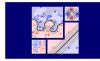
Machine Learning Techniques

(機器學習技法)



Lecture 1: Linear Support Vector Machine

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

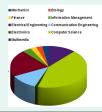
Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Course History

NTU Version

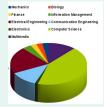
- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching



Course History

NTU Version

- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching



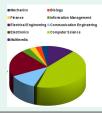
Coursera Version

- 8 weeks of 'foundations' (previous course) + 8 weeks of 'techniques' (this course)
- Mandarin teaching to reach more audience in need
- slides teaching improved with Coursera's quiz and homework mechanisms

Course History

NTU Version

- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching



Coursera Version

- 8 weeks of 'foundations' (previous course) + 8 weeks of 'techniques' (this course)
- Mandarin teaching to reach more audience in need
- slides teaching improved with Coursera's quiz and homework mechanisms

goal: try making Coursera version even better than NTU version

from Foundations to Techniques

• mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - —inspires Support Vector Machine (SVM) model

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - —inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?

Course Introduction

Course Design

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - -inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - -inspires Adaptive Boosting (AdaBoost) model

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - —inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - —inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - —inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - —inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?
 - —inspires Deep Learning model

from Foundations to Techniques

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - -inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - —inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?
 - —inspires Deep Learning model

allows students to use ML professionally

Fun Time

Which of the following description of this course is true?

- 1 the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- the course will be 16 weeks long
- 4 the course will focus on three major techniques

Which of the following description of this course is true?

- 1 the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- the course will be 16 weeks long
- 4 the course will focus on three major techniques

Reference Answer: 4

- no, my Taiwanese is unfortunately not good enough for teaching (yet)
- 2 no, although what we teach may serve as building blocks
- 3 no, unless you have also joined the previous course
- 4 yes, let's get started!

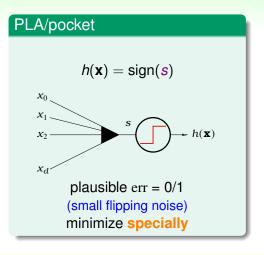
Roadmap

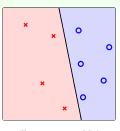
1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

- Course Introduction
- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Reasons behind Large-Margin Hyperplane
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Linear Classification Revisited

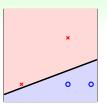


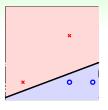


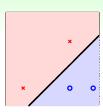
(linear separable)

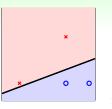
linear (hyperplane) classifiers: $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$

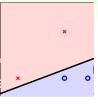
Which Line Is Best?



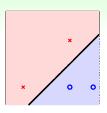






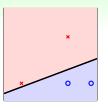


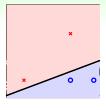
Which Line Is Best?

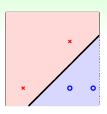


PLA? depending on randomness

Which Line Is Best?



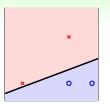


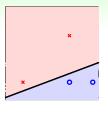


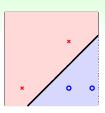
- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}} = d^{-1}}$$

Which Line Is Best?



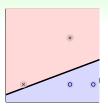


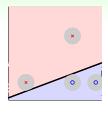


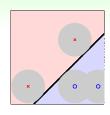
- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}} = d+1}$$

You? rightmost one, possibly :-)



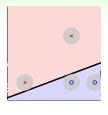


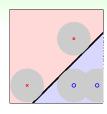


informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:



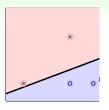


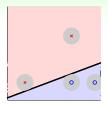


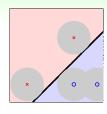
informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane





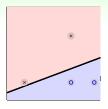


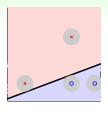
informal argument

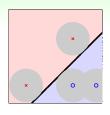
if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

⇔ tolerate more noise





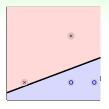


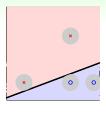
informal argument

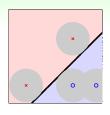
if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

⇔ tolerate more noise







informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

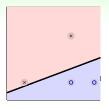
 \mathbf{x}_n further from hyperplane

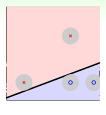
⇔ tolerate more noise

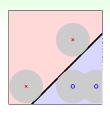
⇔ more robust to overfitting

amount of noise tolerance

 \iff robustness of hyperplane







informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

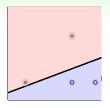
⇔ tolerate more noise

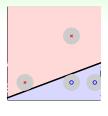
⇔ more robust to overfitting

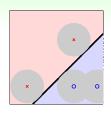
distance to closest \mathbf{x}_n

⇔ amount of noise tolerance

⇔ robustness of hyperplane







informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

⇒ tolerate more noise

tolerate more noise

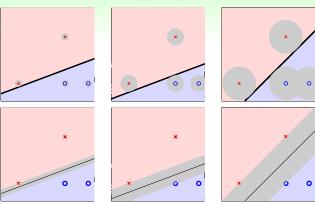
distance to closest \mathbf{x}_n

⇔ amount of noise tolerance

⇔ robustness of hyperplane

rightmost one: **more robust** because of **larger distance to closest x**_n

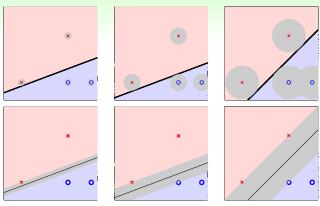
Fat Hyperplane



robust separating hyperplane: fat
 —far from both sides of examples

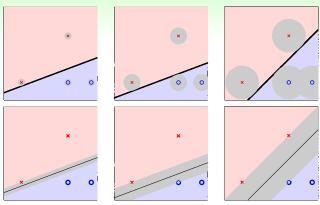
Hsuan-Tien Lin (NTU CSIE)

Fat Hyperplane



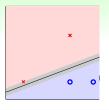
- robust separating hyperplane: fat
 —far from both sides of examples
- robustness \equiv fatness: distance to closest \mathbf{x}_n

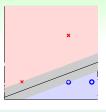
Fat Hyperplane

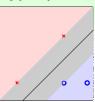


- robust separating hyperplane: fat
 —far from both sides of examples
- robustness \equiv fatness: distance to closest \mathbf{x}_n

goal: find fattest separating hyperplane







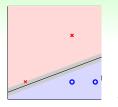
max

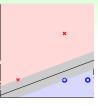
fatness(w)

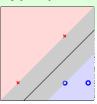
subject to

w classifies every (\mathbf{x}_n, y_n) correctly

 $fatness(\mathbf{w}) = \min_{n=1,\dots,N} distance(\mathbf{x}_n, \mathbf{w})$

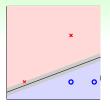


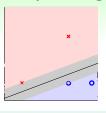


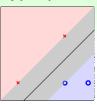


max margin(w) subject to w classifies every (\mathbf{x}_n, y_n) correctly margin(w) = min distance $(\mathbf{x}_n, \mathbf{w})$

fatness: formally called margin

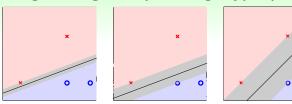






```
\max_{\mathbf{w}} \quad \underset{\mathbf{w}}{\mathsf{margin}}(\mathbf{w}) subject to \mathsf{every} \ y_n \mathbf{w}^T \mathbf{x}_n > 0 \mathsf{margin}(\mathbf{w}) = \min_{n=1,\dots,N} \mathsf{distance}(\mathbf{x}_n, \mathbf{w})
```

- fatness: formally called margin
- correctness: $y_n = \text{sign}(\mathbf{w}^T \mathbf{x}_n)$



```
\begin{aligned} \max_{\mathbf{w}} & & \mathsf{margin}(\mathbf{w}) \\ \mathsf{subject} & \mathsf{to} & & \mathsf{every} \ y_n \mathbf{w}^T \mathbf{x}_n > 0 \\ & & & \mathsf{margin}(\mathbf{w}) = \min_{n=1,\dots,N} \mathsf{distance}(\mathbf{x}_n, \mathbf{w}) \end{aligned}
```

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Consider two examples $(\mathbf{v}, +1)$ and $(-\mathbf{v}, -1)$ where $\mathbf{v} \in \mathbb{R}^2$ (without padding the $v_0 = 1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v} = (3, 2)$.

- 1 $x_1 = 0$
- 2 $x_2 = 0$

Fun Time

Consider two examples $(\mathbf{v},+1)$ and $(-\mathbf{v},-1)$ where $\mathbf{v}\in\mathbb{R}^2$ (without padding the $v_0=1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v}=(3,2)$.

- $\mathbf{1} x_1 = 0$
- $2 x_2 = 0$

Reference Answer: (3)

Here the largest-margin separating hyperplane (line) must be a perpendicular bisector of the line segment between \mathbf{v} and $-\mathbf{v}$. Hence \mathbf{v} is a normal vector of the largest-margin line. The result can be extended to the more general case of $\mathbf{v} \in \mathbb{R}^d$.

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \text{distance}(\mathbf{x}_n, \mathbf{w})$$

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \text{distance}(\mathbf{x}_n, \mathbf{w})$$

'shorten' x and w

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \frac{\text{distance}(\mathbf{x}_n, \mathbf{w})}{\text{distance}(\mathbf{x}_n, \mathbf{w})}$$

'shorten' **x** and **w**

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

$$\begin{bmatrix} | \\ \mathbf{w} \\ | \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} \quad ; \quad \begin{bmatrix} | \\ \mathbf{x} \\ | \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \frac{\text{distance}(\mathbf{x}_n, \mathbf{w})}{\text{distance}(\mathbf{x}_n, \mathbf{w})}$$

'shorten' x and w

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

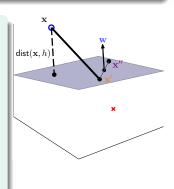
$$\begin{bmatrix} | \\ \mathbf{w} \\ | \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} \quad ; \quad \begin{bmatrix} | \\ \mathbf{x} \\ | \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

for this part: $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

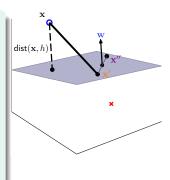
want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane



want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider \mathbf{x}' , \mathbf{x}'' on hyperplane



want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

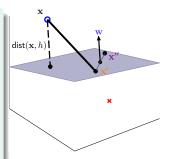


want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

 $2 \mathbf{w} \perp$ hyperplane:

$$\begin{pmatrix} \mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\ \text{vector on hyperplane} \end{pmatrix} =$$

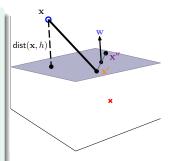


want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

 $2 \mathbf{w} \perp$ hyperplane:

$$\begin{pmatrix} \mathbf{w}^T & \underbrace{(\mathbf{x}'' - \mathbf{x}')} \\
\text{vector on hyperplane} \end{pmatrix} = 0$$

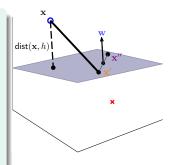


want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

2 w ⊥ hyperplane:

$$\begin{pmatrix}
\mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\
\text{vector on hyperplane}
\end{pmatrix} = 0$$



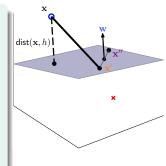
want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

1
$$\mathbf{w}^T \mathbf{x}' = -b, \mathbf{w}^T \mathbf{x}'' = -b$$

2 w ⊥ hyperplane:

$$\begin{pmatrix}
\mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\
\text{vector on hyperplane}
\end{pmatrix} = 0$$



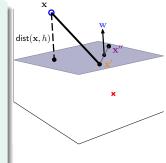
$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \begin{vmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

2 w ⊥ hyperplane:

$$\begin{pmatrix}
\mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\
\text{vector on hyperplane}
\end{pmatrix} = 0$$



$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^T}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right|$$

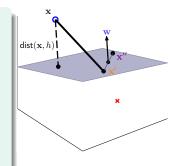
want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

$$\mathbf{0} \ \mathbf{w}^T \mathbf{x}' = -b, \ \mathbf{w}^T \mathbf{x}'' = -b$$

 $2 \mathbf{w} \perp$ hyperplane:

$$\begin{pmatrix}
\mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\
\text{vector on hyperplane}
\end{pmatrix} = 0$$



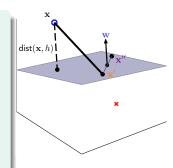
$$\mathsf{distance}(\mathbf{x}, \textcolor{red}{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^T}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{\scriptsize (1)}}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x}|$$

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

 $2 \mathbf{w} \perp$ hyperplane:

$$\begin{pmatrix} \mathbf{w}^T & \underbrace{(\mathbf{x}'' - \mathbf{x}')} \\ \text{vector on hyperplane} \end{pmatrix} = 0$$



$$\mathsf{distance}(\mathbf{x}, \textcolor{red}{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^{\mathsf{T}}}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{(1)}}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}} \mathbf{x} + \textcolor{red}{b}|$$

$$distance(\mathbf{x}, \frac{\mathbf{b}}{\mathbf{w}}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

separating hyperplane: for every n

$$y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b)>0$$

$$\max_{\substack{b,\mathbf{w}\\b,\mathbf{w}}} \quad \operatorname{margin}(\mathbf{b},\mathbf{w})$$
 subject to
$$\operatorname{every} y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 0$$

$$\operatorname{margin}(\mathbf{b},\mathbf{w}) = \min_{\substack{n=1,\ldots,N}} \operatorname{distance}(\mathbf{x}_n,\mathbf{b},\mathbf{w})$$

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

separating hyperplane: for every n

$$y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})>0$$

distance to separating hyperplane:

distance(
$$\mathbf{x}_n, \mathbf{b}, \mathbf{w}$$
) = $\frac{1}{\|\mathbf{w}\|} \mathbf{y}_n (\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$

$$\max_{\substack{b,\mathbf{w}}} \quad \text{margin}(\mathbf{b},\mathbf{w})$$
 subject to
$$\text{every } y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 0$$

$$\text{margin}(\mathbf{b},\mathbf{w}) = \min_{n=1,\dots,N} \text{distance}(\mathbf{x}_n,\mathbf{b},\mathbf{w})$$

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

separating hyperplane: for every n

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$$

distance to separating hyperplane:

distance(
$$\mathbf{x}_n, \mathbf{b}, \mathbf{w}$$
) = $\frac{1}{\|\mathbf{w}\|} \mathbf{y}_n (\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$

$$\max_{\substack{b,\mathbf{w}}} \quad \text{margin}(\mathbf{b},\mathbf{w})$$
 subject to
$$\text{every } y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})>0$$

$$\text{margin}(\mathbf{b},\mathbf{w})=\min_{n=1}\frac{1}{N}y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})$$

```
\begin{array}{ll} \max_{\substack{\boldsymbol{b},\mathbf{w} \\ \boldsymbol{b},\mathbf{w}}} & \operatorname{margin}(\boldsymbol{b},\mathbf{w}) \\ \operatorname{subject to} & \operatorname{every} \ y_n(\mathbf{w}^T\mathbf{x}_n+\boldsymbol{b}) > 0 \\ & \operatorname{margin}(\boldsymbol{b},\mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{||\mathbf{w}||} y_n(\mathbf{w}^T\mathbf{x}_n+\boldsymbol{b}) \end{array}
```

```
\begin{array}{ll} \max & \operatorname{margin}(\boldsymbol{b}, \mathbf{w}) \\ \operatorname{subject to} & \operatorname{every} \ y_n(\mathbf{w}^T \mathbf{x}_n + \boldsymbol{b}) > 0 \\ & \operatorname{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \boldsymbol{b}) \end{array}
```

• $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter

```
max \underset{\boldsymbol{b}, \mathbf{w}}{\text{margin}}(\boldsymbol{b}, \mathbf{w})

subject to every y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0

\text{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1,...,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})
```

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 \Longrightarrow$$

```
max \underset{\boldsymbol{b}, \mathbf{w}}{\text{margin}}(\boldsymbol{b}, \mathbf{w})

subject to every y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0

\text{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})
```

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 \Longrightarrow \text{margin}(\mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

max
$$\underset{\boldsymbol{b}, \mathbf{w}}{\text{margin}}(\boldsymbol{b}, \mathbf{w})$$

subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0$
 $\text{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1,...,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})$

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, \mathbf{w}) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 \Longrightarrow \text{margin}(\mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

$$\max_{\substack{b,\mathbf{w}}} \quad \frac{1}{\|\mathbf{w}\|}$$
 subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$
$$\min_{\substack{n=1,\dots,N}} \quad y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

max
$$\underset{\boldsymbol{b}, \mathbf{w}}{\text{margin}}(\boldsymbol{b}, \mathbf{w})$$

subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0$
 $\text{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})$

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 \Longrightarrow \text{margin}(\mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

$$\max_{\substack{b,\mathbf{w}}} \quad \frac{1}{\|\mathbf{w}\|}$$
subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$

$$\min_{\substack{n=1,\dots,N}} \quad y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

original constraint:
$$\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

original constraint:
$$\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

$$\max_{b,\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \geq 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, w) outside,

$$\max_{b,\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal
$$(\mathbf{b}, \mathbf{w})$$
 outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) >$ for all n

$$\max_{b,\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \geq 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

$$\max_{b,\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

$$\max_{\substack{b,\mathbf{w}\\\\\text{subject to}}}\frac{1}{\|\mathbf{w}\|}$$
 subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})\geq 1 \text{ for all } n$$

$$\max_{\boldsymbol{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \boldsymbol{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

```
final change: \max \implies \min, remove \sqrt{\frac{1}{\|\mathbf{w}\|}} subject to y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 for all n
```

Standard Large-Margin Hyperplane Problem

$$\max_{b,\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

```
final change: \max \implies \min, remove \sqrt{\phantom{a}}
\min_{\substack{b,\mathbf{w}\\}} \mathbf{w}^T \mathbf{w}
subject to y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) \ge 1 for all n
```

Standard Large-Margin Hyperplane Problem

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \ y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

```
final change: \max \Longrightarrow \min, remove \sqrt{\phantom{a}}, add \frac{1}{2} \min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} subject to y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 for all n
```

Fun Time

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- **3** the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- $oldsymbol{4}$ the example that is closest to the hyperplane is $oldsymbol{x}_3$

Fun Time

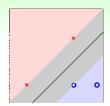
Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- 3 the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- $oldsymbol{4}$ the example that is closest to the hyperplane is $oldsymbol{x}_3$

Reference Answer: 2

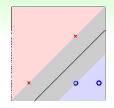
The distance from the hyperplane to \mathbf{x}_1 is $\frac{1}{\sqrt{2}}(3+0-1)=\sqrt{2}.$

 $\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$
subject to $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + \underline{b}) \ge 1 \text{ for all } n$



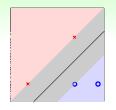
$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$



$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \geq 1 & (i) \\ -2w_1 - 2w_2 - b \geq 1 & (ii) \\ 2w_1 & +b \geq 1 & (iii) \\ 3w_1 & +b \geq 1 & (iv) \end{array}$$

$$\min_{\substack{b,\mathbf{w}\\}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$

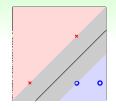


$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{l} -b \geq 1 & (i) \\ -2w_1 - 2w_2 - b \geq 1 & (ii) \\ 2w_1 & +b \geq 1 & (iii) \\ 3w_1 & +b \geq 1 & (iv) \end{array}$$

$$\bullet \left\{ \begin{array}{l} (i) & \& \quad (iii) \\ \Rightarrow & w_1 \geq +1 \end{array} \right. \Rightarrow w_1 \geq +1$$

$$\min_{\boldsymbol{b}, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T \mathbf{x}_n + \boldsymbol{b}) \ge 1 \text{ for all } n$$

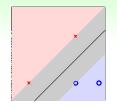


$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \geq 1 & (i) \\ -2w_1 - 2w_2 - b \geq 1 & (ii) \\ 2w_1 & +b \geq 1 & (iii) \\ 3w_1 & +b \geq 1 & (iv) \end{array}$$

$$\left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow$$

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$

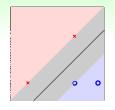


$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \geq 1 & (i) \\ -2w_1 - 2w_2 - b \geq 1 & (ii) \\ 2w_1 & +b \geq 1 & (iii) \\ 3w_1 & +b \geq 1 & (iv) \end{array}$$

$$\left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} \ge 1$$

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$

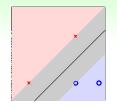


$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \geq 1 & (i) \\ -2w_1 - 2w_2 - b \geq 1 & (ii) \\ 2w_1 & +b \geq 1 & (iii) \\ 3w_1 & +b \geq 1 & (iv) \end{array}$$

- $\bullet \left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} \ge 1$
- $(w_1 = 1, w_2 = -1, b = -1)$ at **lower bound** and satisfies (i) (iv)

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$



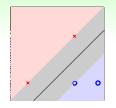
$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \ge 1 & (i) \\ -2w_1 - 2w_2 - b \ge 1 & (ii) \\ 2w_1 & +b \ge 1 & (iii) \\ 3w_1 & +b \ge 1 & (iv) \end{array}$$

- $\bullet \left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} \ge 1$
- $(w_1 = 1, w_2 = -1, b = -1)$ at **lower bound** and satisfies (i) (iv)

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}(x_1 - x_2 - 1)$$
:

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$$



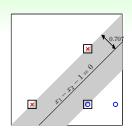
$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \ge 1 & (i) \\ -2w_1 - 2w_2 - b \ge 1 & (ii) \\ 2w_1 & +b \ge 1 & (iii) \\ 3w_1 & +b \ge 1 & (iv) \end{array}$$

- $\bullet \left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} \ge 1$
- $(w_1 = 1, w_2 = -1, b = -1)$ at **lower bound** and satisfies (i) (iv)

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}(x_1 - x_2 - 1)$$
: SVM? :-)

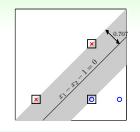
optimal solution:
$$(w_1 = 1, w_2 = -1, \frac{b}{b} = -1)$$

margin $(\frac{b}{v}, \mathbf{w})$ $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$



optimal solution:
$$(w_1 = 1, w_2 = -1, \frac{b}{b} = -1)$$

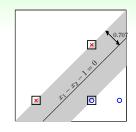
margin $(\frac{b}{b}, \mathbf{w})$ $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$



 examples on boundary: 'locates' fattest hyperplane other examples: not needed

optimal solution:
$$(w_1 = 1, w_2 = -1, \frac{b}{b} = -1)$$

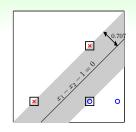
margin $(\frac{b}{v}, \mathbf{w})$ $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$



- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

optimal solution:
$$(w_1 = 1, w_2 = -1, b = -1)$$

margin (b, \mathbf{w}) $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$



- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

support vector machine (SVM):
 learn fattest hyperplanes
(with help of support vectors)

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$

subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for all n

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$ subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- · luckily:
 - (convex) quadratic objective function of (b, w)

Support Vector Machine

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$
subject to $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$
subject to $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)

—quadratic programming

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)

—quadratic programming

quadratic programming (QP):
 'easy' optimization problem

```
optimal (b, \mathbf{w}) = ?
\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}
subject to y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1,
for n = 1, 2, ..., N
```

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, ..., N$

```
optimal \mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})
\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}
subject to \mathbf{a}_m^T \mathbf{u} \geq c_m,
for m = 1, 2, \dots, M
```

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, ..., N$

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
subject to
$$\mathbf{a}_m^T \mathbf{u} \geq c_m,$$
for $m = 1, 2, \dots, M$

```
objective function: \mathbf{u} = \mathbf{p} = \mathbf
```

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, ..., N$

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
subject to
$$\mathbf{a}_m^T \mathbf{u} \geq c_m,$$
for $m = 1, 2, \dots, M$

```
objective function: \mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}; \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1} constraints: \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; \mathbf{c}_n = 1; M = N
```

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, ..., N$

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
subject to
$$\mathbf{a}_m^T \mathbf{u} \geq c_m,$$
for $m = 1, 2, \dots, M$

objective function:
$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$$
; $\mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}$; $\mathbf{p} = \mathbf{0}_{d+1}$ constraints: $\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$; $\mathbf{c}_n = 1$; $\mathbf{M} = \mathbf{N}$

SVM with general QP solver: easy if you've read the manual :-)

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \quad \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

3 return $b \& \mathbf{w}$ as g_{SVM}

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \& \mathbf{w}$ as g_{SVM}
 - hard-margin: nothing violate 'fat boundary'
 - linear: x_n

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \quad \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \& \mathbf{w}$ as g_{SVM}
 - hard-margin: nothing violate 'fat boundary'
 - linear: \mathbf{x}_n

$$z_n = \Phi(x_n)$$
—remember? :-)

Fun Time

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , \mathbf{Q} , \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

, $\mathbf{a}_{4}^{T} = [-1, 3, 0]$

1
$$\mathbf{a}_1^T = [-1,0,0]$$
 , $\mathbf{a}_2^T = [-1,2,2]$, $\mathbf{a}_3^T = [-1,2,0]$, $\mathbf{a}_4^T = [-1,3,0]$ **2** $\mathbf{a}_1^T = [1,0,0]$, $\mathbf{a}_2^T = [1,-2,-2]$, $\mathbf{a}_3^T = [-1,2,0]$, $\mathbf{a}_4^T = [-1,3,0]$

3
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,2,2]$, $\mathbf{a}_3^T = [1,2,0]$, $\mathbf{a}_4^T = [1,3,0]$

4 $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_{2}^{T} = [-1, -2, -2]$, $\mathbf{a}_{3}^{T} = [1, 2, 0]$, $\mathbf{a}_{A}^{T} = [1, 3, 0]$

Fun Time

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , \mathbf{Q} , \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

1
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, 2, 2]$, $\mathbf{a}_3^T = [-1, 2, 0]$

$$\mathbf{a}_{2}^{T} = [-1, 2, 2]$$

$$\mathbf{a}_{2}^{T} = [-1, 2, 0]$$

,
$$\mathbf{a}_4^T = [-1, 3, 0]$$

, $\mathbf{a}_4^T = [-1, 3, 0]$

2
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,-2,-2]$, $\mathbf{a}_3^T = [-1,2,0]$

$$\mathbf{a}_{2} = [1, -2, -1]$$

3
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,2,2]$, $\mathbf{a}_3^T = [1,2,0]$

,
$$\mathbf{a}_4^T = [1, 3, 0]$$

4
$$\mathbf{a}_{1}^{T} = [-1, 0, 0]$$

4
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, -2, -2]$, $\mathbf{a}_3^T = [1, 2, 0]$

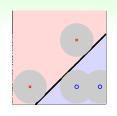
,
$$\mathbf{a}_4^T = [1, 3, 0]$$

Reference Answer: (4)

We need
$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$$
.

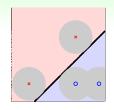
Why Large-Margin Hyperplane?

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$



Why Large-Margin Hyperplane?

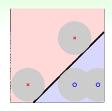
 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$



	minimize	constraint
regularization	<i>E</i> _{in}	$\mathbf{w}^T \mathbf{w} \leq C$
SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\rm in}=0$ [and more]

Why Large-Margin Hyperplane?

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$ $\sup_{b} \sup_{\mathbf{w}} y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$



	minimize	constraint
regularization	<i>E</i> in	$\mathbf{w}^T \mathbf{w} \leq C$
SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\rm in}=0$ [and more]

SVM (large-margin hyperplane): 'weight-decay regularization' within $E_{\rm in}=0$

consider 'large-margin algorithm' \mathcal{A}_{ρ} : either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

consider 'large-margin algorithm' \mathcal{A}_{ρ} : either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

consider 'large-margin algorithm' A_{ρ} : either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

$\mathcal{A}_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

consider 'large-margin algorithm' A_{ρ} : either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

$\mathcal{A}_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

fewer dichotomies \Longrightarrow smaller 'VC dim.' \Longrightarrow better generalization

VC Dimension of Large-Margin Algorithm fewer dichotomies ⇒ smaller 'VC dim.'

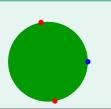
fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{VC}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC]

fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{VC}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{VC}(\mathcal{H})$ [data-independent, covered by VC]

fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{\text{VC}}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{\text{VC}}(\mathcal{H})$ [data-independent, covered by VC]

$d_{VC}(A_{\rho})$ when \mathcal{X} = unit circle in \mathbb{R}^2

• $\rho = 0$: just perceptrons ($d_{VC} = 3$)



fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{\text{VC}}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{\text{VC}}(\mathcal{H})$ [data-independent, covered by VC]

$d_{ extsf{VC}}(\mathcal{A}_{ ho})$ when \mathcal{X} = unit circle in \mathbb{R}^2

- $\rho = 0$: just perceptrons ($d_{VC} = 3$)
- $\rho > \frac{\sqrt{3}}{2}$: cannot shatter any 3 inputs $(d_{VC} < 3)$
 - —some inputs must be of **distance** $\leq \sqrt{3}$

fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{\text{VC}}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{\text{VC}}(\mathcal{H})$ [data-independent, covered by VC]

$d_{\text{VC}}(\mathcal{A}_{\rho})$ when \mathcal{X} = unit circle in \mathbb{R}^2

- $\rho = 0$: just perceptrons ($d_{VC} = 3$)
- $\rho > \frac{\sqrt{3}}{2}$: cannot shatter any 3 inputs $(d_{VC} < 3)$
 - —some inputs must be of distance $\leq \sqrt{3}$

generally, when \mathcal{X} in radius-R hyperball:

$$d_{ extsf{vc}}(\mathcal{A}_{
ho}) \leq \min\left(rac{\mathit{R}^2}{
ho^2}, d
ight) + 1 \leq \underbrace{d+1}_{d_{ extsf{vc}}(ext{perceptrons})}$$

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

• not many good, for d_{VC} and generalization

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}

a new possibility: non-linear SVM large-margin hyperplanes + numerous feature transform Φ mot many boundary sophisticated

Fun Time

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho = \frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\| \leq 1$. What is the upper bound of $d_{VC}(\mathcal{A}_{\rho})$ when calculated by

- $\min\left(\frac{R^2}{\rho^2},d\right)+1?$
 - **1** 5
 - **2** 17
 - **3** 1126
 - **4** 1127

Fun Time

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho=\frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z}=\mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\|\leq 1$. What is the upper bound of $d_{\text{VC}}(\mathcal{A}_{\rho})$ when calculated by $\min\left(\frac{R^2}{\rho^2},d\right)+1$?

- **①** 5
- **2** 17
- 3 1126
- **4** 1127

Reference Answer: (2)

By the description, d = 1126 and R = 1. So the upper bound is simply 17.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

- Course Introduction
 - from foundations to techniques
- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem

minimize 'length of w' at special separating scale

- Support Vector Machine
 - 'easy' via quadratic programming
- Reasons behind Large-Margin Hyperplane fewer dichotomies and better generalization
- next: solving non-linear Support Vector Machine
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models