
Data Structures and Algorithms
(資料結構與演算法)
Lecture 2: Data Structure
Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/26

htlin@csie.ntu.edu.tw

Data Structure

Roadmap
1 the one where it all began

Lecture 1: Algorithm
clearly-illustrated instructions to

provably solve a computational task

Lecture 2: Data Structure
definition of data structure
ordered array as data structure
GET (search) in ordered array
why data structures and algorithms

2 the data structures awaken
3 fantastic trees and where to find them
4 the search revolutions
5 sorting: the final frontier

1/26

definition of data structure

Data Structure definition of data structure

From Cloth Structure to Data Structure

Cloth Structure: Ordered

(copyright purchased from iStock)

Cloth Structure: Messy

(copyright purchased from iStock)

Data Structure: Sorted
2
r

r
2

r

r

3
r

r
3

r

r

r

10
r

r
10

r

r

r

r

r

r

r

r

r

r

Q
r

r
Q

r

r

K
r

r
K

r

r

Data Structure: Unsorted
K
r

r
K

r

r

2
r

r
2

r

r

10
r

r
10

r

r

r

r

r

r

r

r

r

r

Q
r

r
Q

r

r

3
r

r
3

r

r

r

data structure: scheme of organizing data within computer

3/26

Data Structure definition of data structure

Good Algorithm Needs Proper Data Structure
SELECTION-SORT with GET-MIN-INDEX, remember? :-)

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

GET-MIN-INDEX(A, `, r)

1 m = ` // store current min. index
2 for i = `+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

if having data structure with faster GET-MIN-INDEX,
=⇒ SELECTION-SORT also faster (to be taught)

algorithm :: data structure
∼ recipe :: ingredient structure

4/26

Data Structure definition of data structure

Data Structure Needs Accessing Algorithms

GET

• GET-BY-INDEX: for arrays
• GET-NEXT: for sequential

access
• GET(item): for search
• . . .

—generally assume to read
without deleting

INSERT
• INSERT-BY-INDEX: for arrays
• INSERT-AFTER: for sequential

access
• INSERT(item)
• . . .

—generally assume to add without
overriding

‘philosophical’ rule of thumb:
often-GET ⇐⇒ INSERT “nearby”

5/26

Data Structure definition of data structure

Data Structure Needs Maintenance Algorithms

CONSTRUCT
• baseline: with

multiple INSERT

• often faster if
designed
carefully &
strategically

REMOVE
• often viewed as

deleting after
GET

• ∼ UNINSERT:
often harder
than INSERT

UPDATE
• usually possible

with REMOVE +
INSERT

• can be viewed
as INSERT with
overriding

hidden cost of data structure:
maintenance effort (especially REMOVE & UPDATE)

6/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of
INSERT within a data structure?

1 CONSTRUCT

2 GET

3 REMOVE

4 UPDATE

Reference Answer: 3

REMOVE-ing an item from the data structure
essentially takes out what has been
INSERT-ed.

7/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of
INSERT within a data structure?

1 CONSTRUCT

2 GET

3 REMOVE

4 UPDATE

Reference Answer: 3

REMOVE-ing an item from the data structure
essentially takes out what has been
INSERT-ed.

7/26

ordered array as data structure

Data Structure ordered array as data structure

Definition of Ordered Array

1 2 3 4 5 6
3
r

r
3

r

r

r

5
r

r
5

r

r

r

r

r

10
r

r
10

r

r

r

r

r

r

r

r

r

r

Q
r

r
Q

r

r

A[1] A[2] A[3] A[A. length]

an array of consecutive elements with ordered values

9/26

Data Structure ordered array as data structure

INSERT of Ordered Array

Swap Version
INSERT(A, data)

1 n = A. length
2 A. [n + 1] = data // put in the back
3 for i = n downto 1
4 if A[i + 1] < A[i]
5 SWAP(A[i],A[i + 1]) // cut in
6 else
7 return

6
r 1 2 3 4 5 6

original
3
r

5
r

10
r

Q
r

6
r

i = 4
3
r

5
r

10
r

6
r

Q
r

i = 3
3
r

5
r

6
r

10
r

Q
r

return
3
r

5
r

6
r

10
r

Q
r

Direct Cut-in Version
INSERT(A, data)

1
2 i = A. length
3 while i > 0 and A[i] > data
4 A[i + 1] = A[i]
5 i = i − 1
6 A[i + 1] = data
7

6
r 1 2 3 4 5 6

original
3
r

5
r

10
r

Q
r

i = 4
3
r

5
r

10
r

Q
♥

Q
r

i = 3
3
r

5
r

10
♥

10
r

Q
r

return
3
r

5
r

6
r

10
r

Q
r

INSERT of ordered array: cut in from back

10/26

Data Structure ordered array as data structure

CONSTRUCT of Ordered Array

SELECTION-SORT, remember? :-)
SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A

GET-MIN-INDEX(A, `, r)

1 m = ` // store current min. index
2 for i = `+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

or INSERTION-SORT

INSERTION-SORT(A)

1 for i = 1 to A. length
2 INSERT(A, i)
3
4 return A

INSERT(A,m)

1 data = A[m]
2 i = m − 1
3 while i > 0 and A[i] > data
4 A[i + 1] = A[i]
5 i = i − 1
6 A[i + 1] = data

INSERTION-SORT: CONSTRUCT with multiple INSERT

11/26

Data Structure ordered array as data structure

REMOVE and UPDATE of Ordered Array

REMOVE

REMOVE(A,m)

1 i = m + 1
2 while i < A. length
3 A[i − 1] = A[i] // fill in
4 i = i + 1
5 A. length = A. length − 1
6
7
8
9

UPDATE

UPDATE(A,m, data)

1 i = m
2 if A[i] > data // cut in to front
3 i = i − 1
4 while i > 0 and A[i] > data
5 A[i + 1] = A[i]
6 i = i − 1
7 A[i + 1] = data
8 else // cut in to back
9 ... complete on your own ...

ordered array: more maintenance efforts than unordered
=⇒ faster GET (?)

12/26

Data Structure ordered array as data structure

Fun Time
Consider the direct cut-in version of INSERT. Assume that some
data is inserted to an array A with A. length = 6211 (prior to
insertion) and ends up in position A[1126]. How many
comparisons of the form A[i] > data has been conducted?

INSERT(A, data)

1 i = A. length
2 while i > 0 and A[i] > data
3 A[i + 1] = A[i]
4 i = i − 1
5 A[i + 1] = data

1 1126
2 5087
3 6211
4 7337

Reference Answer: 2

When data ends up in position A[1126],
6212− 1126 elements are larger than data
(pushed back within while). Another
comparison with A[1125] terminates while. So
the total is 6212− 1126 + 1 = 5087.

13/26

Data Structure ordered array as data structure

Fun Time
Consider the direct cut-in version of INSERT. Assume that some
data is inserted to an array A with A. length = 6211 (prior to
insertion) and ends up in position A[1126]. How many
comparisons of the form A[i] > data has been conducted?

INSERT(A, data)

1 i = A. length
2 while i > 0 and A[i] > data
3 A[i + 1] = A[i]
4 i = i − 1
5 A[i + 1] = data

1 1126
2 5087
3 6211
4 7337

Reference Answer: 2

When data ends up in position A[1126],
6212− 1126 elements are larger than data
(pushed back within while). Another
comparison with A[1125] terminates while. So
the total is 6212− 1126 + 1 = 5087.

13/26

GET (search) in ordered array

Data Structure GET (search) in ordered array

Application: Book Search within (Digital) Library

figure by LaiAndrewKimmy,

licensed under CC BY-SA 3.0 via Wikimedia Commons

GET book with ID as key in ordered array

15/26

Data Structure GET (search) in ordered array

Sequential Search Algorithm for Any Array
5
r 1 2 3 4 5 6 7

original
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 1
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 2
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 3
3
r

4
r

5
r 7

r
9
r

10
r

Q
r

SEQ-SEARCH(A, key , `, r)

1
2 for i = ` to r
3 // return when found
4 if A[i] equals key
5 return i
6 return NIL

GET-MIN-INDEX(A, `, r)

1 m = ` // store current min. index
2 for i = `+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

SEQ-SEARCH: structurally similar to GET-MIN-INDEX

16/26

Data Structure GET (search) in ordered array

Ordered Array: Sequential Search with Shortcut
6
r 1 2 3 4 5 6 7

original
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 1
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 2
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 3
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

i = 4
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

SEQ-SEARCH-SHORTCUT(A, key , `, r)

1 for i = ` to r
2 // return when found
3 if A[i] equals key
4 return i
5 elseif A[i] > key
6 return NIL
7 return NIL

SEQ-SEARCH(A, key , `, r)

1 for i = ` to r
2 // return when found
3 if A[i] equals key
4 return i
5
6
7 return NIL

ordered: possibly easier to declare NIL

17/26

Data Structure GET (search) in ordered array

Ordered Array: Binary Search Algorithm
6
r 1 2 3 4 5 6 7

original
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

[1, 7]
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

[1, 3]
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

[3, 3]
3
r

4
r

5
r

7
r

9
r

10
r

Q
r

BIN-SEARCH(A, key , `, r)

1 while ` ≤ r
2 m = floor((`+ r)/2)
3 if A[m] equals key
4 return m
5 elseif A[m] > key
6 r = m − 1 // cut out end
7 elseif A[m] < key
8 ` = m + 1 // cut out begin
9 return NIL

SEQ-SEARCH-SHORTCUT(A, key , `, r)

1 for i = ` to r
2 // return when found
3 if A[i] equals key
4 return i
5 elseif A[i] > key
6 return NIL
7 return NIL

BIN-SEARCH: multiple shortcuts
by quickly checking the middle

18/26

Data Structure GET (search) in ordered array

Binary Search in Open Source

BIN-SEARCH(A, key , `, r)

1 while ` ≤ r
2 m = floor((`+ r)/2)
3 if A[m] equals key
4 return m
5 elseif A[m] > key
6 r = m − 1 // cut out end
7 elseif A[m] < key
8 ` = m + 1 // cut out begin
9 return NIL

“must-know” for programmers

java.util.Arrays
private static int

binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid =

(low + high) >>> 1;
int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid;
// key found

}
return -(low + 1);
// key not found.

}

19/26

Data Structure GET (search) in ordered array

Fun Time
Consider running the BIN-SEARCH algorithm on an ordered
array of size 15 with some key that is not in the array. How many
comparisons does BIN-SEARCH take before returning NIL?

1 1
2 2
3 4
4 15

Reference Answer: 3

The first comparison is a shortcut that leaves
only 7 remaining elements; the second
leaves 3; the third leaves 1; the fourth
eliminates all possibilities.

20/26

Data Structure GET (search) in ordered array

Fun Time
Consider running the BIN-SEARCH algorithm on an ordered
array of size 15 with some key that is not in the array. How many
comparisons does BIN-SEARCH take before returning NIL?

1 1
2 2
3 4
4 15

Reference Answer: 3

The first comparison is a shortcut that leaves
only 7 remaining elements; the second
leaves 3; the third leaves 1; the fourth
eliminates all possibilities.

20/26

why data structures and algorithms

Data Structure why data structures and algorithms

Why Data Structures and Algorithms?
good program: proper use of resources

Space Resources
• memory
• disk(s)
• transmission bandwidth

—usually cared by data structure

Computation Resources
• CPU(s)
• GPU(s)
• computation power

—usually cared by algorithm

Other Resources
• manpower
• budget

—usually cared by management

data structures and algorithms: for writing good program

22/26

Data Structure why data structures and algorithms

Proper Use: Trade-off of Different Factors

faster GET ⇐⇒ slower INSERT

and/or maintenance

more space ⇐⇒ faster computation

harder to implement/debug ⇐⇒ faster computation

good program needs understanding trade-off

23/26

Data Structure why data structures and algorithms

Programming 6= Coding
programming :: building house ∼ coding :: construction work

Introduction to C Data Structures and Algorithms
requirement simple simple

analysis simple simple
design simple ?
coding ?
proof none
test simple ?

debug ?

data structures and algorithms:
moving from coding to programming

24/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when
compared with an unordered one with the same number of
elements?

1 faster GET

2 faster INSERT

3 more space
4 none of the other choices

Reference Answer: 1

An ordered array allows faster GET by
BIN-SEARCH.

25/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when
compared with an unordered one with the same number of
elements?

1 faster GET

2 faster INSERT

3 more space
4 none of the other choices

Reference Answer: 1

An ordered array allows faster GET by
BIN-SEARCH.

25/26

Data Structure why data structures and algorithms

Summary

Lecture 2: Data Structure
definition of data structure

organize data with access/maintenance algorithms
ordered array as data structure

insert by cut-in, remove by fill-in
GET (search) in ordered array

binary search using order for shortcuts
why data structures and algorithms

study trade-off to move from coding to programming

• next: tools for analyzing/studying trade-off

26/26

	Data Structure
	definition of data structure
	ordered array as data structure
	Get (search) in ordered array
	why data structures and algorithms

