Machine Learning Techniques (機器學習技法)

Lecture 7: Blending and Bagging

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 6: Support Vector Regression

kernel ridge regression (dense) via ridge regression + representer theorem; support vector regression (sparse) via regularized tube error + Lagrange dual

2 Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation
- Uniform Blending
- Linear and Any Blending
- Bagging (Bootstrap Aggregation)

Oistilling Implicit Features: Extraction Models

Motivation of Aggregation

An Aggregation Story

Motivation of Aggregation

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

You can . . .

select the most trust-worthy friend from their usual performance

Motivation of Aggregation

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

You can . . .

 select the most trust-worthy friend from their usual performance —validation!

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!
- mix the predictions from all your friends non-uniformly —let them vote, but give some more ballots

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!
- mix the predictions from all your friends non-uniformly —let them vote, but give some more ballots
- combine the predictions conditionally
 —if [t satisfies some condition] give some ballots to friend t

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!
- mix the predictions from all your friends non-uniformly —let them vote, but give some more ballots
- combine the predictions conditionally
 —if [t satisfies some condition] give some ballots to friend t

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

You can . . .

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!
- mix the predictions from all your friends non-uniformly —let them vote, but give some more ballots
- combine the predictions conditionally
 —if [t satisfies some condition] give some ballots to friend t

aggregation models: **mix** or **combine** hypotheses (for better performance)

Hsuan-Tien Lin (NTU CSIE)

. . .

Motivation of Aggregation

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance
- mix the predictions from all your friends uniformly
- mix the predictions from all your friends non-uniformly

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly
- mix the predictions from all your friends non-uniformly

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$
- mix the predictions from all your friends non-uniformly

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

• mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$

Aggregation with Math Notations

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly $\sum_{i=1}^{T} \frac{1}{i}$

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
- combine the predictions conditionally

Aggregation with Math Notations

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t =$
- combine the predictions conditionally

Aggregation with Math Notations

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- **mix** the predictions from all your friends **non-uniformly** $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t = 1$
- combine the predictions conditionally

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right)$ with $\alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t = 1$

• combine the predictions conditionally $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right)$ with $\alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t = 1$
- combine the predictions conditionally $C(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{T} \mathbf{x}_{i}(\mathbf{x}) - \mathbf{x}_{i}(\mathbf{x})\right)$

 $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$

• include **non-uniformly**: $q_t(\mathbf{x}) =$

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right)$ with $\alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t = 1$
- combine the predictions conditionally $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$

• include **non-uniformly**: $q_t(\mathbf{x}) = \alpha_t$

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$
- mix the predictions from all your friends uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- mix the predictions from all your friends non-uniformly $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right)$ with $\alpha_t \ge 0$
 - include select: $\alpha_t = \llbracket E_{val}(g_t^-) \text{ smallest} \rrbracket$
 - include uniformly: $\alpha_t = 1$

• combine the predictions conditionally $Q(u) = \operatorname{sign} \left(\sum_{i=1}^{T} \sigma_i(u) - \sigma_i(u) \right) u$

 $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$

• include **non-uniformly**: $q_t(\mathbf{x}) = \alpha_t$

aggregation models: a rich family

Hsuan-Tien Lin (NTU CSIE)

Recall: Selection by Validation

 $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} E_{val}(g_t^-)$

Motivation of Aggregation

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x})$$
 with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} rac{\mathcal{E}_{\mathsf{val}}(g_t^-)}{\mathcal{E}_{\mathsf{val}}(g_t^-)}$

• simple and popular

Motivation of Aggregation

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x})$$
 with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} rac{\mathcal{E}_{\mathsf{val}}(g_t^-)}{\mathcal{E}_{\mathsf{val}}(g_t^-)}$

- simple and popular
- what if use $E_{in}(g_t)$ instead of $E_{val}(g_t^-)$?

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x})$$
 with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} \frac{\mathcal{E}_{\mathsf{val}}(g_t^-)}{\mathcal{E}_{\mathsf{val}}(g_t^-)}$

- simple and popular
- what if use E_{in}(g_t) instead of E_{val}(g_t⁻)?
 complexity price on d_{vc}, remember? :-)

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x})$$
 with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} \frac{E_{\mathsf{val}}(g_t^-)}{E_{\mathsf{val}}(g_t^-)}$

- simple and popular
- what if use E_{in}(g_t) instead of E_{val}(g_t⁻)?
 complexity price on d_{vc}, remember? :-)
- need one strong g⁻_t to guarantee small E_{val} (and small E_{out})

Recall: Selection by Validation

 $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} \frac{E_{val}(g_t^-)}{E_{val}(g_t^-)}$

- simple and popular
- what if use E_{in}(g_t) instead of E_{val}(g_t⁻)?
 complexity price on d_{vc}, remember? :-)
- need one strong g⁻_t to guarantee small E_{val} (and small E_{out})

selection: rely on one strong hypothesis aggregation: can we do better with many (possibly weaker) hypotheses?

Motivation of Aggregation Why Might Aggregation Work?

Motivation of Aggregation Why Might Aggregation Work?

 mix different weak hypotheses uniformly —G(x) 'strong'

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'
- aggregation
 ⇒ feature transform (?)

Motivation of Aggregation

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'

Motivation of Aggregation

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'
- aggregation ⇒ feature transform (?)

 mix different random-PLA hypotheses uniformly —G(x) 'moderate'

Motivation of Aggregation

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'

- mix different random-PLA hypotheses uniformly —G(x) 'moderate'
- aggregation
 regularization (?)

Motivation of Aggregation

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'

- mix different random-PLA hypotheses uniformly —G(x) 'moderate'
- aggregation → regularization (?)

proper aggregation \implies better performance

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When mixing the three hypotheses uniformly, what is the resulting G(x)?

1 $2 [[|x| \le 1]] - 1$ **2** $2 [[|x| \ge 1]] - 1$ **3** $2 [[x \le -1]] - 1$ **4** 2 [[x > +1]] - 1

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When mixing the three hypotheses uniformly, what is the resulting G(x)?

1 $2 [[|x| \le 1]] - 1$ **2** $2 [[|x| \ge 1]] - 1$ **3** $2 [[x \le -1]] - 1$ **4** 2 [[x > +1]] - 1

Reference Answer: (1)

The 'region' that gets two positive votes from g_1 and g_2 is $|x| \le 1$, and thus G(x) is positive within the region only. We see that the three decision stumps g_t can be aggregated to form a more sophisticated hypothesis *G*.

Uniform Blending (Voting) for Classification blending: known *gt*

Uniform Blending (Voting) for Classification

uniform blending: known g_t , each with 1 ballot

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot \underline{g}_t(\mathbf{x})\right)$$

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{l} 1 \cdot \underline{g}_t(\mathbf{x})\right)$$

 same g_t (autocracy): as good as one single g_t

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot \frac{g_t}{g_t}(\mathbf{x})\right)$$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy): majority can correct minority

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot \frac{g_t}{g_t}(\mathbf{x})\right)$$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$G(\mathbf{x}) = \operatorname*{argmax}_{1 \le k \le K} \sum_{t=1}^{T} \llbracket g_t(\mathbf{x}) = k \rrbracket$$

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot \frac{g_t}{g_t}(\mathbf{x})\right)$$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$G(\mathbf{x}) = \operatorname*{argmax}_{1 \le k \le K} \sum_{t=1}^{T} \llbracket g_t(\mathbf{x}) = k \rrbracket$$

how about regression?

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Uniform Blending for Regression

 $G(\mathbf{x}) = \sum_{t=1}^{T} g_t(\mathbf{x})$

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

Uniform Blending

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

 same g_t (autocracy): as good as one single g_t

Uniform Blending

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy): some g_t(x) > f(x), some g_t(x) < f(x)

Uniform Blending

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

- same g_t (autocracy): as good as one single g_t
- very different *g*_t (diversity + democracy):

some $g_t(\mathbf{x}) > f(\mathbf{x})$, some $g_t(\mathbf{x}) < f(\mathbf{x})$

 \implies average **could be** more accurate than individual

Uniform Blending

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy):
 - some $g_t(\mathbf{x}) > f(\mathbf{x})$, some $g_t(\mathbf{x}) < f(\mathbf{x})$
 - \implies average **could be** more accurate than individual

diverse hypotheses:

even simple uniform blending can be better than any single hypothesis

Theoretical Analysis of Uniform Blending

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

Uniform Blending

Theoretical Analysis of Uniform Blending

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

$$\operatorname{avg}\left(\left(\frac{g_t(\mathbf{x}) - f(\mathbf{x})\right)^2\right) = \operatorname{avg}\left(\right)$$

=

$$+(G-f)^{2}$$

Uniform Blending

Theoretical Analysis of Uniform Blending

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

$$\operatorname{avg}\left(\left(g_t(\mathbf{x}) - f(\mathbf{x})\right)^2\right) = \operatorname{avg}\left(g_t^2 - 2g_t f + f^2\right)$$
$$= \operatorname{avg}\left(g_t^2\right)$$

=

$$+(G-f)^{2}$$

Uniform Blending

Theoretical Analysis of Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

avg
$$((g_t(\mathbf{x}) - f(\mathbf{x}))^2)$$
 = avg $(g_t^2 - 2g_t f + f^2)$
= avg $(g_t^2) - 2Gf + f^2$
= avg (g_t^2) + ()²
= + $(G - f)^2$

Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg((g_t(x) - f(x))^2) = avg(g_t^2 - 2g_t f + f^2)$$

= $avg(g_t^2) - 2Gf + f^2$
= $avg(g_t^2) - G^2 + (G - f)^2$
= $avg(g_t^2) + (G - f)^2$
= $+ (G - f)^2$

Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg ((g_t(\mathbf{x}) - f(\mathbf{x}))^2) = avg (g_t^2 - 2g_t f + f^2)$$

= $avg (g_t^2) - 2Gf + f^2$
= $avg (g_t^2) - G^2 + (G - f)^2$
= $avg (g_t^2) - 2G^2 + G^2 + (G - f)^2$
= $avg (g_t^2 + G^2) + (G - f)^2$
= $+ (G - f)^2$

Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg ((g_t(x) - f(x))^2) = avg (g_t^2 - 2g_t f + f^2)$$

= $avg (g_t^2) - 2Gf + f^2$
= $avg (g_t^2) - G^2 + (G - f)^2$
= $avg (g_t^2) - 2G^2 + G^2 + (G - f)^2$
= $avg (g_t^2 - 2g_t G + G^2) + (G - f)^2$
= $avg () + (G - f)^2$

Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg ((g_t(x) - f(x))^2) = avg (g_t^2 - 2g_t f + f^2) = avg (g_t^2) - 2Gf + f^2 = avg (g_t^2) - G^2 + (G - f)^2 = avg (g_t^2) - 2G^2 + G^2 + (G - f)^2 = avg (g_t^2 - 2g_t G + G^2) + (G - f)^2 = avg ((g_t - G)^2) + (G - f)^2$$

Uniform Blending

Theoretical Analysis of Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg ((g_t(\mathbf{x}) - f(\mathbf{x}))^2) = avg (g_t^2 - 2g_t f + f^2) = avg (g_t^2) - 2Gf + f^2 = avg (g_t^2) - G^2 + (G - f)^2 = avg (g_t^2) - 2G^2 + G^2 + (G - f)^2 = avg (g_t^2 - 2g_t G + G^2) + (G - f)^2 = avg ((g_t - G)^2) + (G - f)^2$$

$$\operatorname{avg}(E_{\operatorname{out}}(g_t)) = \operatorname{avg}(\mathcal{E}(g_t - G)^2) + E_{\operatorname{out}}(G)$$

Machine Learning Techniques

Uniform Blending

Theoretical Analysis of Uniform Blending

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

$$avg ((g_t(x) - f(x))^2) = avg (g_t^2 - 2g_t f + f^2) = avg (g_t^2) - 2Gf + f^2 = avg (g_t^2) - G^2 + (G - f)^2 = avg (g_t^2) - 2G^2 + G^2 + (G - f)^2 = avg (g_t^2 - 2g_t G + G^2) + (G - f)^2 = avg ((g_t - G)^2) + (G - f)^2$$

$$\begin{aligned} & \operatorname{avg}\left(E_{\operatorname{out}}(g_t)\right) &= \operatorname{avg}\left(\mathcal{E}(g_t - G)^2\right) + E_{\operatorname{out}}(G) \\ &\geq & + E_{\operatorname{out}}(G) \end{aligned}$$

Machine Learning Techniques

Uniform Blending

Some Special g_t

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

1 request size-*N* data \mathcal{D}_t from P^N (i.i.d.)

Some Special g_t

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

Blending and Bagging Uniform Blending Some Special g_t consider a virtual iterative process that for t = 1, 2, ..., T1 request size-N data \mathcal{D}_t from P^N (i.i.d.) 2 obtain g_t by $\mathcal{A}(\mathcal{D}_t)$ $G = \frac{1}{T} \sum_{t=1}^{T} g_t$

Some Special g_t

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t$$

Some Special g_t

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\lim_{T\to\infty} G = \lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \underset{\mathcal{D}}{\mathcal{E}} \mathcal{A}(\mathcal{D})$$

Some Special g_t

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

1 request size-*N* data \mathcal{D}_t from P^N (i.i.d.)

2 obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}(E_{\operatorname{out}}(g_t)) = \operatorname{avg}\left(\mathcal{E}(g_t - \bar{g})^2\right) + E_{\operatorname{out}}(\bar{g})$$
$$= +$$

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

+

$$\operatorname{avg}(E_{\operatorname{out}}(g_t)) = \operatorname{avg}\left(\mathcal{E}(g_t - \bar{g})^2\right) + E_{\operatorname{out}}(\bar{g})$$

expected performance of \mathcal{A} =

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

- **1** request size-*N* data \mathcal{D}_t from \mathcal{P}^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}(E_{\operatorname{out}}(g_t)) = \operatorname{avg}(\mathcal{E}(g_t - \bar{g})^2) + E_{\operatorname{out}}(\bar{g})$$

expected performance of \mathcal{A} =

+performance of consensus

performance of consensus: called bias

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

- **1** request size-*N* data \mathcal{D}_t from \mathcal{P}^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}\left(\mathcal{E}_{\operatorname{out}}(g_t)
ight) = \operatorname{avg}\left(\mathcal{E}(g_t - \bar{g})^2\right) + \mathcal{E}_{\operatorname{out}}(\bar{g})$$

expected performance of \mathcal{A} = expected deviation to consensus +performance of consensus

- performance of consensus: called bias
- expected deviation to consensus: called variance

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

- **1** request size-*N* data \mathcal{D}_t from \mathcal{P}^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}\left(\mathcal{E}_{\operatorname{out}}(g_t)\right) = \operatorname{avg}\left(\mathcal{E}(g_t - \bar{g})^2\right) + \mathcal{E}_{\operatorname{out}}(\bar{g})$$

expected performance of \mathcal{A} = expected deviation to consensus +performance of consensus

- performance of consensus: called bias
- expected deviation to consensus: called variance

uniform blending: reduces **variance** for more stable performance

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Consider applying uniform blending $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$ on linear regression hypotheses $g_t(\mathbf{x}) = \text{innerprod}(\mathbf{w}_t, \mathbf{x})$. Which of the following property best describes the resulting $G(\mathbf{x})$?

- a constant function of x
- 2 a linear function of x
- 3 a quadratic function of x
- 4 none of the other choices

Consider applying uniform blending $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$ on linear regression hypotheses $g_t(\mathbf{x}) = \text{innerprod}(\mathbf{w}_t, \mathbf{x})$. Which of the following property best describes the resulting $G(\mathbf{x})$?

- a constant function of x
- 2 a linear function of x
- 3 a quadratic function of x
- 4 none of the other choices

Reference Answer: (2)

$$G(\mathbf{x}) = \text{innerprod}\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}_{t}, \mathbf{x}\right)$$

which is clearly a linear function of **x**. Note that we write 'innerprod' instead of the usual 'transpose' notation to avoid symbol conflict with T (number of hypotheses).

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Linear and Any Blending

Linear Blending

blending: known gt

Linear Blending

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

Linear Blending

linear blending: known g_t , each to be given α_t ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

computing 'good'
$$lpha_t$$
 :

 $\min_{\alpha_t \geq 0} E_{\rm in}(\alpha)$

linear blending for regression

$$\min_{\alpha_t \geq 0} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)^2$$

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge \mathbf{0}$$

computing 'good'
$$\alpha_t$$
 : $\min_{\alpha_t \ge 0} E_{in}(\alpha)$
linear blending for regression
 $\min_{\alpha_t \ge 0} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)^2$
LinReg + transformation
 $\min_{W_i} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{i=1}^{\tilde{d}} W_i \phi_i(\mathbf{x}_n) \right)^2$

Linear Blending

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

Linear Blending

linear blending: known g_t , each to be given α_t ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

like two-level learning, remember? :-)

linear blending = LinModel + hypotheses as transform +

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Linear Blending

linear blending: known g_t , each to be given α_t ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

like two-level learning, remember? :-)

linear blending = LinModel + hypotheses as transform + constraints

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{\alpha_t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

$$\text{if } \alpha_t < 0 \implies \alpha_t \boldsymbol{g}_t(\boldsymbol{x}) =$$

Hsuan-Tien Lin (NTU CSIE)

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

$$\text{if } \alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| \left(-g_t(\mathbf{x}) \right)$$

Hsuan-Tien Lin (NTU CSIE)

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

if
$$\alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| (-g_t(\mathbf{x}))$$

• negative α_t for $g_t \equiv \text{positive } |\alpha_t|$ for $-g_t$

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

if
$$\alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| (-g_t(\mathbf{x}))$$

- negative α_t for $g_t \equiv \text{positive } |\alpha_t|$ for $-g_t$
- if you have a stock up/down classifier with 99% error, tell me!
 :-)

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t\geq 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n)\right)$$

linear blending for binary classification

$$\text{if } \alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| \left(-g_t(\mathbf{x}) \right)$$

- negative α_t for $g_t \equiv$ positive $|\alpha_t|$ for $-g_t$
- if you have a stock up/down classifier with 99% error, tell me!
 :-)

in practice, often linear blending = LinModel + hypotheses as transform + constraints

Hsuan-Tien Lin (NTU CSIE)

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

by minimum E_{in}

Linear and Any Blending

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

by minimum E_{in}

• recall: selection by minimum E_{in}

-best of best,

Linear and Any Blending

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

by minimum E_{in}

• recall: selection by minimum E_{in}

—best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$

Linear and Any Blending

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = [\]$

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = \llbracket E_{val}(g_t^-)$ smallest \rrbracket

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = \llbracket E_{val}(g_t^-)$ smallest \rrbracket
- complexity price of linear blending with E_{in} (aggregation of best):

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = \llbracket E_{val}(g_t^-)$ smallest \rrbracket
- complexity price of linear blending with E_{in} (aggregation of best): $\geq d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

by minimum E_{in}

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = \llbracket E_{\text{val}}(g_t^-)$ smallest \rrbracket
- complexity price of linear blending with E_{in} (aggregation of best): $\geq d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$

like selection, blending practically done with $(E_{val} \text{ instead of } E_{in}) + (g_t^- \text{ from minimum } E_{train})$

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Any Blending

Given $g_1^-, g_2^-, \ldots, g_T^-$ from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \ldots, g_T^-(\mathbf{x}))$

Any Blending

Given $g_1^-, g_2^-, \ldots, g_T^-$ from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \ldots, g_T^-(\mathbf{x}))$

Linear Blending

1 compute α

= LinearModel $(\{(\mathbf{z}_n, y_n)\})$

Any Blending

Given $g_1^-, g_2^-, \ldots, g_T^-$ from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \ldots, g_T^-(\mathbf{x}))$

Linear Blending

1 compute α

- = LinearModel $(\{(\mathbf{z}_n, y_n)\})$
- 2 return $G_{\text{LINB}}(\mathbf{x}) =$ LinearHypothesis_o ($\Phi(\mathbf{x})$),

Any Blending

Given g_1^- , g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Linear Blending

1 compute α

- = LinearModel $(\{(\mathbf{z}_n, y_n)\})$
- 2 return $G_{\text{LINB}}(\mathbf{x}) =$ LinearHypothesis_{α} ($\Phi(\mathbf{x})$),

where $\mathbf{\Phi}(\mathbf{x}) = (\mathbf{g}_1(\mathbf{x}), \dots, \mathbf{g}_T(\mathbf{x}))$

Any Blending

Given $g_1^-, g_2^-, \ldots, g_T^-$ from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \ldots, g_T^-(\mathbf{x}))$

Linear Blending	Any Blending (Stacking)
() compute α	
= LinearModel $(\{(\mathbf{z}_n, y_n)\})$	
2 return $G_{\text{LINB}}(\mathbf{x}) =$ LinearHypothesis _{α} ($\Phi(\mathbf{x})$),	
where $\mathbf{\Phi}(\mathbf{x}) = (\mathbf{g}_1(\mathbf{x}), \dots, \mathbf{g}_T(\mathbf{x}))$	

Any Blending

Given g_1^- , g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Any Blending

Given g_1^- , g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Any Blending

Given g_1^- , g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Linear Blending (1) compute α = LinearModel({ $\{(\mathbf{z}_n, y_n)\}$) (2) return $G_{\text{LINB}}(\mathbf{x}) =$ LinearHypothesis_{α} ($\Phi(\mathbf{x})$), where $\Phi(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_T(\mathbf{x}))$

any blending:

• powerful, achieves conditional blending

Any Blending

Given g_1^- , g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Linear BlendingAny Blending (Stacking)1 compute α = LinearModel ({(z_n, y_n)})2 return $G_{\text{LINB}}(\mathbf{x}) =$ 1 compute \tilde{g} LinearHypothesis_{α} ($\Phi(\mathbf{x})$),2 return $G_{\text{ANYB}}(\mathbf{x}) = \tilde{g}(\Phi(\mathbf{x})),$

where
$$\mathbf{\Phi}(\mathbf{x}) = (\mathbf{g}_1(\mathbf{x}), \dots, \mathbf{g}_T(\mathbf{x}))$$

any blending:

- powerful, achieves conditional blending
- but danger of overfitting, as always :-(

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \implies 456.24

KDDCup 2011 Track 1: World Champion Solution by NTU
 validation set blending: a special any blending model

—helped secure the lead in last two weeks

models for music rating prediction, 2012)

 E_{test} (squared): 519.45 \implies 456.24

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

(Chen et al., A linear ensemble of individual and blended

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \Longrightarrow 456.24

-helped secure the lead in last two weeks

test set blending: linear blending using E_{test}

(Chen et al., A linear ensemble of individual and blended

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \Longrightarrow 456.24

-helped secure the lead in last two weeks

test set blending: linear blending using *E*_{test}

 E_{test} (squared): 456.24 \Longrightarrow 442.06

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \Longrightarrow 456.24

-helped secure the lead in last two weeks

test set blending: linear blending using *E*_{test}

 E_{test} (squared): 456.24 \Longrightarrow 442.06

-helped turn the tables in last hour

models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \Longrightarrow 456.24

-helped secure the lead in last two weeks

test set blending: linear blending using *E*_{test}

 E_{test} (squared): 456.24 \Longrightarrow 442.06

—helped turn the tables in last hour

blending 'useful' in practice, despite the computational burden

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1 - x), g_2(x) = \text{sign}(1 + x), g_3(x) = -1$. When x = 0, what is the resulting $\Phi(x) = (g_1(x), g_2(x), g_3(x))$ used in the returned hypothesis of linear/any blending?

(+1,+1,+1) (+1,+1,-1) (+1,-1,-1) (-1,-1,-1)

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When x = 0, what is the resulting $\Phi(x) = (g_1(x), g_2(x), g_3(x))$ used in the returned hypothesis of linear/any blending?

$$(+1,+1,+1)$$

$$(+1,+1,-1)$$

$$(+1,-1,-1)$$

$$(-1,-1,-1)$$

Reference Answer: (2)

Too easy? :-)

Bagging (Bootstrap Aggregation) What We Have Done blending: aggregate after getting g_t;

aggregation type	blending	
uniform	voting/averaging	
non-uniform	linear	
conditional	stacking	

Blending and Bagging	Bagging (Bootstrap Aggr	regation)		
	What We Have Done			
	blending: aggregate after getting g _t ;			
	learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

Blending and Bagging	Bagging (Bootstrap Aggregation) What We Have Done			
	blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform voting/averaging ?			
	non-uniform linear ?			
	conditional	stacking	?	

Blending and Bagging	Bagging (Bootstrap Aggi	regation)		
	What We Have Done			
	blending: aggregate after getting gt;			
	learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

• diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$

Blending and Bagging	Bagging (Bootstrap Aggi	regation)		
	What We Have Done			
	blending: aggregate after getting g _t ;			
	learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters:

Blending and Bagging	Bagging (Bootstrap Aggr	regation)		
	What We Have Done			
	blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta =$ 0.001, 0.01, ..., 10

Blending and Bagging	Bagging (Bootstrap Aggr	regation)		
	What We Have Done			
	blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness:

Blending and Bagging	Bagging (Bootstrap Aggr	regation)		
	What We Have Done			
	blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness: random PLA with different random seeds

Blending and Bagging	Bagging (Bootstrap Aggr	regation)	
	What We Have Done		
	blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t		
	aggregation type	blending	learning
	uniform	voting/averaging	?
	non-uniform	linear	?
	conditional	stacking	?

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness: random PLA with different random seeds
- diversity by data randomness:

Blending and Bagging	Bagging (Bootstrap Aggr	regation)		
	What We Have Done			
	blending: aggregate after getting g_t ;			
	learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness: random PLA with different random seeds
- diversity by data randomness:

within-cross-validation hypotheses g_v^-

Blending and Bagging	Bagging (Bootstrap Aggi	regation)		
	What We Have Done			
	blending: aggregate after getting g_t ;			
	learning: aggregate as well as getting g_t			
	aggregation type blending learning			
	uniform	voting/averaging	?	
	non-uniform	linear	?	
	conditional	stacking	?	

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness: random PLA with different random seeds
- diversity by data randomness:

within-cross-validation hypotheses g_v^-

next: diversity by data randomness without g^-

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

expected performance of \mathcal{A} = expected deviation to consensus

+performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim \mathcal{P}^N$

expected performance of A = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim P^N$

 consensus more stable than direct A(D), but comes from many more D_t than the D on hand

expected performance of A = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim \mathcal{P}^N$

- consensus more stable than direct A(D), but comes from many more D_t than the D on hand
- want: approximate <u>g</u> by

expected performance of \mathcal{A} = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim \mathcal{P}^N$

- consensus more stable than direct A(D), but comes from many more D_t than the D on hand
- want: approximate \bar{g} by
 - finite (large) T

expected performance of A = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim P^N$

- consensus more stable than direct A(D), but comes from many more D_t than the D on hand
- want: approximate \bar{g} by
 - finite (large) T
 - approximate $g_t = \mathcal{A}(\mathcal{D}_t)$ from $\mathcal{D}_t \sim \mathcal{P}^N$ using only \mathcal{D}

expected performance of A = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim P^N$

- consensus more stable than direct A(D), but comes from many more D_t than the D on hand
- want: approximate \bar{g} by
 - finite (large) T
 - approximate $g_t = \mathcal{A}(\mathcal{D}_t)$ from $\mathcal{D}_t \sim P^N$ using only \mathcal{D}

bootstrapping: a statistical tool that re-samples from \mathcal{D} to 'simulate' \mathcal{D}_t

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample *N* examples from \mathcal{D} uniformly with replacement

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

• request size-*N* data \mathcal{D}_t from \mathcal{P}^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = \text{Uniform}(\{g_t\})$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

1 request size-*N* data D_t from P^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = \text{Uniform}(\{g_t\})$

bootstrap aggregation

consider a **physical** iterative process that for t = 1, 2, ..., T

$$G = \text{Uniform}(\{g_t\})$$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

1 request size-*N* data D_t from P^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = \text{Uniform}(\{g_t\})$

bootstrap aggregation

consider a **physical** iterative process that for t = 1, 2, ..., T

1 request size-N' data $\tilde{\mathcal{D}}_t$ from bootstrapping

 $G = \text{Uniform}(\{g_t\})$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

1 request size-*N* data D_t from P^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = \text{Uniform}(\{g_t\})$

bootstrap aggregation

consider a **physical** iterative process that for t = 1, 2, ..., T

1 request size-N' data $\tilde{\mathcal{D}}_t$ from bootstrapping

2 obtain
$$g_t$$
 by $\mathcal{A}(\tilde{\mathcal{D}}_t)$
 $G = \text{Uniform}(\{g_t\})$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

1 request size-*N* data D_t from P^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = \text{Uniform}(\{g_t\})$

bootstrap aggregation

consider a **physical** iterative process that for t = 1, 2, ..., T

1 request size-N' data $\tilde{\mathcal{D}}_t$ from bootstrapping

2 obtain
$$g_t$$
 by $\mathcal{A}(\tilde{\mathcal{D}}_t)$
 $G = \text{Uniform}(\{g_t\})$

bootstrap aggregation (BAGging): a simple meta algorithm on top of base algorithm A

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Bagging (Bootstrap Aggregation)

Bagging Pocket in Action

 $T_{\text{POCKET}} = 1000; \ T_{\text{BAG}} = 25$

• very diverse g_t from bagging

Bagging (Bootstrap Aggregation)

Bagging Pocket in Action

 $T_{\text{pocket}} = 1000; \ T_{\text{bag}} = 25$

- very diverse g_t from bagging
- proper non-linear boundary after aggregating binary classifiers

Bagging (Bootstrap Aggregation)

Bagging Pocket in Action

 $T_{\text{pocket}} = 1000; \ T_{\text{bag}} = 25$

- very diverse *g*_t from bagging
- proper non-linear boundary after aggregating binary classifiers

bagging works reasonably well if base algorithm sensitive to data randomness

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Fun Time

When using bootstrapping to re-sample *N* examples $\tilde{\mathcal{D}}_t$ from a data set \mathcal{D} with *N* examples, what is the probability of getting $\tilde{\mathcal{D}}_t$ exactly the same as \mathcal{D} ?

1 0
$$/N^{N} = 0$$

2 1 $/N^{N}$
3 $N! /N^{N}$

$$N^N / N^N = 1$$

Fun Time

When using bootstrapping to re-sample *N* examples $\tilde{\mathcal{D}}_t$ from a data set \mathcal{D} with *N* examples, what is the probability of getting $\tilde{\mathcal{D}}_t$ exactly the same as \mathcal{D} ?

1 0
$$/N^N = 0$$

$$\mathbf{N}^N / \mathbf{N}^N = 1$$

Reference Answer: (3)

Consider re-sampling in an ordered manner for N steps. Then there are (N^N) possible outcomes $\tilde{\mathcal{D}}_t$, each with equal probability. Most importantly, (N!) of the outcomes are permutations of the original \mathcal{D} , and thus the answer.

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation aggregated G strong and/or moderate
- Uniform Blending

diverse hypotheses, 'one vote, one value'

• Linear and Any Blending

two-level learning with hypotheses as transform

Bagging (Bootstrap Aggregation)
 bootstrapping for diverse hypotheses

- next: getting more diverse hypotheses to make G strong
- 8 Distilling Implicit Features: Extraction Models