Machine Learning Techniques

Lecture 7：Blending and Bagging
Hsuan－Tien Lin（林軒田）

htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University
（國立台灣大學資訊工程系）

Roadmap

(1) Embedding Numerous Features: Kernel Models

Lecture 6: Support Vector Regression
kernel ridge regression (dense) via ridge regression + representer theorem; support vector regression (sparse) via regularized tube error + Lagrange dual
(2) Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation
- Uniform Blending
- Linear and Any Blending
- Bagging (Bootstrap Aggregation)
(3) Distilling Implicit Features: Extraction Models

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.
You can ...

- select the most trust-worthy friend from their usual performance

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.
You can . . .

- select the most trust-worthy friend from their usual performance —validation!

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.
You can ...

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly -let them vote!

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.
You can ...

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly -let them vote!
- mix the predictions from all your friends non-uniformly -let them vote, but give some more ballots

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.
You can ...

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly -let them vote!
- mix the predictions from all your friends non-uniformly -let them vote, but give some more ballots
- combine the predictions conditionally -if [t satisfies some condition] give some ballots to friend t

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

You can ...

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly -let them vote!
- mix the predictions from all your friends non-uniformly -let them vote, but give some more ballots
- combine the predictions conditionally -if [t satisfies some condition] give some ballots to friend t

An Aggregation Story

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

You can ...

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly -let them vote!
- mix the predictions from all your friends non-uniformly -let them vote, but give some more ballots
- combine the predictions conditionally -if [t satisfies some condition] give some ballots to friend t
aggregation models: mix or combine hypotheses (for better performance)

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance
- mix the predictions from all your friends uniformly
- mix the predictions from all your friends non-uniformly
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\text {val }}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly
- mix the predictions from all your friends non-uniformly
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
\mathcal{G}(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=$
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=1$
- combine the predictions conditionally

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=1$
- combine the predictions conditionally

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} q_{t}(\mathbf{x}) \cdot g_{t}(\mathbf{x})\right) \text { with } q_{t}(\mathbf{x}) \geq 0
$$

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=1$
- combine the predictions conditionally

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} q_{t}(\mathbf{x}) \cdot g_{t}(\mathbf{x})\right) \text { with } q_{t}(\mathbf{x}) \geq 0
$$

- include non-uniformly: $q_{t}(\mathbf{x})=$

Aaareaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=1$
- combine the predictions conditionally

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} q_{t}(\mathbf{x}) \cdot g_{t}(\mathbf{x})\right) \text { with } q_{t}(\mathbf{x}) \geq 0
$$

- include non-uniformly: $\boldsymbol{q}_{t}(\mathbf{x})=\alpha_{t}$

Aadreaation with Math Notations

Your T friends g_{1}, \cdots, g_{T} predicts whether stock will go up as $g_{t}(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\operatorname{argmin}_{t \in\{1,2, \cdots, T\}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- mix the predictions from all your friends uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- mix the predictions from all your friends non-uniformly

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

- include select: $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- include uniformly: $\alpha_{t}=1$
- combine the predictions conditionally

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} q_{t}(\mathbf{x}) \cdot g_{t}(\mathbf{x})\right) \text { with } q_{t}(\mathbf{x}) \geq 0
$$

- include non-uniformly: $\boldsymbol{q}_{t}(\mathbf{x})=\alpha_{t}$

aggregation models: a rich family

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \cdots, T\}}{\operatorname{argmin}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \cdots, T\}}{\operatorname{argmin}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- simple and popular

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \cdots, T\}}{\operatorname{argmin}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- simple and popular
- what if use $E_{\text {in }}\left(g_{t}\right)$ instead of $E_{\text {val }}\left(g_{t}^{-}\right)$?

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \cdots, T\}}{\operatorname{argmin}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- simple and popular
- what if use $E_{\text {in }}\left(g_{t}\right)$ instead of $E_{\text {val }}\left(g_{t}^{-}\right)$? complexity price on d_{vc}, remember? :-)

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \cdots, T\}}{\operatorname{argmin}} E_{\mathrm{val}}\left(g_{t}^{-}\right)
$$

- simple and popular
- what if use $E_{\text {in }}\left(g_{t}\right)$ instead of $E_{\text {val }}\left(g_{t}^{-}\right)$? complexity price on d_{vc}, remember? :-)
- need one strong g_{t}^{-}to guarantee small $E_{\text {val }}$ (and small $E_{\text {out }}$)

Recall: Selection by Validation

$$
G(\mathbf{x})=g_{t_{*}}(\mathbf{x}) \text { with } t_{*}=\underset{t \in\{1,2, \ldots, T\}}{\operatorname{argmin}} E_{\text {val }}\left(g_{t}^{-}\right)
$$

- simple and popular
- what if use $E_{\text {in }}\left(g_{t}\right)$ instead of $E_{\text {val }}\left(g_{t}^{-}\right)$? complexity price on d_{vc}, remember? :-)
- need one strong g_{t}^{-}to guarantee small $E_{\text {val }}$ (and small $E_{\text {out }}$)
selection:
rely on one strong hypothesis aggregation:
can we do better with many (possibly weaker) hypotheses?

Why Might Aggregation Work?

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'
- aggregation
\Longrightarrow feature transform (?)

Why Might Aggregation Work?

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'
- aggregation
\Longrightarrow feature transform (?)

Why Might Aggregation Work?

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'
- aggregation
\Longrightarrow feature transform (?)

- mix different random-PLA hypotheses uniformly $-G(\mathbf{x})$ 'moderate'

Why Might Aggregation Work?

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'
- aggregation
\Longrightarrow feature transform (?)

- mix different random-PLA hypotheses uniformly
$-G(\mathbf{x})$ 'moderate'
- aggregation
\Longrightarrow regularization (?)

Why Might Aggregation Work?

- mix different weak hypotheses uniformly
$-G(\mathbf{x})$ 'strong'
- aggregation
\Longrightarrow feature transform (?)

- mix different random-PLA hypotheses uniformly
$-G(\mathbf{x})$ 'moderate'
- aggregation
\Longrightarrow regularization (?)
proper aggregation \Longrightarrow better performance

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1,+1\}$: $g_{1}(x)=\operatorname{sign}(1-x), g_{2}(x)=\operatorname{sign}(1+x), g_{3}(x)=-1$. When mixing the three hypotheses uniformly, what is the resulting $G(x)$?
(1) $2 \llbracket|x| \leq 1 \rrbracket-1$
(2) $2 \llbracket|x| \geq 1 \rrbracket-1$
(3) $2 \llbracket x \leq-1 \rrbracket-1$
(4) $2 \llbracket x \geq+1 \rrbracket-1$

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1,+1\}$: $g_{1}(x)=\operatorname{sign}(1-x), g_{2}(x)=\operatorname{sign}(1+x), g_{3}(x)=-1$. When mixing the three hypotheses uniformly, what is the resulting $G(x)$?
(1) $2 \llbracket|x| \leq 1 \rrbracket-1$
(2) $2 \llbracket|x| \geq 1 \rrbracket-1$
(3) $2 \llbracket x \leq-1 \rrbracket-1$
(4) $2 \llbracket x \geq+1 \rrbracket-1$

Reference Answer:

The 'region' that gets two positive votes from g_{1} and g_{2} is $|x| \leq 1$, and thus $G(x)$ is positive within the region only. We see that the three decision stumps g_{t} can be aggregated to form a more sophisticated hypothesis G.

Uniform Blending (Voting) for Classification

blending: known g_{t}

Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot
Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- same g_{t} (autocracy): as good as one single g_{t}

Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy): majority can correct minority

Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$
G(\mathbf{x})=\underset{1 \leq k \leq K}{\operatorname{argmax}} \sum_{t=1}^{T} \llbracket g_{t}(\mathbf{x})=k \rrbracket
$$

Uniform Blending (Voting) for Classification

 uniform blending: known g_{t}, each with 1 ballot$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot g_{t}(\mathbf{x})\right)
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$
G(\mathbf{x})=\underset{1 \leq k \leq K}{\operatorname{argmax}} \sum_{t=1}^{T} \llbracket g_{t}(\mathbf{x})=k \rrbracket
$$

Uniform Blending for Regression

$$
G(\mathbf{x})=\sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

Uniform Blending for Regression

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

Uniform Blending for Regression

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

- same g_{t} (autocracy): as good as one single g_{t}

Uniform Blending for Regression

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy):
some $g_{t}(\mathbf{x})>f(\mathbf{x})$, some $g_{t}(\mathbf{x})<f(\mathbf{x})$

Uniform Blending for Regression

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy):
some $g_{t}(\mathbf{x})>f(\mathbf{x})$, some $g_{t}(\mathbf{x})<f(\mathbf{x})$
\Longrightarrow average could be more accurate than individual

Uniform Blending for Regression

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

- same g_{t} (autocracy): as good as one single g_{t}
- very different g_{t} (diversity + democracy):
some $g_{t}(\mathbf{x})>f(\mathbf{x})$, some $g_{t}(\mathbf{x})<f(\mathbf{x})$
\Longrightarrow average could be more accurate than individual

diverse hypotheses:

even simple uniform blending
can be better than any single hypothesis

Theoretical Analysis of Uniform Blending

$$
G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\operatorname{avg}\left(\left(g_{t}(x)-f(x)\right)^{2}\right)=\operatorname{avg}(\quad)
$$

$$
=\quad+(G-f)^{2}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right) \\
& \\
& =\quad+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(x)-f(x)\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)+(\quad)^{2} \\
& =\quad+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathrm{x})
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right) \quad+(G-f)^{2} \\
& =+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathrm{x})
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G^{2}+G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}+G^{2}\right)+(G-f)^{2} \\
& =r+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G^{2}+G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} G+G^{2}\right)+(G-f)^{2} \\
& =\operatorname{avg}(\quad)+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathrm{x})
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G^{2}+G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} G+G^{2}\right)+(G-f)^{2} \\
& =\operatorname{avg}\left(\left(g_{t}-G\right)^{2}\right)+(G-f)^{2}
\end{aligned}
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G^{2}+G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} G+G^{2}\right)+(G-f)^{2} \\
& =\operatorname{avg}\left(\left(g_{t}-G\right)^{2}\right)+(G-f)^{2}
\end{aligned}
$$

$$
\operatorname{avg}\left(E_{\mathrm{out}}\left(g_{t}\right)\right)=\operatorname{avg}\left(\mathcal{E}\left(g_{t}-G\right)^{2}\right)+E_{\mathrm{out}}(G)
$$

Theoretical Analysis of Uniform Blending

$$
G(x)=\frac{1}{T} \sum_{t=1}^{T} g_{t}(x)
$$

$$
\begin{aligned}
\operatorname{avg}\left(\left(g_{t}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right) & =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} f+f^{2}\right) \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G f+f^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}\right)-2 G^{2}+G^{2}+(G-f)^{2} \\
& =\operatorname{avg}\left(g_{t}^{2}-2 g_{t} G+G^{2}\right)+(G-f)^{2} \\
& =\operatorname{avg}\left(\left(g_{t}-G\right)^{2}\right)+(G-f)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{avg}\left(E_{\text {out }}\left(g_{t}\right)\right) & =\operatorname{avg}\left(\mathcal{E}\left(g_{t}-G\right)^{2}\right)+E_{\mathrm{out}}(G) \\
\geq & +E_{\mathrm{out}}(G)
\end{aligned}
$$

Some Special g_{t} consider a virtual iterative process that for $t=1,2, \ldots, T$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
G=\quad \frac{1}{T} \sum_{t=1}^{T} g_{t}
$$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}
$$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\underset{\mathcal{D}}{\mathcal{E}} \mathcal{A}(\mathcal{D})
$$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{E} \mathcal{D} \mathcal{A}(\mathcal{D})
$$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{\mathcal { D }} \mathcal{A}(\mathcal{D})
$$

$$
\begin{aligned}
\operatorname{avg}\left(E_{\text {out }}\left(g_{t}\right)\right)= & \operatorname{avg}\left(\mathcal{E}\left(g_{t}-\bar{g}\right)^{2}\right)+E_{\text {out }}(\bar{g}) \\
= & +
\end{aligned}
$$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{E} \mathcal{D} \mathcal{A}(\mathcal{D})
$$

$$
\operatorname{avg}\left(E_{\text {out }}\left(g_{t}\right)\right)=\operatorname{avg}\left(\mathcal{E}\left(g_{t}-\bar{g}\right)^{2}\right)+E_{\text {out }}(\bar{g})
$$

expected performance of $\mathcal{A}=$
$+$

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{\mathcal { E }} \mathcal{A}(\mathcal{D})
$$

$$
\operatorname{avg}\left(E_{\text {out }}\left(g_{t}\right)\right)=\operatorname{avg}\left(\mathcal{E}\left(g_{t}-\bar{g}\right)^{2}\right)+E_{\text {out }}(\bar{g})
$$

expected performance of $\mathcal{A}=$
+performance of consensus

- performance of consensus: called bias

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})
$$

$$
\operatorname{avg}\left(E_{\mathrm{out}}\left(g_{t}\right)\right)=\operatorname{avg}\left(\mathcal{E}\left(g_{t}-\bar{g}\right)^{2}\right)+E_{\mathrm{out}}(\bar{g})
$$

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

- performance of consensus: called bias
- expected deviation to consensus: called variance

Some Special g_{t}

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$

$$
\bar{g}=\lim _{T \rightarrow \infty} G=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} g_{t}=\mathcal{E} \mathcal{D}^{\mathcal{D}} \mathcal{A}(\mathcal{D})
$$

$$
\operatorname{avg}\left(E_{\mathrm{out}}\left(g_{t}\right)\right)=\operatorname{avg}\left(\mathcal{E}\left(g_{t}-\bar{g}\right)^{2}\right)+E_{\mathrm{out}}(\bar{g})
$$

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

- performance of consensus: called bias
- expected deviation to consensus: called variance
uniform blending:
reduces variance for more stable performance

Consider applying uniform blending $G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})$ on linear regression hypotheses $g_{t}(\mathbf{x})=$ innerprod $\left(\mathbf{w}_{t}, \mathbf{x}\right)$. Which of the following property best describes the resulting $G(\mathbf{x})$?
(1) a constant function of \mathbf{x}
(2) a linear function of \mathbf{x}
(3) a quadratic function of \mathbf{x}
(4) none of the other choices

Consider applying uniform blending $G(\mathbf{x})=\frac{1}{T} \sum_{t=1}^{T} g_{t}(\mathbf{x})$ on linear regression hypotheses $g_{t}(\mathbf{x})=$ innerprod $\left(\mathbf{w}_{t}, \mathbf{x}\right)$. Which of the following property best describes the resulting $G(\mathbf{x})$?
(1) a constant function of \mathbf{x}
(2) a linear function of \mathbf{x}
(3) a quadratic function of \mathbf{x}
(4) none of the other choices

Reference Answer: (2)

$$
G(\mathbf{x})=\operatorname{innerprod}\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_{t}, \mathbf{x}\right)
$$

which is clearly a linear function of \mathbf{x}. Note that we write 'innerprod' instead of the usual 'transpose' notation to avoid symbol conflict with T (number of hypotheses).

Linear Blending

blending: known g_{t}

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' $\alpha_{t}: \quad \min E_{\text {in }}(\alpha)$

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$

linear blending for regression
 $$
\min \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\quad\right)^{2}
$$

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$

linear blending for regression
 $\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\right.$
 2

$\alpha_{t} \geq 0$

Linear Blending

linear blending: known \boldsymbol{g}_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$

$$
\begin{aligned}
& \text { linear blending for regression } \\
& \min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)^{2}
\end{aligned}
$$

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
\boldsymbol{G}(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$

linear blending for regression

$\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{t=1}^{T} \alpha_{t} \boldsymbol{g}_{t}\left(\mathbf{x}_{n}\right)\right)^{2}$

LinReg + transformation

$$
\min _{w_{i}} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{i=1}^{\tilde{d}} w_{i} \phi_{i}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$

linear blending for regression

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

$$
\min _{w_{i}} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{i=1}^{\tilde{d}} w_{i} \phi_{i}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

like two-level learning, remember? :-)

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' α_{t} : $\quad \min E_{\text {in }}(\alpha)$
linear blending for regression

LinReg + transformation

$$
\min _{w_{i}} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{i=1}^{\tilde{d}} w_{i} \phi_{i}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

like two-level learning, remember? :-)
linear blending = LinModel + hypotheses as transform +

Linear Blending

linear blending: known g_{t}, each to be given α_{t} ballot

$$
G(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \cdot g_{t}(\mathbf{x})\right) \text { with } \alpha_{t} \geq 0
$$

computing 'good' $\alpha_{t}: \quad \min E_{\text {in }}(\alpha)$
linear blending for regression

LinReg + transformation

$$
\min _{w_{i}} \frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\sum_{i=1}^{\tilde{d}} w_{i} \phi_{i}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

like two-level learning, remember? :-)
linear blending $=$ LinModel + hypotheses as transform + constraints

Constraint on α_{t}

linear blending = LinModel + hypotheses as transform + constraints:

min

$$
\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

Constraint on α_{t}

linear blending = LinModel + hypotheses as transform + constraints:

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

linear blending for binary classification

$$
\text { if } \alpha_{t}<0 \Longrightarrow \alpha_{t} g_{t}(\mathbf{x})=
$$

Constraint on α_{t}

linear blending = LinModel + hypotheses as transform + constraints:

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

linear blending for binary classification

$$
\text { if } \alpha_{t}<0 \quad \Longrightarrow \quad \alpha_{t} g_{t}(\mathbf{x})=\left|\alpha_{t}\right|\left(-g_{t}(\mathbf{x})\right)
$$

Constraint on α_{t}

linear blending = LinModel + hypotheses as transform + constraints:

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

linear blending for binary classification

$$
\text { if } \alpha_{t}<0 \Longrightarrow \alpha_{t} g_{t}(\mathbf{x})=\left|\alpha_{t}\right|\left(-g_{t}(\mathbf{x})\right)
$$

- negative α_{t} for $g_{t} \equiv$ positive $\left|\alpha_{t}\right|$ for $-g_{t}$

Constraint on α_{t}

linear blending = LinModel + hypotheses as transform + constraints:

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

linear blending for binary classification

$$
\text { if } \alpha_{t}<0 \quad \Longrightarrow \quad \alpha_{t} g_{t}(\mathbf{x})=\left|\alpha_{t}\right|\left(-g_{t}(\mathbf{x})\right)
$$

- negative α_{t} for $g_{t} \equiv$ positive $\left|\alpha_{t}\right|$ for $-g_{t}$
- if you have a stock up/down classifier with 99% error, tell me! :-)

Constraint on α_{t}

linear blending $=$ LinModel + hypotheses as transform + constraints:

$$
\min _{\alpha_{t} \geq 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(y_{n}, \sum_{t=1}^{T} \alpha_{t} g_{t}\left(\mathbf{x}_{n}\right)\right)
$$

linear blending for binary classification

$$
\text { if } \alpha_{t}<0 \Longrightarrow \alpha_{t} g_{t}(\mathbf{x})=\left|\alpha_{t}\right|\left(-g_{t}(\mathbf{x})\right)
$$

- negative α_{t} for $g_{t} \equiv$ positive $\left|\alpha_{t}\right|$ for $-g_{t}$
- if you have a stock up/down classifier with 99% error, tell me! :-)
in practice, often
linear blending = LinModel + hypotheses as transform +comstraints

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best,

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best, paying $d_{\mathrm{vc}}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)$

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best, paying $d_{\mathrm{vc}}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)$
- recall: linear blending includes selection as special case
—by setting $\alpha_{t}=\llbracket$
]

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best, paying $d_{\mathrm{vc}}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)$
- recall: linear blending includes selection as special case —by setting $\alpha_{t}=\llbracket E_{\mathrm{val}}\left(g_{t}^{-}\right)$smallest \rrbracket

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best, paying $d_{v c}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)$
- recall: linear blending includes selection as special case -by setting $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- complexity price of linear blending with $E_{\text {in }}$ (aggregation of best):

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
—best of best, paying $d_{v c}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)$
- recall: linear blending includes selection as special case
-by setting $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- complexity price of linear blending with $E_{\text {in }}$ (aggregation of best):

$$
\geq d_{\mathrm{vc}}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)
$$

Linear Blending versus Selection

in practice, often

$$
g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}
$$

by minimum $E_{\text {in }}$

- recall: selection by minimum $E_{\text {in }}$
-best of best, paying $d_{\mathrm{vc}}\left(\bigcup_{t=1}^{\top} \mathcal{H}_{t}\right)$
- recall: linear blending includes selection as special case
-by setting $\alpha_{t}=\llbracket E_{\text {val }}\left(g_{t}^{-}\right)$smallest \rrbracket
- complexity price of linear blending with $E_{\text {in }}$ (aggregation of best):

$$
\geq d_{\mathrm{vc}}\left(\bigcup_{t=1}^{T} \mathcal{H}_{t}\right)
$$

like selection, blending practically done with
$\left(E_{\text {val }}\right.$ instead of $\left.E_{\text {in }}\right)+\left(g_{t}^{-}\right.$from minimum $\left.E_{\text {train }}\right)$

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{\bar{T}}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to $\left(\mathbf{z}_{n}=\boldsymbol{\Phi}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)$, where $\boldsymbol{\Phi}^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)$

Linear Blending

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\Phi^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α

$$
=\operatorname{LinearModel}\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)
$$

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\Phi^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α
$=\operatorname{LinearModel}\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)$
(2) return $G_{\text {LIns }}(\mathbf{x})=$ LinearHypothesis ${ }_{\alpha}(\Phi(\mathbf{x}))$,

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\Phi^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α

$$
=\operatorname{LinearModel}\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)
$$

(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\Phi(\mathbf{x}))$,
where $\Phi(\mathbf{x})=\left(g_{1}(\mathbf{x}), \ldots, g_{T}(\mathbf{x})\right)$

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\Phi^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

Any Blending

(1) compute α

$$
=\operatorname{LinearModel}\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)
$$

(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\Phi(\mathbf{x}))$,
where $\Phi(\mathbf{x})=\left(g_{1}(\mathbf{x}), \ldots, g_{T}(\mathbf{x})\right)$

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\boldsymbol{\Phi}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α
$=$ LinearModel $\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)$
(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\Phi(\mathbf{x}))$,

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\boldsymbol{\Phi}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α
$=$ LinearModel $\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)$
(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\boldsymbol{\Phi}(\mathbf{x}))$,

Any Blending

(1) compute \tilde{g}

$$
=\text { AnyModel }\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)
$$

(2) return $G_{\text {ANYB }}(\mathbf{x})=\tilde{g}(\Phi(\mathbf{x}))$,
where $\Phi(\mathbf{x})=\left(g_{1}(\mathbf{x}), \ldots, g_{T}(\mathbf{x})\right)$

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\boldsymbol{\Phi}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \Phi^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α
$=$ LinearModel $\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)$
(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\boldsymbol{\Phi}(\mathbf{x}))$,
any blending:

- powerful, achieves conditional blending

Any Blending

Given $g_{1}^{-}, g_{2}^{-}, \ldots, g_{T}^{-}$from $\mathcal{D}_{\text {train }}$, transform $\left(\mathbf{x}_{n}, y_{n}\right)$ in $\mathcal{D}_{\text {val }}$ to

$$
\left(\mathbf{z}_{n}=\boldsymbol{\Phi}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right), \text { where } \boldsymbol{\Phi}^{-}(\mathbf{x})=\left(g_{1}^{-}(\mathbf{x}), \ldots, g_{T}^{-}(\mathbf{x})\right)
$$

Linear Blending

(1) compute α
$=$ LinearModel $\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)$
(2) return $G_{\text {LINB }}(\mathbf{x})=$

LinearHypothesis ${ }_{\alpha}(\Phi(\mathbf{x}))$,

Any Blending

(1) compute \tilde{g}

$$
=\text { AnyModel }\left(\left\{\left(\mathbf{z}_{n}, y_{n}\right)\right\}\right)
$$

(2) return $G_{\text {ANYB }}(\mathbf{x})=\tilde{g}(\Phi(\mathbf{x}))$,
where $\boldsymbol{\Phi}(\mathbf{x})=\left(g_{1}(\mathbf{x}), \ldots, g_{T}(\mathbf{x})\right)$
any blending:

- powerful, achieves conditional blending
- but danger of overfitting, as always :-(

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model
$E_{\text {test }}$ (squared): $519.45 \Longrightarrow 456.24$

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model $E_{\text {test }}$ (squared): $519.45 \Longrightarrow 456.24$
-helped secure the lead in last two weeks

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model

$$
E_{\text {test }} \text { (squared): } 519.45 \Longrightarrow 456.24
$$

—helped secure the lead in last two weeks

- test set blending: linear blending using $\tilde{E}_{\text {test }}$

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model

$$
E_{\text {test }} \text { (squared): } 519.45 \Longrightarrow 456.24
$$

—helped secure the lead in last two weeks

- test set blending: linear blending using $\tilde{E}_{\text {test }}$

$$
E_{\text {test }} \text { (squared): } 456.24 \Longrightarrow 442.06
$$

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model

$$
E_{\text {test }} \text { (squared): } 519.45 \Longrightarrow 456.24
$$

-helped secure the lead in last two weeks

- test set blending: linear blending using $\tilde{E}_{\text {test }}$

$$
E_{\text {test }} \text { (squared): } 456.24 \Longrightarrow 442.06
$$

-helped turn the tables in last hour

Blending in Practice

(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model

$$
E_{\text {test }} \text { (squared): } 519.45 \Longrightarrow 456.24
$$

-helped secure the lead in last two weeks

- test set blending: linear blending using $\tilde{E}_{\text {test }}$

$$
E_{\text {test }} \text { (squared): } 456.24 \Longrightarrow 442.06
$$

-helped turn the tables in last hour
blending 'useful' in practice, despite the computational burden

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1,+1\}$: $g_{1}(x)=\operatorname{sign}(1-x), g_{2}(x)=\operatorname{sign}(1+x), g_{3}(x)=-1$. When $x=0$, what is the resulting $\Phi(x)=\left(g_{1}(x), g_{2}(x), g_{3}(x)\right)$ used in the returned hypothesis of linear/any blending?
(1) $(+1,+1,+1)$
(2) $(+1,+1,-1)$
(3) $(+1,-1,-1)$
(4) $(-1,-1,-1)$

Fun Time

Consider three decision stump hypotheses from \mathbb{R} to $\{-1,+1\}$: $g_{1}(x)=\operatorname{sign}(1-x), g_{2}(x)=\operatorname{sign}(1+x), g_{3}(x)=-1$. When $x=0$, what is the resulting $\Phi(x)=\left(g_{1}(x), g_{2}(x), g_{3}(x)\right)$ used in the returned hypothesis of linear/any blending?
(1) $(+1,+1,+1)$
(2) $(+1,+1,-1)$
(3) $(+1,-1,-1)$
(4) $(-1,-1,-1)$

Reference Answer: (2)

Too easy? :-)

Bagging (Bootstrap Aggregation)
What We Have Done
blending: aggregate after getting g_{t};

aggregation type	blending	
uniform	voting/averaging	
non-uniform	linear	
conditional	stacking	

What We Have Done
blending: aggregate after getting g_{t};
learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important
blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters:

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$
- diversity by algorithmic randomness:

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$
- diversity by algorithmic randomness:
random PLA with different random seeds

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$
- diversity by algorithmic randomness:
random PLA with different random seeds
- diversity by data randomness:

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-unitorm	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$
- diversity by algorithmic randomness:
random PLA with different random seeds
- diversity by data randomness:
within-cross-validation hypotheses g_{v}^{-}

What We Have Done

blending: aggregate after getting g_{t}; learning: aggregate as well as getting g_{t}

aggregation type	blending	learning
uniform	voting/averaging	$?$
non-uniform	linear	$?$
conditional	stacking	$?$

learning g_{t} for uniform aggregation: diversity important

- diversity by different models: $g_{1} \in \mathcal{H}_{1}, g_{2} \in \mathcal{H}_{2}, \ldots, g_{T} \in \mathcal{H}_{T}$
- diversity by different parameters: GD with $\eta=0.001,0.01, \ldots, 10$
- diversity by algorithmic randomness:
random PLA with different random seeds
- diversity by data randomness: within-cross-validation hypotheses g_{v}^{-}
next: diversity by data randomness without g^{-}

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus
consensus $\bar{g}=$ expected g_{t} from $\mathcal{D}_{t} \sim P^{N}$

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus
consensus $\bar{g}=$ expected g_{t} from $\mathcal{D}_{t} \sim P^{N}$

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_{t} than the \mathcal{D} on hand

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

$$
\text { consensus } \bar{g}=\text { expected } g_{t} \text { from } \mathcal{D}_{t} \sim P^{N}
$$

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_{t} than the \mathcal{D} on hand
- want: approximate \bar{g} by

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

$$
\text { consensus } \bar{g}=\text { expected } g_{t} \text { from } \mathcal{D}_{t} \sim P^{N}
$$

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_{t} than the \mathcal{D} on hand
- want: approximate \bar{g} by
- finite (large) T

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

$$
\text { consensus } \bar{g}=\text { expected } g_{t} \text { from } \mathcal{D}_{t} \sim P^{N}
$$

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_{t} than the \mathcal{D} on hand
- want: approximate \bar{g} by
- finite (large) T
- approximate $g_{t}=\mathcal{A}\left(\mathcal{D}_{t}\right)$ from $\mathcal{D}_{t} \sim P^{N}$ using only \mathcal{D}

Revisit of Bias-Variance

expected performance of $\mathcal{A}=$ expected deviation to consensus +performance of consensus

$$
\text { consensus } \bar{g}=\text { expected } g_{t} \text { from } \mathcal{D}_{t} \sim P^{N}
$$

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_{t} than the \mathcal{D} on hand
- want: approximate \bar{g} by
- finite (large) T
- approximate $g_{t}=\mathcal{A}\left(\mathcal{D}_{t}\right)$ from $\mathcal{D}_{t} \sim P^{N}$ using only \mathcal{D}
bootstrapping: a statistical tool that re-samples from \mathcal{D} to 'simulate' \mathcal{D}_{t}

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

virtual aggregation

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

virtual aggregation

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$
bootstrap aggregation
consider a physical iterative process that for $t=1,2, \ldots, T$

$$
G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)
$$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

virtual aggregation

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$
bootstrap aggregation
consider a physical iterative process that for $t=1,2, \ldots, T$
(1) request size- N ' data $\tilde{\mathcal{D}}_{t}$ from bootstrapping
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

virtual aggregation

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$
bootstrap aggregation
consider a physical iterative process that for $t=1,2, \ldots, T$
(1) request size- N ' data $\tilde{\mathcal{D}}_{t}$ from bootstrapping
(2) obtain g_{t} by $\mathcal{A}\left(\tilde{\mathcal{D}}_{t}\right)$

$$
G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)
$$

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_{t}$: re-sample N examples from \mathcal{D} uniformly with replacement-can also use arbitrary N^{\prime} instead of original N

virtual aggregation

consider a virtual iterative process that for $t=1,2, \ldots, T$
(1) request size- N data \mathcal{D}_{t} from P^{N} (i.i.d.)
(2) obtain g_{t} by $\mathcal{A}\left(\mathcal{D}_{t}\right)$
$G=\operatorname{Uniform}\left(\left\{g_{t}\right\}\right)$

bootstrap aggregation (BAGging): a simple meta algorithm on top of base algorithm \mathcal{A}

Bagging Pocket in Action

- very diverse g_{t} from bagging

Bagging Pocket in Action

$T_{\text {POCKET }}=1000 ; T_{\text {BAG }}=25$

- very diverse g_{t} from bagging
- proper non-linear boundary after aggregating binary classifiers

Bagging Pocket in Action

$T_{\text {POCKET }}=1000 ; T_{\text {BAG }}=25$

- very diverse g_{t} from bagging
- proper non-linear boundary after aggregating binary classifiers

bagging works reasonably well if base algorithm sensitive to data randomness

Fun Time

When using bootstrapping to re-sample N examples $\tilde{\mathcal{D}}_{t}$ from a data set \mathcal{D} with N examples, what is the probability of getting $\tilde{\mathcal{D}}_{t}$ exactly the same as \mathcal{D} ?
(1) $0 \quad / N^{N}=0$
(2) $1 / N^{N}$
(3) $N!/ N^{N}$
(4) $N^{N} / N^{N}=1$

Fun Time

When using bootstrapping to re-sample N examples $\tilde{\mathcal{D}}_{t}$ from a data set \mathcal{D} with N examples, what is the probability of getting $\tilde{\mathcal{D}}_{t}$ exactly the same as \mathcal{D} ?
(1) $0 / N^{N}=0$
(2) $1 / N^{N}$
(3) $N!/ N^{N}$
(4) $N^{N} / N^{N}=1$

Reference Answer: (3)

Consider re-sampling in an ordered manner for N steps. Then there are (N^{N}) possible outcomes $\tilde{\mathcal{D}}_{t}$, each with equal probability. Most importantly, ($N!$) of the outcomes are permutations of the original \mathcal{D}, and thus the answer.

Summary

(1) Embedding Numerous Features: Kernel Models
(2) Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation aggregated G strong and/or moderate
- Uniform Blending
diverse hypotheses, 'one vote, one value'
- Linear and Any Blending
two-level learning with hypotheses as transform
- Bagging (Bootstrap Aggregation) bootstrapping for diverse hypotheses
- next: getting more diverse hypotheses to make G strong
(3) Distilling Implicit Features: Extraction Models

