3_子序列構造(Subsequence Construction)

(15分)

時間限制: 1 second 記憶體限制: 256 MB

題目敘述

現在有一個長度為 n 的序列 a_1,a_2,\ldots,a_n ,請找出最大的正整數 m 使得存在長度為 m 的序列 b_1,b_2,\ldots,b_m 滿足:

- $1, 2, \ldots, m$ 在 b_1, b_2, \ldots, b_m 中各出現一次。
- b_1,b_2,\ldots,b_m 是 a_1,a_2,\ldots,a_n 的子序列,也就是說,可以透過從序列 a_1,a_2,\ldots,a_n 中刪除若干個元素 得到 b_1,b_2,\ldots,b_m 。

或是回報滿足要求的 m 和 b_1, b_2, \ldots, b_m 不存在。

如果滿足要求的 m 存在,請同時找出對應的一個序列 b_1, b_2, \ldots, b_m 。

輸入格式

第一行輸入一個正整數 n。

第二行輸入 n 個正整數 a_1, a_2, \ldots, a_n 。

輸出格式

如果滿足要求的 m 不存在,則輸出一行,這行輸出一個 0 即可。

如果滿足要求的m存在,則輸出兩行。

第一行輸出一個正整數m。

第二行輸出 m 個正整數 b_1, b_2, \ldots, b_m 。如果有不只一種序列 b_1, b_2, \ldots, b_m 滿足條件,輸出任意一個就好。

注意, m 必須要是滿足要求的最大值。

資料範圍

- $1 < n < 2 \times 10^5$
- $1 < a_i < 2 \times 10^5$

測試範例

輸入範例 1

5 3 6 2 3 1

輸出範例 1

3 3 2 1

輸入範例 2

4 8 7 6 3

輸出範例 2

0

輸入範例3

10 1 10 2 9 3 8 4 7 5 6

輸出範例3

10 1 10 2 9 3 8 4 7 5 6

範例說明

範例 1 中,最大能滿足條件的 m 是 3,而序列 [3,2,1] 和 [2,3,1] 皆滿足題目要求,輸出其中一個就好。 序列 [1,3,2] 不滿足條件,因為它不是 [3,6,2,3,1] 的子序列。

序列 [3,3,1] 也不滿足條件,因為 1,2,3 並沒有在 [3,3,1] 中各出現一次。

範例 2 中,不存在滿足條件的 m。

範例 3 中,最大的 m 是 10,也就是說取整個序列 a 會滿足條件。

3_Subsequence Construction

(15 points)

Time Limit: 1 second Memory Limit: 256MB

Statement

Given a sequence of length n, denoted as a_1, a_2, \ldots, a_n , find the largest positive integer m such that there exists a sequence of length m, denoted as b_1, b_2, \ldots, b_m , such that:

- Each of $1, 2, \ldots, m$ appears exactly once in b_1, b_2, \ldots, b_m .
- The sequence b_1, b_2, \ldots, b_m is a subsequence of a_1, a_2, \ldots, a_n , meaning it can be obtained by deleting some elements from the sequence a_1, a_2, \ldots, a_n .

If no such m and b_1, b_2, \ldots, b_m exist, report that they do not exist.

If m does exist, please find a corresponding sequence b_1, b_2, \ldots, b_m aswell.

Input Format

The first line contains a positive integer n.

The second line contains n positive integers a_1, a_2, \ldots, a_n .

Output Format

If no such m exists, output a single line containing the integer 0.

If such an m exists, output two lines:

The first line should contain the positive integer m.

The second line should contain m positive integers b_1, b_2, \ldots, b_m . If there are multiple valid sequences, output any one of them.

Note that m must be the maximum possible value satisfying the conditions.

Constraints

- $1 < n < 2 \times 10^5$
- $1 \le a_i \le 2 \times 10^5$

Test Cases

Input 1

5 3 6 2 3 1

Output 1

```
3
3 2 1
```

Input 2

```
4
8 7 6 3
```

Output 2

0

Input 3

```
10
1 10 2 9 3 8 4 7 5 6
```

Output 3

```
10
1 10 2 9 3 8 4 7 5 6
```

Illustrations

In Example 1, the maximum value of m that satisfies the conditions is 3, and the sequence [3,2,1] meets the requirements. The sequence [2,3,1] also meets the requirements, and either can be output.

The sequence [1,3,2] doesn't meet the requirements because it is not a subsequence of [3,6,2,3,1].

The sequence [3,3,1] also doesn't meet the requirements because some of 1,2,3 doesn't not appear exactly once in [3,3,1].

In Example 2, no such m exists that meets the conditions.

In Example 3, the largest value of m is 10, meaning the entire sequence a meets the conditions.