Machine Learning Techniques

Lecture 15：Matrix Factorization
Hsuan－Tien Lin（林軒田）
htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University （國立台灣大學資訊工程系）

Roadmap

(1) Embedding Numerous Features: Kernel Models
(2) Combining Predictive Features: Aggregation Models
(3) Distilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network
 linear aggregation of distance-based similarities using k-Means clustering for prototype finding

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
- Basic Matrix Factorization
- Stochastic Gradient Descent
- Summary of Extraction Models

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
- 100,480,507 ratings that 480,189 users gave to 17,770 movies
- 10% improvement $=1$ million dollar prize

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
- 100,480,507 ratings that 480,189 users gave to 17,770 movies
- 10% improvement $=1$ million dollar prize
- data \mathcal{D}_{m} for m-th movie:

$$
\left\{\left(\tilde{\mathbf{x}}_{n}=(n), y_{n}=r_{n m}\right): \text { user } n \text { rated movie } m\right\}
$$

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
- 100,480,507 ratings that 480,189 users gave to 17,770 movies
- 10% improvement $=1$ million dollar prize
- data \mathcal{D}_{m} for m-th movie:

$$
\left\{\left(\tilde{\mathbf{x}}_{n}=(n), y_{n}=r_{n m}\right): \text { user } n \text { rated movie } m\right\}
$$

—abstract feature $\tilde{\mathbf{x}}_{n}=(n)$

Recommender System Revisited

- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
- 100,480,507 ratings that 480,189 users gave to 17,770 movies
- 10% improvement $=1$ million dollar prize
- data \mathcal{D}_{m} for m-th movie:

$$
\left\{\left(\tilde{\mathbf{x}}_{n}=(n), y_{n}=r_{n m}\right): \text { user } n \text { rated movie } m\right\}
$$

—abstract feature $\tilde{\mathbf{x}}_{n}=(n)$
how to learn our preferences from data?

Binary Vector Encoding of Categorical Feature

 $\tilde{\mathbf{x}}_{n}=(n):$ user IDs, such as $1126,5566,6211, \ldots$
Binary Vector Encoding of Categorical Feature

$\tilde{\mathbf{x}}_{n}=(n)$: user IDs, such as $1126,5566,6211, \ldots$
-called categorical features

Binary Vector Encoding of Categorical Feature $\tilde{\mathbf{x}}_{n}=(n):$ user IDs, such as $1126,5566,6211, \ldots$ -called categorical features

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O

Binary Vector Encoding of Categorical Feature $\tilde{\mathbf{x}}_{n}=(n)$: user IDs, such as $1126,5566,6211, \ldots$ -called categorical features

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...

Binary Vector Encoding of Categorical Feature

$\tilde{\mathbf{x}}_{n}=(n):$ user IDs, such as $1126,5566,6211, \ldots$

-called categorical features

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features

Binary Vector Encoding of Categorical Feature

$$
\begin{gathered}
\tilde{\mathbf{x}}_{n}=(n): \text { user IDs, such as } 1126,5566,6211, \ldots \\
\\
\text {-called categorical features }
\end{gathered}
$$

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
- linear models

Binary Vector Encoding of Categorical Feature

$$
\begin{gathered}
\tilde{\mathbf{x}}_{n}=(n): \text { user IDs, such as } 1126,5566,6211, \ldots \\
\\
\text {-called categorical features }
\end{gathered}
$$

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
- linear models
- extended linear models such as NNet

Binary Vector Encoding of Categorical Feature

$$
\begin{gathered}
\tilde{\mathbf{x}}_{n}=(n): \text { user IDs, such as } 1126,5566,6211, \ldots \\
\\
\text {-called categorical features }
\end{gathered}
$$

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
- linear models
- extended linear models such as NNet -except for decision trees

Binary Vector Encoding of Categorical Feature

$$
\begin{gathered}
\tilde{\mathbf{x}}_{n}=(n): \text { user IDs, such as } 1126,5566,6211, \ldots \\
\\
\text {-called categorical features }
\end{gathered}
$$

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
- linear models
- extended linear models such as NNet
-except for decision trees
- need: encoding (transform) from categorical to numerical

Binary Vector Encoding of Categorical Feature

$$
\begin{gathered}
\tilde{\mathbf{x}}_{n}=(n): \text { user IDs, such as } 1126,5566,6211, \ldots \\
\\
\text {-called categorical features }
\end{gathered}
$$

- categorical features, e.g.
- IDs
- blood type: A, B, AB, O
- programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
- linear models
- extended linear models such as NNet
-except for decision trees
- need: encoding (transform) from categorical to numerical
binary vector encoding:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{\top}, \mathrm{B}=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]^{\top},{ }^{T} \\
& \mathrm{AB}=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}, \mathrm{O}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
\end{aligned}
$$

Feature Extraction from Encoded Vector

 encoded data \mathcal{D}_{m} for m-th movie:$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary} \operatorname{VectorEncoding}(n), y_{n}=r_{n m}\right)\right.$: user n rated movie $\left.m\right\}$

Feature Extraction from Encoded Vector

 encoded data \mathcal{D}_{m} for m-th movie:$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary}\right.\right.$ VectorEncoding $\left.(n), y_{n}=r_{n m}\right)$: user n rated movie $\left.m\right\}$ or, joint data \mathcal{D}
$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{\top}\right)\right\}$

Feature Extraction from Encoded Vector

 encoded data \mathcal{D}_{m} for m-th movie:$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary}\right.\right.$ VectorEncoding $\left.(n), y_{n}=r_{n m}\right)$: user n rated movie $\left.m\right\}$ or, joint data \mathcal{D}
$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary}\right.\right.$ VectorEncoding $\left.\left.(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{\top}\right)\right\}$
idea: try feature extraction using $N-\tilde{d}-M$ NNet without all $x_{0}^{(\ell)}$

Feature Extraction from Encoded Vector

 encoded data \mathcal{D}_{m} for m-th movie:$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary}\right.\right.$ VectorEncoding $\left.(n), y_{n}=r_{n m}\right)$: user n rated movie $\left.m\right\}$ or, joint data \mathcal{D}
$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{\top}\right)\right\}$
idea: try feature extraction using $N-\tilde{d}-M$ NNet without all $x_{0}^{(())}$

is tanh necessary? :-)

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{T}\right)\right\}$
'Linear Network' Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{Binary} \operatorname{VectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{llllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots \\ n_{n M}\end{array}\right]^{T}\right)\right\}$

- rename: for $\left[w_{n i}^{(1)}\right]$ and for $\left[w_{i m}^{(2)}\right]$

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$
- hypothesis: $\mathbf{h (x) =}$ x

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$
- hypothesis: $\mathrm{h}(\mathrm{x})=\mathrm{W}^{\top} \mathrm{Vx}$

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{lllllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots & r_{n M}\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$
- hypothesis: $\mathrm{h}(\mathrm{x})=\mathrm{W}^{\top} \mathrm{Vx}$
- per-user output: $\mathrm{h}\left(\mathbf{x}_{n}\right)=\mathrm{W}^{\top}$

'Linear Network’ Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{llllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots \\ n M\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$
- hypothesis: $\mathbf{h}(\mathbf{x})=W^{\top} \mathbf{V} \mathbf{x}$
- per-user output: $\mathrm{h}\left(\mathbf{x}_{n}\right)=\mathrm{W}^{\top} \mathbf{v}_{n}$, where \mathbf{v}_{n} is n-th column of V

'Linear Network' Hypothesis

$\left\{\left(\mathbf{x}_{n}=\operatorname{BinaryVectorEncoding}(n), \mathbf{y}_{n}=\left[\begin{array}{llllll}r_{n 1} & ? & ? & r_{n 4} & r_{n 5} & \ldots \\ n M\end{array}\right]^{T}\right)\right\}$

- rename: V^{\top} for $\left[w_{n i}^{(1)}\right]$ and W for $\left[w_{i m}^{(2)}\right]$
- hypothesis: $\mathbf{h}(\mathbf{x})=W^{\top} \mathbf{V x}$
- per-user output: $\mathrm{h}\left(\mathbf{x}_{n}\right)=\mathrm{W}^{\top} \mathbf{v}_{n}$, where \mathbf{v}_{n} is n-th column of V
linear network for recommender system: learn V and W

Fun Time

For N users, M movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $\mathrm{h}(\mathbf{x})=\mathrm{W}^{\top} \mathrm{Vx}$?
(1) $N+M+\tilde{d}$
(2) $N \cdot M \cdot \tilde{d}$
(3) $(N+M) \cdot \tilde{d}$
(4) $(N \cdot M)+\tilde{d}$

Fun Time

For N users, M movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $\mathrm{h}(\mathrm{x})=\mathrm{W}^{\top} \mathrm{Vx}$?
(1) $N+M+\tilde{d}$
(2) $N \cdot M \cdot \tilde{d}$
(3) $(N+M) \cdot \tilde{d}$
(4) $(N \cdot M)+\tilde{d}$

Reference Answer: (3)
simply $N \cdot \tilde{d}$ for V^{\top} and $\tilde{d} \cdot M$ for W

Linear Network: Linear Model Per Movie

linear network:

$$
h(\mathbf{x})=W^{\top} \underbrace{V \mathbf{x}}_{\Phi(x)}
$$

Linear Network: Linear Model Per Movie

linear network:

$$
h(x)=W^{\top} \underbrace{V x}_{\Phi(x)}
$$

-for m-th movie, just linear model $h_{m}(\mathbf{x})=\mathbf{w}_{m}^{T} \boldsymbol{\Phi}(\mathbf{x})$ subject to shared transform $\boldsymbol{\Phi}$

Linear Network: Linear Model Per Movie

linear network:

$$
h(x)=W^{\top} \underbrace{V x}_{\Phi(x)}
$$

—for m-th movie, just linear model $h_{m}(\mathbf{x})=\mathbf{w}_{m}^{T} \boldsymbol{\Phi}(\mathbf{x})$ subject to shared transform $\boldsymbol{\Phi}$

- for every \mathcal{D}_{m}, want $r_{n m}=y_{n} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}$

Linear Network: Linear Model Per Movie

linear network:

$$
h(x)=W^{\top} \underbrace{V x}_{\Phi(x)}
$$

—for m-th movie, just linear model $h_{m}(\mathbf{x})=\mathbf{w}_{m}^{T} \boldsymbol{\Phi}(\mathbf{x})$ subject to shared transform $\boldsymbol{\Phi}$

- for every \mathcal{D}_{m}, want $r_{n m}=y_{n} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}$
- $E_{\text {in }}$ over all \mathcal{D}_{m} with squared error measure:

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right)=\frac{1}{\sum_{m=1}^{M}\left|\mathcal{D}_{m}\right|} \sum_{\text {user } n \text { rated movie } m}(\quad)^{2}
$$

Linear Network: Linear Model Per Movie

linear network:

$$
h(x)=W^{\top} \underbrace{V x}_{\Phi(x)}
$$

—for m-th movie, just linear model $h_{m}(\mathbf{x})=\mathbf{w}_{m}^{T} \boldsymbol{\Phi}(\mathbf{x})$ subject to shared transform $\boldsymbol{\Phi}$

- for every \mathcal{D}_{m}, want $r_{n m}=y_{n} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}$
- $E_{\text {in }}$ over all \mathcal{D}_{m} with squared error measure:

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right)=\frac{1}{\sum_{m=1}^{M}\left|\mathcal{D}_{m}\right|} \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}
$$

Linear Network: Linear Model Per Movie

 linear network:$$
h(x)=W^{\top} \underbrace{V x}_{\Phi(x)}
$$

—for m-th movie, just linear model $h_{m}(\mathbf{x})=\mathbf{w}_{m}^{T} \boldsymbol{\Phi}(\mathbf{x})$
subject to shared transform $\boldsymbol{\Phi}$

- for every \mathcal{D}_{m}, want $r_{n m}=y_{n} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}$
- $E_{\text {in }}$ over all \mathcal{D}_{m} with squared error measure:

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right)=\frac{1}{\sum_{m=1}^{M}\left|\mathcal{D}_{m}\right|} \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}
$$

linear network: transform and linear modelS jointly learned from all \mathcal{D}_{m}

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m}
$$

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$
user $_{1}$	100	80	\cdots	$?$
user $_{2}$	$?$	70	\cdots	90
\cdots	\cdots	\cdots	\cdots	\cdots
user $_{N}$	$?$	60	\cdots	0

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$		
user $_{1}$	100	80	\cdots	$?$		
user $_{2}$	$?$	70	\cdots	90		
\cdots	\cdots	\cdots	\cdots	\cdots		
user $_{N}$	$?$	60	\cdots	0	\approx	$-\mathbf{v}_{1}^{T}-$
:---:						
$-\mathbf{v}_{2}^{T}-$						
\cdots						
$-\mathbf{v}_{N}^{T}-$						

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$
user $_{1}$	100	80	\cdots	$?$
user $_{2}$	$?$	70	\cdots	90
\cdots	\cdots	\cdots	\cdots	\cdots
user $_{N}$	$?$	60	\cdots	0

\approx| \mathbf{V}^{\top} |
| :---: |
| $\left.\frac{-\mathbf{v}_{1}^{T}-}{\left\lvert\, \frac{\mathbf{v}_{2}^{T}-}{\cdots^{\prime}}\right.} \right\rvert\,$$-\mathbf{v}_{N}^{T}-$ |

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{\top} \mathbf{v}_{n}=\mathbf{v}_{n}^{\top} \mathbf{w}_{m} \Longleftrightarrow \mathrm{R} \approx \mathrm{~V}^{\top} \mathrm{W}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$
user $_{1}$	100	80	\cdots	$?$
user $_{2}$	$?$	70	\cdots	90
\cdots	\cdots	\cdots	\cdots	\cdots
user $_{N}$	$?$	60	\cdots	0

\approx| \mathbf{V}^{T} |
| :---: |
| $\frac{-\mathbf{v}_{1}^{T}-}{}$$-\mathbf{v}_{2}^{T}-$
 $-\mathbf{v}_{N}^{T}-$ |

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m} \Longleftrightarrow \mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$
user $_{1}$	100	80	\cdots	$?$
user $_{2}$	$?$	70	\cdots	90
\cdots	\cdots	\cdots	\cdots	\cdots
user $_{N}$	$?$	60	\cdots	0

\approx| \mathbf{V}^{T} |
| :---: |
| $\frac{-\mathbf{v}_{1}^{T}-}{}$$-\mathbf{v}_{2}^{T}-$
 $-\mathbf{v}_{N}^{T}-$ |

Matrix Factorization

$$
r_{n m} \approx \mathbf{w}_{m}^{T} \mathbf{v}_{n}=\mathbf{v}_{n}^{T} \mathbf{w}_{m} \Longleftrightarrow \mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

R	movie $_{1}$	movie $_{2}$	\cdots	movie $_{M}$
user $_{1}$	100	80	\cdots	$?$
user $_{2}$	$?$	70	\cdots	90
\cdots	\cdots	\cdots	\cdots	\cdots
user $_{N}$	$?$	60	\cdots	0

\approx	V^{\top}
	$-\mathbf{v}_{1}^{T}-$
	$-\mathbf{v}_{2}^{T}-$
	\cdots
	$-\mathbf{v}_{N}^{T}-$

movie

Matrix Factorization Model learning:
 known rating
 \rightarrow learned factors \mathbf{v}_{n} and \mathbf{w}_{m}
 \rightarrow unknown rating prediction

similar modeling can be used for other abstract features

Matrix Factorization Learning

$$
\min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto
$$

user n rated movie m

Matrix Factorization Learning

$$
\begin{aligned}
& \min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto
\end{aligned}
$$

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathbf{W}, \mathrm{V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user }} \sum_{\text {rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing \mathbf{w}_{m}

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathbf{w}, \mathrm{V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m}

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathbf{W}, \mathrm{V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m} -simply per-movie (per- \mathcal{D}_{m}) linear regression without w_{0}

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathbf{w}, \mathrm{V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m} -simply per-movie (per- \mathcal{D}_{m}) linear regression without w_{0}
- when \mathbf{w}_{m} fixed, minimizing \mathbf{v}_{n} ?

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathbf{w}, \mathrm{V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m} -simply per-movie (per- \mathcal{D}_{m}) linear regression without w_{0}
- when \mathbf{w}_{m} fixed, minimizing \mathbf{v}_{n} ?

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m} -simply per-movie (per- \mathcal{D}_{m}) linear regression without w_{0}
- when \mathbf{w}_{m} fixed, minimizing \mathbf{v}_{n} ?
-per-user linear regression without v_{0} by symmetry between users/movies

Matrix Factorization Learning

$$
\begin{aligned}
\min _{\mathrm{W}, \mathrm{~V}} E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) & \propto \sum_{\text {user } n \text { rated movie } m}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2} \\
& =\sum_{m=1}^{M}\left(\sum_{\left(\mathbf{x}_{n}, r_{n m}\right) \in \mathcal{D}_{m}}\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}\right)
\end{aligned}
$$

- two sets of variables:
can consider alternating minimization, remember? :-)
- when \mathbf{v}_{n} fixed, minimizing $\mathbf{w}_{m} \equiv$ minimize $E_{\text {in }}$ within \mathcal{D}_{m} -simply per-movie (per- \mathcal{D}_{m}) linear regression without w_{0}
- when \mathbf{w}_{m} fixed, minimizing \mathbf{v}_{n} ?
-per-user linear regression without v_{0}
by symmetry between users/movies
called alternating least squares algorithm

Alternating Least Squares

Alternating Least Squares

(2) alternating optimization of $E_{\text {in }}$: repeatedly

until converge

Alternating Least Squares

Alternating Least Squares

(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}$: update \mathbf{w}_{m} by m-th-movie linear regression on $\left\{\left(\mathbf{v}_{n}, r_{n m}\right)\right\}$

until converge

Alternating Least Squares

Alternating Least Squares

(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}$: update \mathbf{w}_{m} by m-th-movie linear regression on $\left\{\left(\mathbf{v}_{n}, r_{n m}\right)\right\}$
(2) optimize $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}$:
update \mathbf{v}_{n} by n-th-user linear regression on $\left\{\left(\mathbf{w}_{m}, r_{n m}\right)\right\}$ until converge

Alternating Least Squares

Alternating Least Squares

(1) initialize \tilde{d} dimension vectors $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$
(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}$: update \mathbf{w}_{m} by m-th-movie linear regression on $\left\{\left(\mathbf{v}_{n}, r_{n m}\right)\right\}$
(2) optimize $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}$:
update \mathbf{v}_{n} by n-th-user linear regression on $\left\{\left(\mathbf{w}_{m}, r_{n m}\right)\right\}$

until converge

- initialize: usually just randomly

Alternating Least Squares

Alternating Least Squares

(1) initialize \tilde{d} dimension vectors $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$
(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}$: update \mathbf{w}_{m} by m-th-movie linear regression on $\left\{\left(\mathbf{v}_{n}, r_{n m}\right)\right\}$
(2) optimize $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}$:
update \mathbf{v}_{n} by n-th-user linear regression on $\left\{\left(\mathbf{w}_{m}, r_{n m}\right)\right\}$ until converge

- initialize: usually just randomly
- converge: guaranteed as $E_{\text {in }}$ decreases during alternating minimization

Alternating Least Squares

Alternating Least Squares

(1) initialize \tilde{d} dimension vectors $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$
(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}$: update \mathbf{w}_{m} by m-th-movie linear regression on $\left\{\left(\mathbf{v}_{n}, r_{n m}\right)\right\}$
(2) optimize $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}$: update \mathbf{v}_{n} by n-th-user linear regression on $\left\{\left(\mathbf{w}_{m}, r_{n m}\right)\right\}$ until converge

- initialize: usually just randomly
- converge: guaranteed as $E_{\text {in }}$ decreases during alternating minimization
alternating least squares: the 'tango' dance between users/movies

Linear Autoencoder versus Matrix Factorization

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$\mathrm{X} \approx \mathrm{W}\left(\mathrm{W}^{\top} \mathrm{X}\right)$

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}-d$ linear NNet

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}-d$ linear NNet

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special d - \tilde{d} - d linear NNet
- error measure:
squared on all $x_{n i}$

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}-d$ linear NNet
- error measure: squared on all $x_{n i}$

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{T} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}$ - d linear NNet
- error measure: squared on all $x_{n i}$
- solution: global optimal at eigenvectors of $X^{T} X$

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}-d$ linear NNet
- error measure: squared on all $x_{n i}$
- solution: global optimal at eigenvectors of $X^{T} X$

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$
- solution: local optimal via alternating least squares

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special $d-\tilde{d}-d$ linear NNet
- error measure: squared on all $x_{n i}$
- solution: global optimal at eigenvectors of $X^{T} X$
- usefulness: extract dimension-reduced features

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$
- solution: local optimal via alternating least squares

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special d - \tilde{d} - d linear NNet
- error measure: squared on all $x_{n i}$
- solution: global optimal at eigenvectors of $X^{T} X$
- usefulness: extract dimension-reduced features

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$
- solution: local optimal via alternating least squares
- usefulness: extract hidden user/movie features

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

$$
\mathrm{X} \approx \mathrm{~W}\left(\mathrm{~W}^{\top} \mathrm{X}\right)
$$

- motivation:
special d - \tilde{d} - d linear NNet
- error measure: squared on all $x_{n i}$
- solution: global optimal at eigenvectors of $X^{T} X$
- usefulness: extract dimension-reduced features

Matrix Factorization

$$
\mathrm{R} \approx \mathrm{~V}^{T} \mathrm{~W}
$$

- motivation:
$N-\tilde{d}-M$ linear NNet
- error measure: squared on known $r_{n m}$
- solution: local optimal via alternating least squares
- usefulness: extract hidden user/movie features
linear autoencoder三 special matrix factorization of complete X

Fun Time

How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?
(1) number of movies M
(2) number of users N
(3) $M+N$
(4) $M \cdot N$

Fun Time

How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?
(1) number of movies M
(2) number of users N
(3) $M+N$
(4) $M \cdot N$

Reference Answer: 3

simply M per-movie problems and N per-user problems

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

SGD: randomly pick one example within the \sum \& update with gradient to per-example err, remember? :-)

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

SGD: randomly pick one example within the \sum \& update with gradient to per-example err, remember? :-)

- 'efficient' per iteration

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

SGD: randomly pick one example within the \sum \& update with gradient to per-example err, remember? :-)

- 'efficient' per iteration
- simple to implement

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

SGD: randomly pick one example within the \sum \& update with gradient to per-example err, remember? :-)

- 'efficient' per iteration
- simple to implement
- easily extends to other err

Another Possibility: Stochastic Gradient Descent

$$
E_{\text {in }}\left(\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}\right) \propto \sum_{\text {user } n \text { rated movie } m} \underbrace{\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)^{2}}_{\text {err(user } \left.n, \text { movie } m, \text { rating } r_{n m}\right)}
$$

SGD: randomly pick one example within the \sum \& update with gradient to per-example err, remember? :-)

- 'efficient' per iteration
- simple to implement
- easily extends to other err

next: SGD for matrix factorization

Gradient of Per-Example Error Function

$$
\text { err(user } \left.n \text {, movie } m \text {, rating } r_{n m}\right)=(\quad)^{2}
$$

Gradient of Per-Example Error Function

$$
\text { err(user } \left.n \text {, movie } m \text {, rating } r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}
$$

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=$

Gradient of Per-Example Error Function

err(user n, movie m, rating $r_{n m}$) $=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $r_{n m}$) $=\mathbf{0}$ unless $n=1126$

Gradient of Per-Example Error Function

err(user n, movie m, rating $r_{n m}$) $=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $r_{n m}$) $=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=$

Gradient of Per-Example Error Function

err(user n, movie m, rating $r_{n m}$) $=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $r_{n m}$) $=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$

Gradient of Per-Example Error Function

err(user n, movie m, rating $r_{n m}$) $=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\quad\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)$

Gradient of Per-Example Error Function

err(user n, movie m, rating $r_{n m}$) $=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right) \mathbf{w}_{m}$

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $r_{n m}$) $=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{w}_{m}$
$\nabla_{\mathbf{w}_{m}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $r_{n m}$) $=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{w}_{m}$
$\nabla_{\mathbf{w}_{m}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{v}_{n}$

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{w}_{m}$
$\nabla_{\mathbf{w}_{m}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right) \mathbf{v}_{n}$
per-example gradient

$$
\propto-(\quad)(
$$

)

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{w}_{m}$
$\nabla_{\mathbf{w}_{m}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{v}_{n}$

$$
\begin{aligned}
& \text { per-example gradient } \\
& \propto-(\text { residual })(\quad)
\end{aligned}
$$

Gradient of Per-Example Error Function

err(user n, movie m, rating $\left.r_{n m}\right)=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)^{2}$
$\nabla_{\mathbf{v}_{1126}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $n=1126$
$\nabla_{\mathbf{w}_{6211}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=\mathbf{0}$ unless $m=6211$
$\nabla_{\mathbf{v}_{n}} \quad \operatorname{err}\left(\right.$ user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{w}_{m}$
$\nabla_{\mathbf{w}_{m}} \quad$ err(user n, movie m, rating $\left.r_{n m}\right)=-2\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right) \mathbf{v}_{n}$

> per-example gradient $\propto-($ residual $)$ (the other feature vector $)$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\mathbf{v}_{n}^{\text {new }} \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta .
$$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\mathbf{v}_{n}^{\text {new }} \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{w}_{m}^{\text {old }}
$$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\begin{aligned}
\mathbf{v}_{n}^{\text {new }} & \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{w}_{m}^{\text {old }} \\
\mathbf{w}_{m}^{\text {new }} & \leftarrow \mathbf{w}_{m}^{\text {old }}+\eta \cdot \tilde{r}_{n m}
\end{aligned}
$$

SGD for Matrix Factorization

SGD for Matrix Factorization

for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{T} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\begin{aligned}
\mathbf{v}_{n}^{\text {new }} & \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{w}_{m}^{\text {old }} \\
\mathbf{w}_{m}^{\text {new }} & \leftarrow \mathbf{w}_{m}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{v}_{n}^{\text {old }}
\end{aligned}
$$

SGD for Matrix Factorization

SGD for Matrix Factorization

initialize \tilde{d} dimension vectors $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ randomly for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\begin{aligned}
& \mathbf{v}_{n}^{\text {new }} \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{w}_{m}^{\text {old }} \\
& \mathbf{w}_{m}^{\text {new }} \leftarrow \mathbf{w}_{m}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{v}_{n}^{\text {old }}
\end{aligned}
$$

SGD for Matrix Factorization

SGD for Matrix Factorization

initialize \tilde{d} dimension vectors $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ randomly for $t=0,1, \ldots, T$
(1) randomly pick (n, m) within all known $r_{n m}$
(2) calculate residual $\tilde{r}_{n m}=\left(r_{n m}-\mathbf{w}_{m}^{\top} \mathbf{v}_{n}\right)$
(3) SGD-update:

$$
\begin{aligned}
& \mathbf{v}_{n}^{\text {new }} \leftarrow \mathbf{v}_{n}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{w}_{m}^{\text {old }} \\
& \mathbf{w}_{m}^{\text {new }} \leftarrow \mathbf{w}_{m}^{\text {old }}+\eta \cdot \tilde{r}_{n m} \mathbf{v}_{n}^{\text {old }}
\end{aligned}
$$

SGD: perhaps most popular large-scale matrix factorization algorithm

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T^{\prime} iterations of SGD: only those T^{\prime} examples considered

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T^{\prime} iterations of SGD: only those T^{\prime} examples considered —learned $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ favoring those

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T^{\prime} iterations of SGD: only those T^{\prime} examples considered —learned $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ favoring those
- our idea: time-deterministic $\$$ GD that visits latter examples last

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T^{\prime} iterations of SGD: only those T^{\prime} examples considered —learned $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ favoring those
- our idea: time-deterministic $\$$ GD that visits latter examples last -consistent improvements of test performance

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last T^{\prime} iterations of SGD: only those T^{\prime} examples considered —learned $\left\{\mathbf{w}_{m}\right\},\left\{\mathbf{v}_{n}\right\}$ favoring those
- our idea: time-deterministic $\$$ GD that visits latter examples last -consistent improvements of test performance
if you understand the behavior of techniques, easier to modify for your real-world use

Fun Time

If all \mathbf{w}_{m} and \mathbf{v}_{n} are initialized to the $\mathbf{0}$ vector, what will NOT happen in SGD for matrix factorization?
(1) all \mathbf{w}_{m} are always 0
(2) all \mathbf{v}_{n} are always $\mathbf{0}$
(3) every residual $\tilde{r}_{n m}=$ the original rating $r_{n m}$
(4) $E_{\text {in }}$ decreases after each SGD update

Fun Time

If all \mathbf{w}_{m} and \mathbf{v}_{n} are initialized to the $\mathbf{0}$ vector, what will NOT happen in SGD for matrix factorization?
(1) all \mathbf{w}_{m} are always 0
(2) all \mathbf{v}_{n} are always $\mathbf{0}$
(3) every residual $\tilde{r}_{n m}=$ the original rating $r_{n m}$
4. $E_{\text {in }}$ decreases after each SGD update

Reference Answer: (4)

The $\mathbf{0}$ feature vectors provides a per-example gradient of $\mathbf{0}$ for every example. So $E_{\text {in }}$ cannot be further decreased.

Map of Extraction Models

extraction models: feature transform Φ as hidden variables
in addition to linear model

Map of Extraction Models

extraction models: feature transform Φ as hidden variables
in addition to linear model

Neural Network/
 Deep Learning

weights $w_{i j}^{(\ell)}$;
weights $w_{i j}^{(L)}$

Map of Extraction Models

extraction models: feature transform Φ as hidden variables
in addition to linear model

Neural Netw Deep Learn weights $w_{i j}^{(\ell)}$;

weights $w_{i j}^{(L)}$

RBF Network

RBF centers μ_{m};
weights β_{m}

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Neural Netw Deep Learn weights $w_{i j}^{(\ell)}$;

weights $w_{i j}^{(L)}$

RBF Network

RBF centers μ_{m};
weights β_{m}

Matrix Factorization
user features \mathbf{v}_{n}; movie features \mathbf{w}_{m}

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient Boosting

hypotheses g_{t}; weights α_{t}

Neural Network/
 Deep Learning

weights $w_{i j}^{(\ell)}$;
weights $w_{i j}^{(L)}$

RBF Network

RBF centers μ_{m};
weights β_{m}

Matrix Factorization
user features \mathbf{v}_{n}; movie features \mathbf{w}_{m}

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient Boosting

hypotheses g_{t}; weights α_{t}

Neural Netw Deep Learni weights $w_{i j}^{(\ell)}$;

weights $w_{i j}^{(L)}$

RBF Network

RBF centers μ_{m};
weights β_{m}

Matrix Factorization
user features \mathbf{v}_{n}; movie features \mathbf{w}_{m}

k Nearest Neighbor

\mathbf{x}_{n}-neighbor RBF; weights y_{n}

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient Boosting

hypotheses g_{t}; weights α_{t}

Neural Netw Deep Learni weights $w_{i j}^{(\ell)}$;

weights $w_{i j}^{(L)}$

RBF Network

RBF centers μ_{m};
weights β_{m}

Matrix Factorization
user features \mathbf{v}_{n}; movie features \mathbf{w}_{m}

> k Nearest Neighbor
> \mathbf{x}_{n}-neighbor RBF; weights y_{n}
extraction models: a rich family

Map of Extraction Techniques

Adaptive/Gradient Boosting

 functional gradient descent
Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/
 Deep Learning

SGD (backprop)

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/
 Deep Learning

SGD (backprop)

autoencoder

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/ Deep Learning	RBF Network
SGD (backprop)	
autoencoder	k-means clustering

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/ Deep Learning	RBF Network
SGD (backprop)	
autoencoder	k-means clustering

Matrix Factorization

SGD
alternating leastSQR

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/ Deep Learning	RBF Network
SGD (backprop)	
autoencoder	k-means clustering
	k Nearest Neighbor
	lazy learning :-)

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/ Deep Learning	RBF Network
SGD (backprop)	
autoencoder	k-means clustering
	k Nearest Neighbor
	lazy learning :-)

Matrix Factorization

SGD
alternating leastSQR

```
k Nearest Neighbor
lazy learning :-)
```

extraction techniques: quite diverse

Pros and Cons of Extraction Models

Neural Network/ Deep Learning

Cons

Pros and Cons of Extraction Models

```
Neural Network/
Deep Learning
```


Pros

- 'easy':
reduces human burden in designing features

RBF Network
Matrix Factorization

Cons

Pros and Cons of Extraction Models

```
Neural Network/
Deep Learning
```


Pros

- 'easy':
reduces human burden in designing features

Cons

- 'hard':
non-convex optimization problems in general

Pros and Cons of Extraction Models

```
Neural Network/
Deep Learning
```

- powerful:
if enough hidden variables considered
- 'easy':
reduces human burden in designing features

Matrix Factorization
RBF Network

Cons

- 'hard':
non-convex optimization problems in general

Pros and Cons of Extraction Models

```
Neural Network/
Deep Learning
```

Matrix Factorization

Cons

- 'hard':
non-convex optimization problems in general
- overfitting:
needs proper regularization/validation

Pros and Cons of Extraction Models

```
Neural Network/
Deep Learning
```

Matrix Factorization

Cons

- 'hard':
non-convex optimization problems in general
- overfitting:
needs proper
regularization/validation

be careful when applying extraction models

Fun Time

Which of the following extraction model extracts Gaussian centers by k-means and aggregate the Gaussians linearly?
(1) RBF Network

2 Deep Learning
(3) Adaptive Boosting
(4) Matrix Factorization

Fun Time

Which of the following extraction model extracts Gaussian centers by k-means and aggregate the Gaussians linearly?
(1) RBF Network

2 Deep Learning
(3) Adaptive Boosting
(4) Matrix Factorization

Reference Answer: 1

Congratulations on being an expert in extraction models! :-)

Summary

(1) Embedding Numerous Features: Kernel Models
(2) Combining Predictive Features: Aggregation Models
(3) Distilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
feature extraction from binary vector encoding
- Basic Matrix Factorization alternating least squares between user/movie
- Stochastic Gradient Descent efficient and easily modified for practical use
- Summary of Extraction Models powerful thus need careful use
- next: closing remarks of techniques

