Data Structures and Algorithms
(BA & AR IR F k)

Lecture 2: Data Structure
Hsuan-Tien Lin (##f &)

htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(&% K2 FALHER)

& \Z
%,

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/26

htlin@csie.ntu.edu.tw

Data Structure

Roadmap
© the one where it all began

Lecture 1: Algorithm

clearly-illustrated instructions to
provably solve a computational task

v

Lecture 2: Data Structure

definition of data structure

e ordered array as data structure

e GET (search) in ordered array

e why data structures and algorithms

® the data structures awaken

©® fantastic trees and where to find them
O the search revolutions

@ sorting: the final frontier

1/26

definition of data structure

definition of data structure

™ From Cloth Structure to Data Structure

Cloth Structure: Ordered Cloth Structure: Messy

Wbl

(copyright purchased from iStock) (copyright purchased from iStock)
w

Data Structure: Sorted Data Structure: Unsorted
[9 'K K > 10 Q 3
8,

v v v v g e
o] affalw)
data structure: scheme of organizing data within computerJ

3

]

€

2

o

c

A A 4 01 0 8|

)
0L

v

o’

3/26

Data Structure definition of data structure

Good Algorithm Needs Proper Data Structure
SELECTION-SORT with GET-MIN-INDEX, remember? :-)

SELECTION-SORT(A) GET-MIN-INDEX(A, ¢,)
1 fori = 1to A length 1 m = ¢ // store current min. index
2 m = GET-MIN-INDEX(A, i, A. length)) 2 fori=¢+1tor
3 SWAP(A[i], A[m]) 3 // update if j-th element smaller
4 return A // which has been sorted in place 4 if Alm] > A[i]
5 m=i
6 returnm

if having data structure with faster GET-MIN-INDEX,
— SELECTION-SORT also faster (to be taught)

v

algorithm :: data structure
~ recipe :: ingredient structure J

4/26

Data Structure definition of data structure

Data Structure Needs Accessing Algorithms

GET INSERT

* GET-BY-INDEX: for arrays INSERT-BY-INDEX: for arrays
* GET-NEXT: for sequential INSERT-AFTER: for sequential
access access
e GET(item): for search INSERT(item)
° P o e
—qenerally assume to read —qgenerally assume to add without
without deleting) overriding)

‘philosophical’ rule of thumb:
often-GET <= INSERT “nearby” J

5/26

Data Structure definition of data structure

Data Structure Needs Maintenance Algorithms

CONSTRUCT REMOVE UPDATE

* baseline: with e often viewed as usually possible
multiple INSERT deleting after with REMOVE +

e often faster if GET INSERT
designed ® ~ UNINSERT: can be viewed
carefully & often harder as INSERT with
strategically than INSERT) overriding)

hidden cost of data structure:
maintenance effort (especially REMOVE & UPDATE) J

6/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of

INSERT within a data structure?
© CONSTRUCT
® GET
® REMOVE
@ UPDATE

7/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of

INSERT within a data structure?
© CONSTRUCT

® GET

® REMOVE

@ UPDATE

Reference Answer: @

REMOVE-ing an item from the data structure
essentially takes out what has been
INSERT-ed.

7/26

ordered array as data structure |

Data Structure

ordered array as data structure

Definition of Ordered Array

1 2 3
3 5 10
v v L4
1)])
€] 0}
All] Al2] A[3] A[A. length]

an array of consecutive elements with ordered values

J

9/26

Data Structure ordered array as data structure

INSERT of Ordered Array

Swap Version Direct Cut-in Version

INSERT(A, data) INSERT(A, data)

1 n = A length 1

2 A.[n+ 1] = data // putin the back 2 i = A length

3 for/ = ndownto 1 3 while i > 0and A[/] > data

4 if Ali + 1] < A[f] 4 Ali +1] = A[f]

5 SWAP(A[], A[i + 1]) // cutin 5 i=i—1

6 else 6 Ali+1] = data

7 return 7

& 1123456 1123|456

original ERECRECRICRRE original & @
i=4 ||B|H MlE i—4 |8 |0 Y
i-3 |H|M|E|E|E i=3 |H|E|B|E|HE
return @ @ @ return @ @ @ @ @

INSERT of ordered array: cut in from back]

10/26

Data Structure

ordered array as data structure

CONSTRUCT of Ordered Array

SELECTION-SORT, remember? :-) § or INSERTION-SORT

SELECTION-SORT(A) INSERTION-SORT(A)

1 fori = 1to A length 1 fori = 1to A.length
2 m = GET-MIN-INDEX(A, i, A. length)) 2 INSERT(A, i)

3 SwAP(A[i], A[m]) 3

4 return A 4 return A
GET-MIN-INDEX(A, £, r) INSERT(A, m)

1 m = ¢ // store current min. index 1 data = Alm]

2 fori=/¢+1tor 2 i=m-1

3 // update if i-th element smaller 3 while i > 0and A[/] > data
4 if Am] > A[i] 4 Ali +1] = A[f]
5 m=i 5 i=i-1

6 return m 6 Ali+1] = data

INSERTION-SORT: CONSTRUCT with multiple INSERT

J

11/26

Data Structure ordered array as data structure

REMOVE and UPDATE of Ordered Array

REMOVE(A, m) UPDATE(A, m, data)

1 i=m+1 1 i=m

2 while i < A.length 2 if A[i] > data // cutin to front

3 Ali — 1] = A[] / fill in 3 i=i—1

4 i=i+1 4 while i > 0 and A[/] > data

5 A.length = A.length — 1 5 Ali+1] = A[f]

6 6 i=i-1

7 7 Ali+ 1] = data

8 8 else // cutin to back

9 9 ... complete on your own ...
v v

ordered array: more maintenance efforts than unordered
— faster GET (?) J

12/26

Data Structure ordered array as data structure .

Fun Time
Consider the direct cut-in version of INSERT. Assume that some
data is inserted to an array A with A.length = 6211 (prior to

insertion) and ends up in position A[1126]. How many
comparisons of the form A[i] > data has been conducted?

INSERT(A, data) O 1126

1 i = A length

2 \INhiIe i > 0and A[i] > data ® 5087

3 ATt = Al ® 6211
i=i-

5 Ali+1] = data O 7337

13/26

Data Structure ordered array as data structure .

Fun Time
Consider the direct cut-in version of INSERT. Assume that some
datais inserted to an array A with A.length = 6211 (prior to

insertion) and ends up in position A[1126]. How many
comparisons of the form A[i] > data has been conducted?

INSERT(A, data) O 1126

2 while /> 0and A[i] > data

3 ATt = Al ® 6211
i=i-

5 Ali+1] = data O 7337

Reference Answer: @

When data ends up in position A[1126],
6212 — 1126 elements are larger than data
(pushed back within while). Another
comparison with A[1125] terminates while. So
the total is 6212 — 1126 + 1 = 5087.

13/26

GET (search) in ordered array

J

Data Structure GET (search) in ordered array

Application: Book Search within (Digital) Library

ey

L] e

g
i
é
i

figure by LaiAndrewKimmy,
licensed under CC BY-SA 3.0 via Wikimedia Commons

GET book with ID as key in ordered array]

15/26

Data Structure

GET (search) in ordered array

Sequential Search Algorithm for Any Array

& 1121 3 |14/5]|6]|7
original ® ©
i=1 & | &
i=2 & | @
i=3 E] [

SEQ-SEARCH(A, key, ¢, r)

1
2
3
4
5
6

fori =¢tor
// return when found
if A[i] equals key
return j
return NIL

GET-MIN-INDEX(A, £, r)

m = ¢ // store current min. index
fori=¢+1tor

1
2
3
4
5
6

// update if j-th element smaller
if Alm] > Ali]
m=i

return m

SEQ-SEARCH: structurally similar to GET-MIN-INDEX)

16/26

Data Structure GET (search) in ordered array

Ordered Array: Sequential Search with Shortcut

& 1
original
i=1
i=2
i=3
i—a4

o5 o s S e\)

I 9 I I I W

5 ES S S PN
9 9 9 9 I O1
(F 3 3 I S O
3 9 9 9 B

SEQ-SEARCH-SHORTCUT(A, key, £, r)

1 fori=/{tor

2 // return when found
3 if A[i] equals key

4 return j

5 elseif A[i] > key

6 return NIL

7 return NIL

SEQ-SEARCH(A, key, ¢, r)

1 fori=~/¢tor

2 // return when found
3 if A[i] equals key

4 return j
5

6

7

return NI

ordered: possibly easier to declare NIL

17/26

Data Structure

GET (search) in ordered array

y: Binary Search Algorithm

Ordered Arra
® 1
original &
1,77 || ®
1,3 || &
[3,3]

) 3 & 8o

9 I I I W

N8 88>
€9 9 9 I O
SIS =N)
9 9 B B

BIN-SEARCH(A, key, ¢, r)

1
2

3
4
5
6
7
8
9

while £ < r

m = floor((¢ + r)/2)

if A[m] equals
return m
elseif A[m] >

r=m—1 // cut out end

elseif A[m| <

key
key

key

¢ = m+ 1 // cut out begin

return NIl

BIN-SEARCH: multiple shortcuts
by quickly checking the middle

SEQ-SEARCH-SHORTCUT(A, key, ¢,)
1 fori=~/¢tor

2 // return when found
3 if A[i] equals key

4 return j

5 elseif A[/] > key

6 return NI

7 return NIL

18/26

Data Structure GET (search) in ordered array

Binary Search in Open Source

BIN-SEARCH(A, key, ¢, r)

1 while¢ <r

2 m = floor((¢ +r)/2)

3 if A[m] equals key

4 return m

5 elseif A[m] > key

6 r=m—1// cutout end
7 elseif A[m] < key

8 ¢ = m+ 1 // cut out begin
9 return NIL

java.util.Arrays

private static int
binarySearch (int[]
int low = 0;
int high = a.length - 1;

a, int key)

while (low <= high) {
int mid =
(low + high) >>> 1;

int midval = a[mid];

“must-know” for programmers

o if (midval < key)
low = mid + 1;
else if (midval > key)
high = mid - 1;
else
J return mid;

// key found
}
return - (low + 1);
// key not found.

19/26

Data Structure GET (search) in ordered array

Fun Time

Consider running the BIN-SEARCH algorithm on an ordered
array of size 15 with some key that is not in the array. How many
comparisons does BIN-SEARCH take before returning NIL?

O 15

20/26

Data Structure GET (search) in ordered array

Fun Time

Consider running the BIN-SEARCH algorithm on an ordered
array of size 15 with some key that is not in the array. How many
comparisons does BIN-SEARCH take before returning NIL?

O 15

Reference Answer: @

The first comparison is a shortcut that leaves
only 7 remaining elements; the second
leaves 3; the third leaves 1; the fourth
eliminates all possibilities.

20/26

why data structures and algorithms)

Data Structure why data structures and algorithms

Why Data Structures and Algorithms?

good program: proper use of resources

Space Resources Computation Resources
¢ memory CPU(s)
* disk(s) GPU(s)
® transmission bandwidth Computation power
—usually cared by data structure | —uysually cared by algorithm

Other Resources
® manpower

e budget
—usually cared by management

data structures and algorithms: for writing good program]

22/26

Data Structure why data structures and algorithms

Proper Use: Trade-off of Different Factors

faster GET — slower INSERT
J and/or maintenance J
more space)} = faster computation |
harder to implement/debug |} = faster computation |

good program needs understanding trade-off J

23/26

Data Structure why data structures and algorithms

Programming # Coding

programming :: building house ~ coding :: construction work

Introduction to C

Data Structures and Algorithms

requirement
analysis
design
coding
proof
test
debug

simple
simple
simple
*
none
simple
*

simple
simple

@+t 00 +

data structures and algorithms:
moving from coding to programming J

24/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when

compared with an unordered one with the same number of
elements?

© faster GET

@ faster INSERT

® more space

@ none of the other choices

25/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when

compared with an unordered one with the same number of

elements?

© faster GET

@ faster INSERT

@ more space

O none of the other choices

Reference Answer: @

An ordered array allows faster GET by
BIN-SEARCH.

25/26

Data Structure why data structures and algorithms

Summary

Lecture 2: Data Structure

e definition of data structure
organize data with access/maintenance algorithms
e ordered array as data structure
insert by cut-in, remove by fill-in
o GET (search) in ordered array
binary search using order for shortcuts
e why data structures and algorithms
study trade-off to move from coding to programmingJ

e next: tools for analyzing/studying trade-off

26/26

	Data Structure
	definition of data structure
	ordered array as data structure
	Get (search) in ordered array
	why data structures and algorithms

