10. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite al-
phabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 560–572. Springer, Heidelberg (2001)

11. Neven, F.: Automata, logic and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

12. Neven, F., Schwentick, T.: Query automata on finite trees. Theoretical Computer
Science 275, 633–674 (2002)

13. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic 5, 403–435 (2004)

14. Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: Pro-
ceedings of the Twentieth International Symposium on Principles of Database Sys-
tems, pp. 35–46. ACM Press, New York (2001)

15. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

16. Ray, E.: Learning XML. O’Reilly & Associates, Inc, Sebastopol (2001)
17. Thatcher, J., Wright, J.: Generalized finite automata theory. Mathematical System

Theory 2, 57–81 (1968)
18. Vianu, V.: A web odyssey: from Codd to XML. In: Proceedings of the 20th In-

ternational Symposium on Principles of Database Systems, pp. 1–15. ACM Press,
New York (2001)

19. XML Core Working Group: Extensible Markup Language (XML). World Wide
Web Consortium, http://www.w3.org/XML/

20. Zeitlin, D.: Look-ahead finite-memory automata. Master’s thesis, Department of
Computer Science, Technion - Israel Institute of Technology (2006)

A Proof of the “only if” Part of Theorem 1

For an r-register ↓-NR-FMA A = 〈S, s0, u, ρ, μ, F 〉 we construct an r-register
↑-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, τ̃ , μ̃, F̃ 〉 such that L(A) = L(Ã).

Similarly to the proof of [7, Lemma 5.1] it can be shown that, without loss of
generality, the following assumptions hold.

– u = #r−mθ1 · · · θm, where θ1, . . . , θm ∈ Σ, and
– only the first r − m registers of A can be reassigned, i.e, the range of ρ is a

subset of {1, 2, . . . , r − m}.

We precede the formal description of Ã with a general intuitive explanation.
One would expect the construction to be just the transition reversing, i.e., a
transition (p, k) → (p0, p1) of A to become a “transition” ((p0, p1), k) → p of Ã.

http://www.w3.org/XML/

404 M. Kaminski and T. Tan

This is indeed almost so, but with the following modification. Since transitions
of a ↑-NR-FMA merge two heads and depend on two input symbols from Σ,
we combine two transitions of A into one “reversed” transition of Ã. That is,
two transitions (p0, k0) → (p00, p01) and (p1, k1) → (p10, p11) of A are combined
into one transition ((p00, p01), k0), ((p10, p11), k1) → (p0, p1) of Ã and “moved”
one level up, as illustrated in Fig. 3 and 4 below. Fig. 3 shows an application of
two top-down transitions at two nodes (sharing the same parent node) labeled
σ0 and σ1. Fig. 4 shows their reversal bottom-up transition applied at the same
two nodes, but in the converse direction.

Fig. 3. An application of two transitions of A

Fig. 4. Reversing and combining two transitions of A

Note that assignments w0 and w1 equal to w “modulo” the symbols in the po-
sitions belonging to ρ(p0) and ρ(p1), respectively; and except for the symbols at
the positions in ρ(p0)∩ρ(p1), w can be recovered from w0 and w1. The symbols
at the positions in ρ(p0)∩ρ(p1) can be “guessed” by a nondeterministic reassign-
ment of the “reversal” automaton Ã. Thus, for p0, p1 ∈ S, we let ρ̃((p0, p1)) be
ρ(p0)∩ρ(p1). In fact, the reversed transitions in Ã yield the assignments v, v0, v1
such that v =ρ(p0)∩ρ(p1) w, v0 =ρ(p00)∩ρ(p01) w0 and v1 =ρ(p10)∩ρ(p11) w1.

To define the transition relation μ̃ and the merging relation τ̃ we need the
following definition and the corresponding auxiliary result.

Tree Automata over Infinite Alphabets 405

Let t be an r-type and let f be a valid selector for t. The pair (t, f) is called
an inverse structure associated with a pair of states (p0, p1) if the following con-
ditions are satisfied.

– (i, i) ∈ t for all i ∈ {1, . . . , r} − (ρ(p0) ∪ ρ(p1)).

– f(i) =

⎧⎨
⎩

(0, i) or (1, i) for i ∈ {1, . . . , r} \ (ρ(p0) ∪ ρ(p1))
(1, i) for i ∈ ρ(p0) \ ρ(p1)
(0, i) for i ∈ ρ(p1) \ ρ(p0)

Note that the value of f on the elements of ρ(p0) ∩ ρ(p1) is arbitrary. The set
of all inverse structures associated with a pair of states (p0, p1) will be denoted
I(p0, p1).

Lemma 2. Let (t, f) be an inverse structure associated with a pair of states
(p0, p1) and let v0, v1, v, w ∈ Σr �= be such that v0 =ρ(p0) w and v1 =ρ(p1) w.
Then (v0, v1, v) is an instance of (t, f) if and only if v =ρ(p0)∩ρ(p1) w.

Moreover, if v =ρ(p0)∩ρ(p1) w and (v0, v1, v) is an instance of (t, f), then
v0 =ρ(p0) w and v1 =ρ(p1) w.

Proof. Let v0 = v0,1 · · · v0,r, v1 = v1,1 · · · v1,r, v = v1 · · · vr, and w = w1 · · ·wr .
It immediately follows from the definition that (v0, v1, v) is an instance of (t, f)
if and only if

vi =
{

v0,i = wi if i �∈ ρ(p1)
v1,i = wi if i �∈ ρ(p0)

, i = 1, . . . , r,

which is equivalent to v =ρ(p0)∩ρ(p1) w.
Now we prove the second part. Let v =ρ(p0)∩ρ(p1) w. In particular, for all

i �∈ ρ(p0), wi = vi. If (v0, v1, v) is an instance of (t, f), by the definition of
(t, f), vi = v0,i. Therefore, w =ρ(p0) v0. In a similar way we can show that
w =ρ(p1) v1. ��

Now we are ready to define the desired ↑-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, τ̃ , μ̃, F̃ 〉.

– S̃ = S × S ∪ {s̃0}, where s̃0 is a new state.
– The initial state of Ã is s̃0.
– ũ = #r−mθ1 · · · θm.
– ρ̃(s̃0) = {1, . . . , r − m}, and

ρ̃((p0, p1)) = ρ(p0) ∩ ρ(p1), for all (p0, p1) ∈ S̃.
– μ̃ = μ̃1 ∪ μ̃2 ∪ μ̃3 ∪ μ̃4, where

• μ̃1 = {(s̃0, k0), (s̃0, k1) → (p0, p1) : (p0, k0), (p1, k1) ∈ F};
• μ̃2 = {(s̃0, k0), ((p10, p11), k1) → (p0, p1) :

(p0, k0) ∈ F and (p1, k1) → (p10, p11) ∈ μ};
• μ̃3 = {((p00, p01), k0), (s̃0, k1) → (p0, p1) :

(p0, k0) → (p00, p01) ∈ μ and (p1, k1) ∈ F};
• μ̃4 = {((p00, p01), k0), ((p10, p11), k1) → (p0, p1) :

(p0, k0) → (p00, p01), (p1, k1) → (p10, p11) ∈ μ}.
– τ̃ = τ̃1 ∪ τ̃2 ∪ τ̃3 ∪ τ̃4, where

406 M. Kaminski and T. Tan

• τ̃1 = {((s̃0, k0), (s̃0, k1), t, f) :
for some p0, p1 ∈ S, (p0, k0), (p1, k1) ∈ F and (t, f) ∈ I(p0, p1)};12

• τ̃2 = {((s̃0, k0), ((p1,0, p1,1), k1), t, f) :
for some p0, p1 ∈ S, (p0, k0) ∈ F and (p1, k1) → (p1,0, p1,1) ∈ μ and

(t, f) ∈ I(p0, p1)};
• τ̃3 = {(((p0,0, p0,1), k0), (s̃0, k1), t, f) :

for some p0, p1 ∈ S, (p0, k0) → (p0,0, p0,1) ∈ μ and (p1, k1) ∈ F and
(t, f) ∈ I(p0, p1)};

• τ̃4 = {(((p00, p01), k0), ((p10, p11), k1), t, f) :
for some p0, p1 ∈ S, (p0, k0) → (p00, p01), (p1, k1) → (p10, p11) ∈ μ and

(t, f) ∈ I(p0, p1)}.
– F̃ = {(q0, q1), k) : (s0, k) → (q0, q1) ∈ μ}.

The proof of the equality L(Ã) = L(A) is based on Lemma 3 below. Roughly
speaking, Lemma 3 is the formal description of the construction in Fig. 3 and 4.
It shows how an accepting run of A can be “reversed” into an accepting run of Ã,
or more precisely, it shows how transitions from μc are converted into transitions
from μ̃c, and vice versa.

Lemma 3 consists of four parts corresponding to the type of nodes on which
transitions take place. Its part (i) shows how an accepting run of A can be
“reversed” into an accepting run of Ã at the leaf nodes and vice versa. Part (ii)
shows how an accepting run of A can be “reversed” into an accepting run of Ã
when one of the two sibling nodes is a leaf and the other is an interior node.
Part (iii) of the lemma settles the case of the interior nodes. Finally, part (iv)
of Lemma 3 deals with the case of the root node ε.

Lemma 3

(i) (See Fig. 5 and 6.) If ((p0, w), σ0), ((p1, w), σ1) ∈ F c, then there is an
assignment v =

�ρ(p0,p1) w such that

((s̃0, ũ), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

((s̃0, ũ), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

and w =
�ρ(p0,p1) v, then ((p0, w), σ0), ((p1, w), σ1) ∈ F c.

(ii) (a) (See Fig. 7 and 8.) If ((p0, w), σ0) ∈ F c,

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc

and v1 =
�ρ(p10,p11) w1, then there is an assignment v =

�ρ(p0,p1) w such
that

((s̃0, ũ), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

12 Recall that I(p0, p1) denotes the set of all inverse structures associated with the pair
of states (p0, p1).

Tree Automata over Infinite Alphabets 407

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

((p0, w), σ0) ∈ F c ((p1, w), σ1) ∈ F c

Fig. 5. Application of two final relations
of A

(p0, p1), v

�

�
�

�
�

��

(�s0, �u), σ0 (�s0, �u), σ1

Fig. 6. Reversing and combining two fi-
nal relations of A

Conversely, if

((s̃0, ũ), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c

and w =
�ρ(p0,p1) v, then ((p0, w), σ0) ∈ F c and there is an assignment

w1 =
�ρ(p10,p11) v1 such that

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc.

(b) If
((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc,

((p1, w), σ1) ∈ F c and v0 =
�ρ(p00,p01) w0, then there is an assignment

v =
�ρ(p0,p1) w such that

(((p00, p01), v0), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

(((p00, p01), v0), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c

and w =
�ρ(p0,p1) v, then there is an assignment w0 =

�ρ(p00,p01) v0 such
that

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc

and ((p1, w), σ1) ∈ F c.
(iii) (See Fig. 3 and 4.) If

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc,

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc,

v0 =
�ρ(p00,p01) w0 and v1 =

�ρ(p10,p11) w1, then there is an assignment
v =

�ρ(p0,p1) w such that

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c

408 M. Kaminski and T. Tan

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p0, w), σ0) ∈ F c ((p1, w), σ1)

�

�
�

�
�	

(p10, w1) (p11, w1)

Fig. 7. An application of a final relation
and a transitions of A

(p0, p1), v

�
�

�
���

�
�

�
���

(�s0, �u), σ0 ((p10, p11), v1), σ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 8. Reversing a final relation and a
transition of A into a transition of �A

and w =
�ρ(p0,p1) v, then there are assignments w0 =

�ρ(p00,p01) v0 and
w1 =

�ρ(p10,p11) v1 such that

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc

and
((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc.

(iv) (See Fig. 9 and 10.) If

((s0, u), σ) → (p0, w), (p1, w) ∈ μc

and v =
�ρ(p0,p1) w, then (((p0, p1), v), σ) ∈ F̃ c.

Conversely, if (((p0, p1), v), σ) ∈ F̃ c, then there is an assignment w =
�ρ(p0,p1)v such that

((s0, u), σ) → (p0, w), (p1, w) ∈ μc.

We postpone the proof of the lemma to the end of this appendix and prove
the “only if” part of Theorem 1 first.

Proof. (of the “only if” part of Theorem 1.) We prove that L(A) = L(Ã) by
showing how to convert an accepting run of A on a Σ-tree σ : T → Σ, into an
accepting run of Ã on σ, and vice versa.

For an accepting run R : T → Sc, R(n) = (pn, wn), n ∈ T , of A on σ we
construct an accepting run R̃ : T → Sc of Ã on σ bottom-up, i.e., from the
leaves to the root, by induction, as follows.

By definition, for a leaf node n ∈ T , R̃(n) = s̃0
c = (s̃0, ũ), and for an interior

node n ∈ T , R̃(n) = ((pn0, pn1), vn), where the assignment vn =
�ρ(pn0,pn1) wn0(=

wn1) is defined as follows.13

13 Recall that by definition of μc, wn0 = wn1.

Tree Automata over Infinite Alphabets 409

(s0, u), σ

�

�
�

�
�
�	

(p0, w) (p1, w)

Fig. 9. An application of a transition of
A at the root node

(((p0, p1), v), σ) ∈ �F c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 10. Reversing a transition of A at
the root node into a final relation of �A

– If both children of n are leaf nodes, then vn is provided by part (i) of
Lemma 3.

– If one child of n is a leaf node and the other is an interior node, then vn is
provided by part (ii) of Lemma 3.

– Finally, if both children of n are interior nodes, then vn is provided by
part (iii) of Lemma 3.

Now, by part (iv) of Lemma 3, R̃ is an accepting run of Ã on σ.
The converse direction can shown in a similar manner. That is, an accepting

run R of A on σ is constructed from an accepting run R̃ of Ã by applying the
converse direction of Lemma 3. ��
It remains to prove Lemma 3.

Proof. (of Lemma 3) We will prove only part (iii) of the lemma. The proofs of
the other parts are very similar.

Let
(p0, w), σ0 → (p00, w0), (p01, w0) ∈ μc

and
(p1, w), σ1 → (p10, w1), (p11, w1) ∈ μc,

w = w1 · · · wr, w0 = w0,1 · · ·w0,r and w1 = w1,1 · · · w1,r. That is,

– (p0, k0) → (p00, p01) ∈ μ and w0,k0 = σ0;
– (p1, k1) → (p10, p11) ∈ μ and w1,k1 = σ1.

Then, by the definition of μ̃4,

((p00, p01), k0), ((p10, p11), k1) → (p0, p1) ∈ μ̃4

and
(((p00, p01), k0), ((p10, p11), k1), t, f) ∈ τ̃4,

where (t, f) is an inverse structure of (p0, p1); see the definition of μ̃ and τ̃ .
Let v0 =

�ρ(p00,p01) w0, v1 =
�ρ(p10,p11) w1, and let an assignment v be such that

(w0, w1, v) is an instance of (t, f). Then

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

Since w0 =ρ(p0) w and w1 =ρ(p1) w, by the first part of Lemma 2, v =
�ρ(p0,p1) w.14

14 Recall that �ρ(p0, p1) = ρ(p0) ∩ ρ(p1).

410 M. Kaminski and T. Tan

For the proof of the converse part of the lemma, let

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

That is, there exist

– v′
0 ∈ Σr �= , v′

0 = v′0,1v
′
0,2 · · · v′0,r, such that v′

0 =
�ρ(p00,p01) v0;

– v′
1 ∈ Σr �= , v′

1 = v′1,1v
′
1,2 · · · v′1,r, such that v′

1 =
�ρ(p10,p11) v1;

– ((p00, p01), k0), ((p10, p11), k1) → (p0, p1) ∈ μ̃, where v′0,k0
= σ0 and v′1,k1

=
σ1; and

– ((p00, p01), k0, (p10, p11), k1, t, f) ∈ τ̃ , where (v′
0, v

′
1, v) is an instance of (t, f).

By the definition of μ̃, both transitions (p0, k0) → (p00, p01) and (p1, k1) →
(p10, p11) are in μ; and (t, f) is an inverse structure of (p0, p1).

Let w be an assignment such that w =
�ρ(p0,p1) v. Since w =

�ρ(p0,p1) v and
(v′

0, v
′
1, v) is an instance of (t, f), by the second part of Lemma 2, w =ρ(p0) v′

0
and w =ρ(p1) v′

1. Therefore, we can put w0 = v′
0 and w1 = v′

1, implying

(p0, w), σ0 → (p00, w0), (p01, w0) ∈ μc

and
(p1, w), σ1 → (p10, w1), (p11, w1) ∈ μc.

Since v′
0 =

�ρ(p00,p01) v0 and v′
1 =

�ρ(p10,p11) v1, the converse part of the lemma
follows. ��

B Proof of the “if” Part of Theorem 1

For an r-register ↑-NR-FMA A = 〈S, s0, u, ρ, τ, μ, F 〉 we construct a 2r-register
↓-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, μ̃, F̃ 〉 such that L(A) = L(Ã).

Like in the previous proof, we assume that

– u = #r−mθ1 · · · θm, where θ1, . . . , θm ∈ Σ, and
– only the first r − m registers of A can be reassigned, i.e, the range of ρ is a

subset of {1, 2, . . . , r − m}.

We precede the formal description of Ã with a general intuitive explana-
tion. One would expect the construction to resemble the reversing the classical
automata, i.e., a transition (p0, k0), (p1, k1) → p of A to become the “transi-
tion” (p, k0, k1) → (p0, p1) of Ã. This is indeed almost so, but with the fol-
lowing modification. Dually to the construction in Appendix A, reversing of a
bottom-up transition (p0, k0), (p1, k1) → p results in two top-down transitions
((p, 0), k0) → (p0, 0), (p0, 1) and ((p, 1), k1) → (p1, 0), (p1, 1) at the lower level.
The state components 0 and 1 indicate the child nodes of the parent node,
where these transitions are applied: 0 indicates the left child and 1 indicates the
right one.

One half of the 2r registers of Ã, the main registers, is intended to contain
the corresponding assignment of A at the parent node, while the other half is

Tree Automata over Infinite Alphabets 411

intended to “recover” the symbols forgotten in the merging. To identify the (r
out of 2r) main registers, the states of Ã are equipped with a pointer function

π : {1, 2, . . . , r} → {1, 2, . . . , 2r},

where the value π(i) is the index of the register of Ã containing the symbol
stored in ith register of A. These pointers are also used to mimic the merging
relation. That is, the pointers at the child nodes and the pointers at the parent
node are defined in such a way that mimics the type and the valid selector used
to merge the assignments at the child nodes.

More precisely,

S̃ = S × {0, 1} × Π2
r × T r × Fr ∪ {s̃0},

where s̃0 is a new state (the initial state of Ã), Πr is the set of all injective
functions from {1, . . . , r} into {1, . . . , 2r}, and Fr is the set of functions from
{1, . . . , r} into {0, 1} × {1, . . . , r}. A bottom-up transition (p0, k0), (p1, k1) → p
and a corresponding “merging attribute” ((p0, k0), (p1, k1), t, f) are simulated by
two top-down transitions

((p, 0, π, π0, t, f), π0(k0)) → (p0, 0, π0, π
′
0, t0, f0), (p0, 1, π0, π

′′
0 , t0, f0)

and

((p, 1, π, π1, t, f), π1(k1)) → (p1, 0, π1, π
′
1, t1, f1), (p1, 1, π1, π

′′
1 , t1, f1),

where

1. π0(i) = π1(j) implies (i, j) ∈ t, and

2. π(j) =
{

π0(i) if f(j) = (0, i)
π1(i) if f(j) = (1, i)

A triple of pointers (π0, π1, π) satisfying the above conditions 1 and 2 is said to
comply with the pair (t, f).

The pointers π0 and π1 in the states (p, 0, π, π0, t, f) and (p, 1, π, π1, t, f),
respectively, point at the assignments of A at the corresponding child nodes,
and the pointer π points at the assignment A at the parent node.

The registers whose indices lie outside of the ranges of π0 and π1 are intended
to contain the forgotten symbols which are recovered by a non-deterministic
reassignment. That is, we define
ρ̃(p, 0, π, π0, t, f) =

{π0(i) : f(j) = (0, i) and j ∈ ρ(s)} ∪
(
{1, . . . , 2r} \ Range(π0)

)

and

412 M. Kaminski and T. Tan

ρ̃(p, 1, π, π1, t, f) =
{π1(i) : f(j) = (1, i) and j ∈ ρ(s)} ∪

(
{1, . . . , 2r} \ Range(π1)

)
.

The above description of Ã is illustrated in Fig. 11 and 12 below. In Fig. 11 w,
w0, and w1 are the assignments at the nodes labeled with the states p, p0, and
p1, respectively,15 in a run of A. Fig. 12 shows the reversing of the transition
in Fig. 11. The intended meaning of the states in Fig. 12 (that depicts the
corresponding run of Ã) is that π0(v0) =ρ(p0) w0, π1(v1) =ρ(p1) w1, π(v) =ρ(p)
w,16 and t and f are the type and the valid selector applied in the merging
transition of A that results in w.

Fig. 11. An application of a bottom-up transition of A

Fig. 12. Reversing and “splitting” the transition of A in Fig. 11

We proceed with the formal description of Ã = 〈S̃, s̃0, ũ, ρ̃, μ̃, F̃ 〉 (that has 2r

registers). Even though some of the components of Ã have been define earlier,
we list them one more time fore the sake of continuity.
15 In particular, w results in merging w0 and w1 after reassignment.
16 π(w1 · · · wr) denotes wπ(1) · · · wπ(r), etc..

Tree Automata over Infinite Alphabets 413

– S̃ = S × {0, 1} × Π2
r × T r × Fr ∪ {s̃0}, where s̃0 is a new state.

– s̃0 is the initial state.
– ũ = #r−mθ1 · · · θm#r.
– The reassignment ρ̃ is defined as follows.

ρ̃(s̃0) = {1, . . . , r − m} ∪ {r + 1, . . . , 2r},

and for each p ∈ S,
ρ̃(p, 0, π, π0, t, f) =

{π0(i) : f(j) = (0, i) and j ∈ ρ(p)} ∪
(
{1, . . . , 2r} \ Range(π0)

)
and
ρ̃(p, 1, π, π1, t, f) =

{π1(i) : f(j) = (1, i) and j ∈ ρ(p)} ∪
(
{1, . . . , 2r} \ Range(π1)

)
.

– The transition relation μ̃ consists of the following transitions.
• For each (p, k) ∈ F and all π0, π1 such that (π0, π1, πid)17 complies with

(t, f) it contains

(s̃0, k) → (p, 0, πid, π0, t, f), (p, 1, πid, π1, t, f);

and
• for each (p0, k0), (p1, k1) → p ∈ μ, each ((p0, k0), (p1, k1), t, f) ∈ τ , and

all π, π0, π1, π00, π01, π10, π11 ∈ Πr, t0, t1 ∈ T r, and f0, f1 ∈ Fr such
that (π0, π1, π) complies with (t, f), (π00, π01, π0) complies with (t0, f0),
and (π10, π11, π1) complies with (t1, f1), it contains both

(p, 0, π, π0, t, f), π0(k0) → (p0, 0, π0, π00, t0, f0), (p1, 1, π0, π01, t0, f0),

and

(p, 1, π, π1, t, f), π1(k1) → (p1, 0, π1, π10, t1, f1), (p1, 1, π1, π11, t1, f1).

– Finally, F̃ is defined as follows. For each (s0, k0), (s0, k1) → p ∈ μ (that starts
from the initial state s0) each ((s0, k0), (s0, k1), t, f) ∈ τ , and all π, π0, π1 ∈
Πr such that (π0, π1, π) complies with (t, f), it contains

((p, 0, π, π0, t, f), π0(k0))

and
((p, 1, π, π1, t, f), π1(k1)).

The proof of the equality L(Ã) = L(A) is based on Lemma 4 below that is
a formalization of Fig. 11 and 12. It shows how an accepting run of A can be
“reversed” into an accepting run of Ã, or more precisely, it shows how transitions
from μc are converted into transitions from μ̃c, and vice versa.
17 Here πid denotes the identity function on {1, 2, . . . , r}. That is, πid(i) = i, for all

i = 1, . . . , r.

414 M. Kaminski and T. Tan

Lemma 4 consists of four parts corresponding to the type of nodes on which
transitions take place. Its part (i) deals with the case of the root node ε. Part
(ii) of the lemma settles the case of the interior nodes. Part (iii) shows how an
accepting run of A can be “reversed” into an accepting run of Ã when one of the
two sibling nodes is a leaf and the other is an interior node. Finally, part (iv) of
Lemma 3 shows how an accepting run of A can be “reversed” into an accepting
run of Ã at the leaf nodes and vice versa.

Lemma 4

(i) (See Fig. 13 and 14.) For all pointers π0, π1, all types t, all valid selec-
tors f for t such that (π0, π1, πid) comply with (t, f), and all final relations
((p, w), σ) ∈ F c, there is an assignment v such that πid(v) =ρ(p) w and

((s̃0, ũ), σ) → ((p, 0, πid, π0, t, f), v), ((p, 1, πid, π1, t, f), v) ∈ μ̃c.

Conversely, for all

((s̃0, ũ), σ) → ((p, 0, πid, π0, t, f), v), ((p, 1, πid, π1, t, f), v) ∈ μ̃c

and all assignments w such that w =ρ(p) πid(v), ((p, w), σ) ∈ F c.

((p,w), σ) ∈ F c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 13. An application of a final
relation of A at the root node

(�s0, �u), σ

�
�

�
�

�
�	

�

((p, 0, πid, π0, t, f), v), σ0 ((p, 1, πid, π1, t, f), v), σ1

Fig. 14. Reversing the final relation of A at the
root node in Fig. 13

(ii) (See Fig. 11 and 12.) For all

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above tran-
sition, all assignments v such that π(v) =ρ(p) w, all pointers π, π0, π1,
π00, π01, π10, π11, and all types t0 and t1 and valid selectors f0 and f1 for
t0 and t1, respectively, such that (π0, π1, π) comply with (t, f), (π00, π01, π0)
comply with (t0, f0), and (π10, π11, π1) comply with (t1, f1), there are assign-
ments v0 and v1 such that π0(v0) =ρ(p0) w0, π1(v1) =ρ(p1) w1, and both
transitions

Tree Automata over Infinite Alphabets 415

(((p, 0, π, π0, t, f), v), σ0) →
((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0)

and

(((p, 1, π, π1, t, f), v), σ1) →
((p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1)

are in μ̃c.

Conversely, for all transitions
(((p, 0, π, π0, t, f), v), σ0) →

((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0)

and

(((p, 1, π, π1, t, f), v), σ1) →
((p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1)

in μ̃c and all assignments w0 and w1 such that π0(v0) =ρ(p0) w0 and
π1(v1) =ρ(p1) w1, there is an assignment w such that π(v) =ρ(p) w and

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc,

(iii) (a) (See Fig. 15 and 16.) For all transitions

((p0, w0), σ0), ((s0, u), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w, all pointers π,
π0, π1, π00, π01, and all types t0 and valid selectors f0 for t0 such that
(π0, π1, π) comply with (t, f) and (π00, π01, π0) comply with (t0, f0),
there is an assignment v0 such that π0(v0) =ρ(p0) w0,

(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

and
(((p, 0, π, π0, t, f), v), σ0) →

((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0) ∈ μ̃c .

Conversely, for all

(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

and

((p, 0, π, π0, t, f), v), σ0 →
((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0 ∈ μ̃c,

416 M. Kaminski and T. Tan

and all assignment w0 such that w0 =ρ(p0) π0(v0), there is an as-
signment w such that w =ρ(p) π(v) and

((p0, w0), σ0), ((s0, u), σ1) → (p, w) ∈ μc.

(b) For all transitions

((s0, u), σ0), ((p1, w1), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w and for all point-
ers π, π0, π1, π10, π11, ad all types t1 and valid selectors f1 for t1
such that (π0, π1, π) comply with (t, f) and (π10, π11, π1) comply with
(t1, f1), there is an assignment v1 such that π1(v1) =ρ(p1) w1,

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c

and

((p, 1, π, π1, t, f), v), σ1 →
(p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c.

Conversely, for all

((p, 1, π, π1, t, f), v), σ1 →
(p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c ,

and

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c,

and all assignments w1 such that w1 =ρ(p1) π1(v1), there is an as-
signment w such that w =ρ(p) π(v) and

((s0, u), σ0), ((p1, w1), σ1) → (p, w) ∈ μc.

(iv) (See Fig. 17 and 18.) For all

((s0, u), σ0), ((s0, u), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w, and for all pointers
π, π0, π1 such that (π0, π1, π) comply with (t, f),

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c

and
(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c.

Tree Automata over Infinite Alphabets 417

(p, w)

�

�
�

�
�

��

(p0, w0), σ0 (s0, u), σ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 15. An application of a transition of A at a leaf node

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p, 0, π, π0, t, f), v), σ0 ((p, 1, π, π1, t, f), v), σ1 ∈ �F c

(p0, 0, π0, π00, t0, f0), v0 (p0, 1, π0, π01, t0, f0), v0

�

�
�

�
�

�
�	

Fig. 16. Reversing and “splitting” the transition of A in Fig. 15 into a transition and
a final relation

Conversely, for all pairs of final relations

(((p, 0, π, π0, t, f), v), σ0), (((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

there is an assignment w such that w =ρ(p) π(v) and

((s0, u), σ0), ((s0, u), σ1) → (p, w) ∈ μc.

We postpone the proof of the lemmas to the end of this appendix and prove
the “if” part of Theorem 1 first.

Proof. (of the “if” part of Theorem 1.) We prove that L(A) = L(Ã) by showing
how to convert an accepting run of A on a Σ-tree σ : T → Σ, into an accepting
run of Ã on σ, and vice versa.

418 M. Kaminski and T. Tan

(p, w)

�
�

�
�

���

�
�

�
�

���

(s0, u), σ0 (s0, u), σ1

Fig. 17. An application of a transition of A at two leaf nodes

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p, 0, π, π0, t, f), v), σ0 ∈ �F c ((p, 1, π, π1, t, f), v), σ1 ∈ �F c

Fig. 18. Reversing and “splitting” the transition of A in Fig. 17 into two final relations
of �A

For an accepting run R : T → Sc, R(n) = (pn, wn), n ∈ T , of A on σ we
construct an accepting run R̃ : T → Sc of Ã on σ top-down, i.e., from the root
to the leaves, by induction for which we shall employ the following notation. For
an interior node n ∈ T ,

– tn and fn are the type and the valid selector used in the transition

(R(n0), σ(n0)), (R(n1), σ(n1)) → R(n);

– πn0, πn1, and πn are pointers such that (πn0, πn1, πn) complies with (tn, fn);
and

– πε = πid.

By definition, for the root node ε, R̃(ε) = s̃0
c = (s̃0, ũ), and assume that R̃(n)

has been constructed for a non-leaf node n ∈ T . Then

– R̃(n0) = ((pn, 0, πn, πn0, tn, fn), vn) and
– R̃(n1) = ((pn, 1, πn, πn1, tn, fn), vn),

where πid(vn) =ρ(pn) wn is defined below..

– The assignment vε is provided by part (i) of Lemma 4, and
– for non-root interior node n, the assignment vn is provided by part (ii) of

Lemma 4.

By parts (iii) and (iv) of Lemma 4, R̃ is an accepting run of Ã on σ.
The converse direction can shown in a similar manner. That is, an accepting

run R of A on σ is constructed from an accepting run R̃ of Ã by applying the
converse direction of Lemma 4. ��

Tree Automata over Infinite Alphabets 419

It remains to prove Lemma 4.

Proof. (of Lemma 4.) We will prove only part (ii) of the lemma. The proofs of
the other parts are very similar.

Let
(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc.

That is, there exist

– assignments w′
0 = w′

0,1w
′
0,2 · · ·w′

0,r and w′
1 = w′

1,1w
′
1,2 · · · w′

1,r such that
w′

0 =ρ(p0) w0 and w′
1 =ρ(p1) w1;

– a transition (p0, k0), (p1, k1) → p ∈ μ such that w′
0,k0

= σ0 and w′
1,k1

= σ1;
and

– a merging relation ((p0, k0), (p1, k1), t, f) ∈ τ such that (w′
0, w

′
1, w) is an

instance of (t, f).

Let π0, π1, π, π00, π01, π0, π10, π11, π1 be pointers and t0, t1 and f0, f1 be types
and the corresponding valid selectors such that (π0, π1, π) complies with (t, f),
(π00, π01, π0) complies with (t0, f0), and (π10, π11, π1) complies with (t1, f1).

By definition, μ̃ contains both

(p, 0, π, π0, t, f), π0(k0) → (p, 0, π0, π00, t0, f0), (p, 1, π0, π01, t0, f0)

and

(p, 0, π, π1, t, f), π1(k1) → (p, 0, π1, π10, t1, f1), (p, 1, π1, π11, t1, f1)

Let v be an assignment such that π(v) =ρ(p) w. By the definition of the
reassignments ρ̃((p, 0, π, π0, t, f)) and ρ̃((p, 1, π, π0, t, f)), there are assignments

– v0 =
�ρ((p,0,π,π0,t,f)) v such that π0(v0) = w′

0, and
– v1 =

�ρ((p,1,π,π0,t,f)) v such that π1(v1) = w′
1.

Since (π0, π1, π) comply with (t, f), π(v0) = w = π(v1). Thus, both

((p, 0, π, π0, t, f), v), σ0 → (p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0

and

((p, 1, π, π1, t, f), v), σ1 → (p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1

are in μ̃c.

For the proof of converse part of the lemma, let

((p, 0, π, π0, t, f), v), σ0 → (p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0 ∈ μ̃c

and

((p, 1, π, π1, t, f), v), σ1 → (p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c

420 M. Kaminski and T. Tan

where v0 =
�ρ((p,0,π,π0,t,f)) v, v1 =

�ρ((p,1,π,π1,t,f)) v, and (π0, π1, π), (π00, π01, π0),
and (π10, π11, π1) comply with (t, f), (t0, f0), and (t1, f1), respectively.

Therefore, by definition, there are transitions

(p, 0, π, π0, t, f), π0(k0) → (p0, 0, π0, π00, t0, f0), (p0, 1, π0, π01, t0, f0) ∈ μ̃

and

(p, 1, π, π1, t, f), π1(k1) → (p1, 0, π1, π10, t1, f1), (p1, 1, π1, π11, t1, f1) ∈ μ̃

such that v0,π0(k0) = σ0 and v1,π1(k1) = σ1.
By the definition of μ̃,

(p0, k0), (p1, k1) → p ∈ μ

and
((p0, k0), (p1, k1), t, f) ∈ τ.

Let w0, w1 be assignments such that w0 =ρ(p0) π0(v) and w1 =ρ(p1) π1(v),
and let denote w′

0 = π0(v) and w′
1 = π1(v).

Since w0,k0 = vπ0(k0) = σ0 and w1,k1 = vπ1(k1) = σ1,

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc

where w is an assignment such that (w′
0, w

′
1, w) is an instance of (t, f).

Thus, the proof will be complete if we show that π(v) =ρ(p) w. Let i �∈ ρ(p).
Since (π0, π1, π) complies with (t, f), and (w′

0, w
′
1, w) is an instance of (t, f),

vπ(i) =
{

vπ0(j) = v0,π0(j) = w′
0,j = wi, where f(j) = (0, i)

vπ1(j) = v1,π1(j) = w′
1,j = wi, where f(j) = (1, i)

and the converse part of the lemma follows. ��

C Closure Properties

In this section we establish some basic closure properties of the tree languages
defined defined by ↓-NR-FMAs. The proofs are pretty standard and can be easily
modified for all other models of tree automata introduced in this paper.

Let Ai = 〈Si, s0,i, ui, ρi, μi, Fi〉, i = 1, 2, be ↓-FMAs. Without loss of general-
ity, we assume that A1 and A2 possess the following properties.

1. The sets of states S1 and S2 are disjoint.
2. Both the initial states s0,1 and s0,2 are not accessible from the other states

of the corresponding automaton. That is, there is no transition of the form
(q, k) → (s0,i, q

′) or (q, k) → (q′, s0,i), i = 1, 2.
3. Both automata have the same initial assignment of the form θ1 · · · θm#r, and

registers 1, . . . , m are never reset.18 This property can be verified similarly
to the proof of [7, Lemma 5.1].

Tree Automata over Infinite Alphabets 421

��

��

s
�
�

�
���

�
�

�
���

A1 A2

Fig. 19. The diagram of A

Closure under union. We construct an automaton A that accepts L(A1)∪L(A2)
as the “union” of A1 and A2. The initial state of A is a new state s. ¿From this
state A can simulate either of A1 and A2, as illustrated in Fig. 19.

The initial assignment of A is θ1 · · · θm#2r. Except for the input symbols from
{θ1, θ2, . . . , θm}, A1 is simulated by the registers (m + 1) to (m + r), while A2
is simulated by the last r registers. The transitions of A2 are renamed from
(q, k) → (q0, q1) to (q, k + r) → (q0, q1) for all k = m + 1, m + 2, · · · , m + r.
For the inputs from {θ1, θ2, . . . , θm}, both A1 and A2 use the first m registers.
Finally, ρ(s) = ρ(s1) ∪ {k + r : k ∈ ρ(s2)}.

Closure under concatenation.19 An automaton A accepting L(A1)L(A2) results
in “extending” A1 with A2. That is, A starts by simulating A1 until it reaches a
final relation. Then it continues by simulating A2. This is achieved by changing
all the final relations (q, k) ∈ F1 to (q, k) → (s0,2, s0,2). The set of final relations
of A is F2.

Closure under Kleene star.20 The construction is similar to the concatenation
case. To accept L(A1)∗, the automaton A simulate A1 a number of times, which
is achieved by adding the transition (q, k) → (s0,1, s0,1) to μ1 for each final
relation (q, k) ∈ F1 and setting ρ(s0,1) = {m + 1, . . . , m + r}.

Closure under intersection. The construction here is a bit more involved. The
basic idea is to use the (equivalent) tree automata model similar to the M-FMA
introduced in [6, Sect. 3]. These automata are allowed to “consult” a number of
registers at the same time.

Definition 7. (Cf. [20, Definition 5. pp. 20-22].) A top-down M-finite-memory
automaton (↓-M-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where
18 Consequently, only registers m + 1, . . . , m + r may be reset.
19 The concatenation of two tree languages L1 and L2 is defined by extending each leaf

in every tree from L1 with two child nodes in each of which a tree from L2 is rooted.
In terms of the corresponding definition in [3, Sect. 2.2, p. 52], we can view this as
first extending each leaf in every tree from L1 with two children labeled with a new
symbol � and then applying ·�.

20 For a tree language L, L∗ is the collection of all iterated concatenations of L ∪ {�},
where � is the “empty tree,” i.e., a single node labeled with the symbol �. In terms
of the corresponding definition in [3, Sect. 2.2, p. 54], L∗ = L∗,� (=

�
n≥0 Ln,�).

422 M. Kaminski and T. Tan

– S is the finite set of states.
– s0 is the initial state.
– u = θ1 · · · θm # · · · #︸ ︷︷ ︸

r

· · ·#︸ ︷︷ ︸
r

∈ (Σ ∪ {#})(m+2r) is the initial assignment.

– ρ : S → {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r} is the reassignment
function.

– μ is the set of transitions of the following form
• (p, k) → (p0, p1) ∈ S × {1, . . . , m} × S × S,
• (p, (k0, k1)) → (p0, p1) ∈ S × {m + 1, . . . , m + r} × {m + r + 1, . . . , m +

2r} × S × S.
– F is the set of final relations of the following form

• (p, k) ∈ S × {1, . . . , m},
• (p, (k0, k1)) ∈ S × {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r}.

Similarly, the transition relation μ induces the following relation μc which is
defined as follows. (p, w), σ → (p0, w

′), (p1, w
′) belongs to μc if and only if the

following conditions are satisfied. w′ = w′
1 · · · w′

m+2r, where w′
i = wi, for all

i �∈ {i, j : (i, j) ∈ ρ(p)} and

1. If σ ∈ {θ1, . . . , θm}, then w′
k = θ and (p, k, (p0, p1)) ∈ μ.

2. If σ �∈ {θ1, . . . , θm}, then σ = w′
k0

= w′
k1

, for some k0 < k1 and the triple
(p, (k0, k1), (p0, p1)) belongs to μ.

The relation F c is defined as follows. A pair ((p, w), σ) ∈ F c if the following
holds.

– If σ ∈ {θ1, . . . , θm}, then w′
k = θ and (p, k, (p0, p1)) ∈ F .

– If σ �∈ {θ1, . . . , θm}, then σ = w′
k0

= w′
k1

, where m < k0 < k1 and
(p, (k0, k1), (p0, p1)) belong to F .

Proposition 6. For each ↓-M-NR-FMA A there exists an ↓-NR-FMA A′ such
that L(A) = L(A′).

Proof. We convert A into a standard (m + r2)-register ↓-NR-FMA A′ whose
initial assignment is θ1 · · · θm#r2

.
Let ϕ : {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r} → {m + 1, . . . , m +

r2} be a one-to-one function. The simulation of A by A′ is done by referring
each pair of registers (k0, k1) to a single register ϕ(k, k′) of A′. Formally, A′ =
〈S′, s′0, u

′, ρ′, μ′, F ′〉 is defined as follows.

– S′ = S and s′0 = s0.
– u′ = θ1 · · · θm#r2

.
– ρ(q1, q2) = ϕ(ρ(q1) × {m + r + 1, . . . , m + 2r} ∪ {m + 1, . . . , m + r} × ρ(q2)).
– μ′ consists of the following two types of transitions:

• for every ((q1, q2)(k1, k2)) → ((q′1, q
′′
1)(q2, q

′′
2)) ∈ μ it contains

((q, q′), ϕ((k, k′))) → ((q0, q
′
0), (q1, q

′
1)),

Tree Automata over Infinite Alphabets 423

• for every ((q1, q2), k) → ((q′1, q
′′
2), (q2, q

′′
2)) ∈ μ, it contains

((q1, q2), k) → ((q′1, q
′′
2), (q2, q

′′
2))

itself.
– F ′ consists of the following two types of relations:

• for every ((q1, q2), (k1, k2)) ∈ F it contains ((q1, q2), ϕ(k1, k2)), and
• for every ((q1, q2), k) ∈ F it contains ((q1, q2), k) itself. ��

Now we construct an ↓-M-FMA A that accepts L(A1)∩L(A2) by simultaneously
simulating A1 and A2. This is done by defining A as the product of A1 and A2.

The precise description of A is as follows. Like in the case of the closure under
union, the initial assignment of A is θ1 · · · θm#2r and the automata A1 and A2 are
simulated on the registers {1, . . . , m+r} and {1, . . . , m}∪{m+r+1 . . . , m+2r},
respectively. That is, A = 〈S, s0, u, ρ, μ, F 〉 is defined as follows.

– S = S1 × S2.
– s0 = (s0,1, s0,2).
– u = θ1 · · · θm#2r.
– ρ(q1, q2) = {ρ1(q1), ρ2(q2) + r}.
– μ consists of the following two types of transitions:

• for every (q1, k1) → (q′1, q
′′
1) ∈ μ1 and every (q2, k2) → (q′2, q

′′
2) ∈ μ2

such that m ≤ k1, k2 ≤ m + r, it contains ((q1, q2), (k1, k2 + r)) →
(q′1, q

′
2)(q

′′
1 , q′′1), and

• for every (q1, k) → (q′1, q
′′
1) ∈ μ1 and every (q2, k) → (q′2, q

′′
2) ∈ μ2 such

that 1 ≤ k ≤ m, it contains ((q1, q2), k) → (q′1, q′2)(q′′1 , q′′1).
– F consists of the following two types of relations:

• for every (q1, k1) ∈ F1 and every (q2, k2) ∈ F2 such that m ≤ k1, k2 ≤
m + r, it contains ((q1, q2), (k1, k2 + r)), and

• for every (q1, k) ∈ F1 and every (q2, k) ∈ F2 such that 1 ≤ k ≤ m, it
contains ((q1, q2), k).

	Tree Automata over Infinite Alphabets
	Introduction
	Basic Notions of XML
	Notation
	Tree Automata with Deterministic Reassignment
	Top-Down Finite-Memory Automata with Deterministic Reassignment
	Bottom-Up Finite-Memory Automata with Deterministic Reassignment

	Tree Automata with Nondeterministic Reassignment
	Top-Down Finite-Memory Automata with Nondeterministic Reassignment
	Bottom-Up Finite-Memory Automata with Nondeterministic Reassignment
	The Main Result

	Decision Properties
	Context-Free Languages over Infinite Alphabets and Their Relationship with Tree Automata
	Proof of the ``only if'' Part of Theorem 1
	Proof of the ``if'' Part of Theorem 1
	Closure Properties

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

