Machine Learning Foundations

（機器學習基石）

Lecture 6：Theory of Generalization
Hsuan－Tien Lin（林軒田）

htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University
（國立台灣大學資訊工程系）

Roadmap

(1) When Can Machines Learn?
(2) Why Can Machines Learn?

Lecture 5: Training versus Testing

effective price of choice in training: (wishfully) growth function $m_{\mathcal{H}}(N)$ with a break point

Lecture 6: Theory of Generalization

- Restriction of Break Point
- Bounding Function: Basic Cases
- Bounding Function: Inductive Cases
- A Pictorial Proof
(3) How Can Machines Learn?

4) How Can Machines Learn Better?

The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies
The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies- positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

$\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies- positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

ox $\quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

o×o
$m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies- positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

$$
\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}: \text { break point at } 2
$$

- positive intervals:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

0×0
$m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

- convex sets:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

$m_{\mathcal{H}}(N)=2^{N}$ always: no break point

The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies- positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

ox $\quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

0×0
$m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

- convex sets:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

\circ| 0 |
| :---: |
| $\times \quad 0$ |

$m_{\mathcal{H}}(N)=2^{N}$ always: no break point

- 2D perceptrons:

$$
\times{ }_{\circ}^{\circ} \times \quad m_{\mathcal{H}}(4)=14<2^{4}: \text { break point at } 4
$$

The Four Break Points

 growth function $m_{\mathcal{H}}(N)$: max number of dichotomies- positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

$\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

$\circ \times \circ \quad m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

- convex sets:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

0 | 0 |
| :---: |
| $\times \quad 0$ |

$m_{\mathcal{H}}(N)=2^{N}$ always: no break point

- 2D perceptrons:

$$
\times{ }_{\circ}^{\circ} \times \quad m_{\mathcal{H}}(4)=14<2^{4}: \text { break point at } 4
$$

break point $k \Longrightarrow$ break point $k+1, \ldots$
what else?

Restriction of Break Point (1/2)

 what 'must be true' when minimum break point $k=2$- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition

Restriction of Break Point (1/2)

 what 'must be true' when minimum break point $k=2$- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)
maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?
1 dichotomy , shatter any two points?

$$
\begin{array}{ccc}
\mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\
\hline \circ & \circ & \circ
\end{array}
$$

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)
maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?
1 dichotomy , shatter any two points? no

$$
\begin{array}{ccc}
\mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\
\hline \circ & \circ & \circ
\end{array}
$$

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

2 dichotomies, shatter any two points?

$$
\begin{array}{ccc}
\mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\
\hline \circ & \circ & \circ \\
\circ & \circ & \times
\end{array}
$$

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

2 dichotomies, shatter any two points? no

$$
\begin{array}{ccc}
\mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\
\hline \circ & \circ & \circ \\
\circ & \circ & \times
\end{array}
$$

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

3 dichotomies, shatter any two points? no

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points?

\mathbf{X}_{1}	$\mathbf{X}_{\mathbf{2}}$	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\circ	\times	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points? yes

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\circ	\times	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points? yes

\mathbf{X}_{1}	$\mathbf{X}_{\mathbf{2}}$	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\circ	\cdots	\cdots

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

3 dichotomies, shatter any two points? no

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points?

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points? no

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points?

\mathbf{x}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\circ	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\circ	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\boldsymbol{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	0	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points? no

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points?

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\times	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\times	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\boldsymbol{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\cdots	\cdots	0

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

4 dichotomies, shatter any two points? no

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points?

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\times	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\times	\times

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

5 dichotomies, shatter any two points? yes

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
\times	\cdots	\cdots

Restriction of Break Point (1/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)

maximum possible $m_{\mathcal{H}}(N)$ when $N=3$ and $k=2$?

maximum possible so far: 4 dichotomies

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
\circ	\circ	\circ
\circ	\circ	\times
\circ	\times	\circ
\times	\circ	\circ
$=-($	$=-($	$=-($

Restriction of Break Point (2/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)
- $N=3$: maximum possible $=4 \ll 2^{3}$

Restriction of Break Point (2/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)
- $N=3$: maximum possible $=4 \ll 2^{3}$
—break point k restricts maximum possible $m_{\mathcal{H}}(N)$ a lot for $N>k$

Restriction of Break Point (2/2)

what 'must be true' when minimum break point $k=2$

- $N=1$: every $m_{\mathcal{H}}(N)=2$ by definition
- $N=2$: every $m_{\mathcal{H}}(N)<4$ by definition (so maximum possible $=3$)
- $N=3$: maximum possible $=4 \ll 2^{3}$
—break point k restricts maximum possible $m_{\mathcal{H}}(N)$ a lot for $N>k$
idea: $\quad m_{\mathcal{H}}(N)$
\leq maximum possible $m_{\mathcal{H}}(N)$ given k $\leq \operatorname{poly}(N)$

Fun Time

When minimum break point $k=1$, what is the maximum possible $m_{\mathcal{H}}(N)$ when $N=3$?

(1) 1
(2) 2
(3) 4
(4) 8

Fun Time

When minimum break point $k=1$, what is the maximum possible $m_{\mathcal{H}}(N)$ when $N=3$?
(1) 1
(2) 2
(3) 4
(4) 8

Reference Answer: 1

Because $k=1$, the hypothesis set cannot even shatter one point. Thus, every 'column' of the table cannot contain both \circ and \times. Then, after including the first dichotomy, it is not possible to include any other different dichotomy. Thus, the maximum possible $m_{\mathcal{H}}(N)$ is 1 .

Bounding Function

bounding function $B(N, k)$: maximum possible $m_{\mathcal{H}}(N)$ when break point $=k$

Bounding Function

bounding function $B(N, k)$:

 maximum possible $m_{\mathcal{H}}(N)$ when break point $=k$- combinatorial quantity: maximum number of length- N vectors with $(\circ, \times$) while 'no shatter' any length- k subvectors

Bounding Function

bounding function $B(N, k)$: maximum possible $m_{\mathcal{H}}(N)$ when break point $=k$

- combinatorial quantity: maximum number of length- N vectors with (\circ, \times) while 'no shatter' any length- k subvectors
- irrelevant of the details of \mathcal{H} e.g. $B(N, 3)$ bounds both
- positive intervals $(k=3)$
- 1D perceptrons $(k=3)$

Bounding Function

bounding function $B(N, k)$: maximum possible $m_{\mathcal{H}}(N)$ when break point $=k$

- combinatorial quantity: maximum number of length- N vectors with $(\circ, \times$) while 'no shatter' any length- k subvectors
- irrelevant of the details of \mathcal{H} e.g. $B(N, 3)$ bounds both
- positive intervals $(k=3)$
- 1D perceptrons $(k=3)$
new goal: $B(N, k) \leq \operatorname{poly}(N)$?

Table of Bounding Function (1/4)

$B(N, k)$	k						
	1	2	3	4	5	6	...
1							
2		3					
3		4					
$N \quad 4$							
5							
6							

Known

- $B(2,2)=3$ (maximum <4)
- $B(3,2)=4$ ('pictorial' proof previously)

Table of Bounding Function (2/4)

$B(N, k)$		k						
		1	2	3	4	5	6	
	1	1						
	2	1	3					
	3	1	4					
N	4	1						
	5	1						
	6	1						
	!							

Known

- $B(N, 1)=1$ (see previous quiz)

Table of Bounding Function (3/4)

	$B(N, k)$	k						
		1	2	3	4	5	6	\ldots
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	\ldots
	3	1	4		8	8	8	\ldots
N	4	1				16	16	\ldots
	5	1					32	...
	6	1						
	!							

Known

- $B(N, k)=2^{N}$ for $N<k$
-including all dichotomies not violating 'breaking condition'

Table of Bounding Function (4/4)

$B(N, k)$									
		1	2	3			5	6	
N	1	1	2				2	2	
	2	1	3				4	4	
	3	1	4				8	8	
	4	1					16	16	
		1						32	\ldots
	6	1							

Known

- $B(N, k)=\quad$ for $N=k$

Table of Bounding Function (4/4)

$B(N, k)$		k						
		1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	\ldots
	3	1	4	7	8	8	8	
N	4	1			15	16	16	
	5	1				31	32	..
	6	1					63	
	\vdots							

Known

- $B(N, k)=2^{N}-1$ for $N=k$
-removing a single dichotomy satisfies 'breaking condition'

Table of Bounding Function (4/4)

$B(N, k)$		k						
		1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	..
	3	1	4	7	8	8	8	
N	4	1			15	16	16	
	5	1				31	32	\ldots
	6	1					63	
	!							

Known

- $B(N, k)=2^{N}-1$ for $N=k$
-removing a single dichotomy satisfies 'breaking condition'
more than halfway done! :-)

Fun Time

For the 2D perceptrons, which of the following claim is true?
(1) minimum break point $k=2$
(2) $m_{\mathcal{H}}(4)=15$
(3) $m_{\mathcal{H}}(N)<B(N, k)$ when $N=k=$ minimum break point
(4) $m_{\mathcal{H}}(N)>B(N, k)$ when $N=k=$ minimum break point

Fun Time

For the 2D perceptrons, which of the following claim is true?

(1) minimum break point $k=2$
(2) $m_{\mathcal{H}}(4)=15$
(3) $m_{\mathcal{H}}(N)<B(N, k)$ when $N=k=$ minimum break point
(4) $m_{\mathcal{H}}(N)>B(N, k)$ when $N=k=$ minimum break point

Reference Answer: (3)

As discussed previously, minimum break point for 2D perceptrons is 4 , with $m_{\mathcal{H}}(4)=14$. Also, note that $B(4,4)=15$. So bounding function $B(N, k)$ can be 'loose' in bounding $m_{\mathcal{H}}(N)$.

Estimating $B(4,3)$

$B(N, k)$		k						
		1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	..
	3	1	4	7	8	8	8	.
N	4	1		?	15	16	16	
	5	1				31	32	..
	6	1					63	.
	\vdots							

Motivation

- $B(4,3)$ shall be related to $B(3$, ?)
-'adding' one point from $B(3$, ?)

Estimating $B(4,3)$

$B(N, k)$		k						
		1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	\ldots
	3	1	4	7	8	8	8	
N	4	1		?	15	16	16	
	5	1				31	32	\ldots
	6	1					63	.
	\vdots							

Motivation

- $B(4,3)$ shall be related to $B(3$, ?)
-'adding' one point from $B(3$, ?)
next: reduce $B(4,3)$ to $B(3$, ?)

'Achieving' Dichotomies of $B(4,3)$

after checking all $2^{2^{4}}$ sets of dichotomies, the winner is

'Achieving' Dichotomies of $B(4,3)$

 after checking all $2^{2^{4}}$ sets of dichotomies, the winner is| | $\mathbf{x}_{\mathbf{1}}$ | $\mathbf{x}_{\mathbf{2}}$ | $\mathbf{x}_{\mathbf{3}}$ | $\mathbf{x}_{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 01 | \circ | \circ | \circ | \circ |
| 02 | \times | \circ | \circ | \circ |
| 03 | \circ | \times | \circ | \circ |
| 04 | \circ | \circ | \times | \circ |
| 05 | \circ | \circ | \circ | \times |
| 06 | \times | \times | \circ | \times |
| 07 | \times | \circ | \times | \circ |
| 08 | \times | \circ | \circ | \times |
| 09 | \circ | \times | \times | \circ |
| 10 | \circ | \times | \circ | \times |
| 11 | \circ | \circ | \times | \times |

'Achieving' Dichotomies of $B(4,3)$

 after checking all $2^{2^{4}}$ sets of dichotomies, the winner is| | \mathbf{x}_{1} | \mathbf{X}_{2} | X_{3} | \mathbf{x}_{4} | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | $B(N, k)$ | 1 | 2 | 3 | 4 | 5 | 6 |
| 02 | \times | \bigcirc | \bigcirc | \bigcirc | | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| 03 | \bigcirc | \times | \bigcirc | \bigcirc | | 3 | 1 | 4 | 7 | 8 | 8 | 8 |
| 04 | \bigcirc | \bigcirc | \times | - | N | 4 | 1 | | 11 | 15 | 16 | 16 |
| 05 | \bigcirc | \bigcirc | \bigcirc | \times | | 5 | 1 | | | | 31 | 32 |
| 06 | \times | \times | \bigcirc | \times | | 6 | 1 | | | | | 63 |
| 07 | \times | \bigcirc | \times | \bigcirc | | | | | | | | |
| 08 | \times | \bigcirc | \bigcirc | \times | | | | | | | | |
| 09 | \bigcirc | \times | \times | \bigcirc | | | | | | | | |
| 10 | \bigcirc | \times | \bigcirc | \times | | | | | | | | |
| 11 | \bigcirc | \bigcirc | \times | \times | | | | | | | | |

'Achieving' Dichotomies of $B(4,3)$

 after checking all $2^{2^{4}}$ sets of dichotomies, the winner is| | \mathbf{x}_{1} | \mathbf{x}_{2} | \mathbf{x}_{3} | \mathbf{x}_{4} |
| :---: | :---: | :---: | :---: | :---: |
| 01 | \circ | \circ | \circ | \circ |
| 02 | \times | \circ | \circ | \circ |
| 03 | \circ | \times | \circ | \circ |
| 04 | \circ | \circ | \times | \circ |
| 05 | \circ | \circ | \circ | \times |
| 06 | \times | \times | \circ | \times |
| 07 | \times | \circ | \times | \circ |
| 08 | \times | \circ | \circ | \times |
| 09 | \circ | \times | \times | \circ |
| 10 | \circ | \times | \circ | \times |
| 11 | \circ | \circ | \times | \times |

	$B(N, k)$	k					
		1	2	3	4	5	6
N	1	1	2	2	2	2	2
	2	1	3	4	4	4	4
	3	1	4	7	8	8	8
	4	1		11	15	16	16
	5	1				31	32
	6	1					63

how to reduce $B(4,3)$ to $B(3$, ?) cases?

Reorganized Dichotomies of $B(4,3)$

 after checking all $2^{2^{4}}$ sets of dichotomies, the winner is| | \mathbf{x}_{1} | \mathbf{x}_{2} | \mathbf{x}_{3} | \mathbf{x}_{4} | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \circ | \circ | \circ | \circ | | | | | |
| 02 | \times | \circ | \circ | \circ | | \mathbf{x}_{1} | \mathbf{x}_{2} | \mathbf{x}_{3} | \mathbf{x}_{4} |
| 03 | \circ | \times | \circ | 0 | 01 | \circ | \circ | \circ | \circ |
| 04 | \circ | \circ | \times | \circ | | | | | |
| 05 | \circ | \circ | \circ | \times | | | | | |
| 06 | \times | \times | \circ | \times | 05 | \circ | \circ | \circ | \times |
| 07 | \times | \circ | \times | \circ | 02 | \times | \circ | \circ | \circ |
| 08 | \times | \circ | \circ | \times | | | | | |
| 09 | \circ | \times | \times | \circ | 08 | \times | \circ | \circ | \times |
| 10 | \circ | \times | \circ | \times | 03 | \circ | \times | \circ | \circ |
| 11 | \circ | \circ | \times | \times | 10 | \circ | \times | \circ | \times |

orange: pair; purple: single

Estimating Part of $B(4,3)(1 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	\mathbf{X}_{1}	\mathbf{X}_{2}	X_{3}	\mathbf{X}_{4}
2α	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-	\bigcirc	\bigcirc	\times
	\times	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc	\times
	\bigcirc	\times	\bigcirc	\bigcirc
	\bigcirc	\times	\bigcirc	\times
	\bigcirc	\bigcirc	\times	\bigcirc
	\bigcirc	\bigcirc	\times	\times
β	\times	\times	\bigcirc	\times
	\times	\bigcirc	\times	\bigcirc
	\bigcirc	\times	\times	\bigcirc

Estimating Part of $B(4,3)(1 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	X_{1}	X_{2}	X_{3}
α	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc
	\bigcirc	\times	\bigcirc
	\bigcirc	\bigcirc	\times
β	\times	\times	\bigcirc
	\times	\bigcirc	\times
	\bigcirc	\times	\times

- $\alpha+\beta$: dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$

	\mathbf{X}_{1}	X_{2}	X_{3}	X_{4}
2α	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc	\times
	\times	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc	\times
	\bigcirc	\times	\bigcirc	\bigcirc
	\bigcirc	\times	\bigcirc	\times
	\bigcirc	\bigcirc	\times	\bigcirc
	\bigcirc	\bigcirc	\times	\times
β	\times	\times	\bigcirc	\times
	\times	\bigcirc	\times	\bigcirc
	\bigcirc	\times	\times	\bigcirc

Estimating Part of $B(4,3)(1 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}
α	\circ	\circ	\circ
	\times	\circ	\circ
	\circ	\times	\circ
	\circ	\circ	\times
β	\times	\times	\circ
	\times	\circ	\times
	\circ	\times	\times

- $\alpha+\beta$: dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$
- $B(4,3)$ 'no shatter' any 3 inputs $\Longrightarrow \alpha+\beta$ 'no shatter' any 3

Estimating Part of $B(4,3)(1 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}
α	\circ	\circ	\circ
	\times	\circ	\circ
	\circ	\times	\circ
	\circ	\circ	\times
β	\times	\times	\circ
	\times	\circ	\times
	\circ	\times	\times

- $\alpha+\beta$: dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$
- $B(4,3)$ 'no shatter' any 3 inputs $\Longrightarrow \alpha+\beta$ 'no shatter' any 3

	\mathbf{X}_{1}	X_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}
2α	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc	\times
	\times	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc	\times
	\bigcirc	\times	\bigcirc	\bigcirc
	\bigcirc	\times	\bigcirc	\times
	\bigcirc	\bigcirc	\times	\bigcirc
	\bigcirc	\bigcirc	\times	\times
β	\times	\times	\bigcirc	\times
	\times	\bigcirc	\times	\bigcirc
	\bigcirc	\times	\times	\bigcirc

$$
\alpha+\beta \leq B(3,3)
$$

Estimating Part of $B(4,3)(2 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
α	\circ	\circ	\circ
	\times	\circ	\circ
	\circ	\times	\circ
	\circ	\circ	\times

- α : dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$ with \mathbf{x}_{4} paired

	\mathbf{X}_{1}	X_{2}	X_{3}	X_{4}
2α	-	\bigcirc	\bigcirc	\bigcirc
	-	\bigcirc	\bigcirc	\times
	\times	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc	\times
	\bigcirc	\times	\bigcirc	\bigcirc
	-	\times	\bigcirc	\times
	-	\bigcirc	\times	\bigcirc
	-	\bigcirc	\times	\times
β	\times	\times	\bigcirc	\times
	\times	\bigcirc	\times	\bigcirc
	\bigcirc	\times	\times	\bigcirc

Estimating Part of $B(4,3)(2 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}
α	\circ	\circ	\circ
	\times	\circ	\circ
	\circ	\times	\circ
	\circ	\circ	\times

- α : dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$ with \mathbf{x}_{4} paired
- $B(4,3)$ 'no shatter' any 3 inputs $\Longrightarrow \alpha$ 'no shatter' any 2

	\mathbf{X}_{1}	X_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}
2α	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-	\bigcirc	\bigcirc	\times
	\times	\bigcirc	\bigcirc	\bigcirc
	\times	\bigcirc	\bigcirc	\times
	\bigcirc	\times	\bigcirc	\bigcirc
	-	\times	\bigcirc	\times
	-	\bigcirc	\times	\bigcirc
	-	\bigcirc	\times	\times
β	\times	\times	\bigcirc	\times
	\times	\bigcirc	\times	\bigcirc
	\bigcirc	\times	\times	\bigcirc

Estimating Part of $B(4,3)(2 / 2)$

$$
B(4,3)=11=2 \alpha+\beta
$$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}
α	\circ	\circ	\circ
	\times	\circ	\circ
	\circ	\times	\circ
	\circ	\circ	\times

- α : dichotomies on $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$ with \mathbf{x}_{4} paired
- $B(4,3)$ 'no shatter' any 3 inputs $\Longrightarrow \alpha$ 'no shatter' any 2

$$
\alpha \leq B(3,2)
$$

Putting It All Together

$$
\begin{aligned}
B(4,3) & =2 \alpha+\beta \\
\alpha+\beta & \leq B(3,3) \\
\alpha & \leq B(3,2) \\
\Rightarrow B(4,3) & \leq B(3,3)+B(3,2)
\end{aligned}
$$

Putting It All Together

$$
\begin{aligned}
B(N, k) & =2 \alpha+\beta \\
\alpha+\beta & \leq B(N-1, k) \\
\alpha & \leq B(N-1, k-1) \\
\Rightarrow B(N, k) & \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

Putting It All Together

$$
\begin{aligned}
B(N, k) & =2 \alpha+\beta \\
\alpha+\beta & \leq B(N-1, k) \\
\alpha & \leq B(N-1, k-1) \\
\Rightarrow B(N, k) & \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

$B(N, k)$					k		
		1	2	3	4	5	6
N	1	1	2	2	2	2	2
	2	1	3	4	4	4	4
	3	1	4	7	8	8	8
	4	1	≤ 5	11	15	16	16
	5	1	≤ 6	≤ 16	≤ 26	31	32
	6	1	≤ 7	≤ 22	≤ 42	≤ 57	63

Putting It All Together

$$
\begin{aligned}
B(N, k) & =2 \alpha+\beta \\
\alpha+\beta & \leq B(N-1, k) \\
\alpha & \leq B(N-1, k-1) \\
\Rightarrow B(N, k) & \leq B(N-1, k)+B(N-1, k-1)
\end{aligned}
$$

$B(N, k)$		k					
		1	2	3	4	5	6
		1	2	2	2	2	2
	2	1	3	4	4	4	4
	3	1	4	7	8	8	8
N	4	1	≤ 5	11	15	16	16
	5	1	≤ 6	≤ 16	≤ 26	31	32
	6	1	≤ 7	≤ 22	≤ 42	≤ 57	63

now have upper bound of bounding function

Bounding Function: The Theorem

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}
$$

Bounding Function: The Theorem

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {highest term } N^{k-1}}
$$

Bounding Function: The Theorem

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {highest term } N^{k-1}}
$$

- simple induction using boundary and inductive formula

Bounding Function: The Theorem

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {highest term } N^{k-1}}
$$

- simple induction using boundary and inductive formula
- for fixed $k, B(N, k)$ upper bounded by poly (N) $\Longrightarrow m_{\mathcal{H}}(N)$ is poly (N) if break point exists

Bounding Function: The Theorem

$$
B(N, k) \leq \underbrace{\sum_{i=1}^{k-1}\binom{N}{i}}_{\text {highest term } N^{k-1}}
$$

- simple induction using boundary and inductive formula
- for fixed $k, B(N, k)$ upper bounded by poly (N) $\Longrightarrow m_{\mathcal{H}}(N)$ is poly (N) if break point exists

> ' \leq ' can be ' $=$ ' actually, go play and prove it if math lover! :-)

The Three Break Points

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {highest term } N^{k-1}}
$$

- positive rays:

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

$\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

The Three Break Points

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}
$$

highest term N^{k-1}

- positive rays:

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

ox $\quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals:
$\circ \times 0$ $m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1 \leq \frac{1}{2} N^{2}+\frac{1}{2} N+1$ $m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

The Three Break Points

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}
$$

highest term N^{k-1}

- positive rays:

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

$\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals:

०×० $\quad m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3

- 2D perceptrons:

$$
m_{\mathcal{H}}(N)=? \leq \frac{1}{6} N^{3}+\frac{5}{6} N+1
$$

$$
\times{ }_{\circ}^{\circ} \times \quad m_{\mathcal{H}}(4)=14<2^{4}: \text { break point at } 4
$$

The Three Break Points

$$
B(N, k) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}
$$

highest term N^{k-1}

- positive rays:

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

$\circ \times \quad m_{\mathcal{H}}(2)=3<2^{2}$: break point at 2

- positive intervals: $m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1 \leq \frac{1}{2} N^{2}+\frac{1}{2} N+1$
०×० $\quad m_{\mathcal{H}}(3)=7<2^{3}$: break point at 3
- 2D perceptrons:

$$
m_{\mathcal{H}}(N)=? \leq \frac{1}{6} N^{3}+\frac{5}{6} N+1
$$

$$
\times{ }_{\circ}^{\circ} \times \quad m_{\mathcal{H}}(4)=14<2^{4}: \text { break point at } 4
$$

can bound $m_{\mathcal{H}}(N)$ by only one break point

For 1D perceptrons (positive and negative rays), we know that $m_{\mathcal{H}}(N)=2 N$. Let k be the minimum break point. Which of the following is not true?
(1) $k=3$
(2) for some integers $N>0, m_{\mathcal{H}}(N)=\sum_{i=0}^{k-1}\binom{N}{i}$
(3) for all integers $N>0, m_{\mathcal{H}}(N)=\sum_{i=0}^{k-1}\binom{N}{i}$
(4) for all integers $N>2, m_{\mathcal{H}}(N)<\sum_{i=0}^{k-1}\binom{N}{i}$

Fun Time

For 1D perceptrons (positive and negative rays), we know that $m_{\mathcal{H}}(N)=2 N$. Let k be the minimum break point. Which of the following is not true?
(1) $k=3$
(2) for some integers $N>0, m_{\mathcal{H}}(N)=\sum_{i=0}^{k-1}\binom{N}{i}$
(3) for all integers $N>0, m_{\mathcal{H}}(N)=\sum_{i=0}^{k-1}\binom{N}{i}$
(4) for all integers $N>2, m_{\mathcal{H}}(N)<\sum_{i=0}^{k-1}\binom{N}{i}$

Reference Answer: (3)

The proof is generally trivial by listing the definitions. For (2), $N=1$ or 2 gives the equality. One thing to notice is (4): the upper bound can be 'loose'.

BAD Bound for General \mathcal{H}

want:

$\mathbb{P}\left[\exists h \in \mathcal{H}\right.$ s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \quad m_{\mathcal{H}}(N) \cdot \exp (-2$

BAD Bound for General \mathcal{H}

want:
$\mathbb{P}\left[\exists h \in \mathcal{H}\right.$ s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \quad m_{\mathcal{H}}(N) \cdot \exp \left(-2 \quad \epsilon^{2} N\right)$
actually, when N large enough,
$\mathbb{P}\left[\exists h \in \mathcal{H}\right.$ s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \cdot 2 m_{\mathcal{H}}(2 N) \cdot \exp \left(-2 \cdot \frac{1}{16} \epsilon^{2} N\right)$

BAD Bound for General \mathcal{H}

want:

$\mathbb{P}\left[\exists h \in \mathcal{H}\right.$ s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \quad m_{\mathcal{H}}(N) \cdot \exp \left(-2 \quad \epsilon^{2} N\right)$
actually, when N large enough,

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \cdot 2 m_{\mathcal{H}}(2 N) \cdot \exp \left(-2 \cdot \frac{1}{16} \epsilon^{2} N\right)
$$

next: sketch of proof

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right]
$$

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right]
$$

- $E_{\text {in }}(h)$ finitely many, $E_{\text {out }}(h)$ infinitely many -replace the evil $E_{\text {out }}$ first

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$
 $$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right]
$$

- $E_{\text {in }}(h)$ finitely many, $E_{\text {out }}(h)$ infinitely many -replace the evil $E_{\text {out }}$ first
- how? sample verification set \mathcal{D}^{\prime} of size N to calculate $E_{\text {in }}^{\prime}$

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$
 $$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right]
$$

- $E_{\text {in }}(h)$ finitely many, $E_{\text {out }}(h)$ infinitely many -replace the evil $E_{\text {out }}$ first
- how? sample verification set \mathcal{D}^{\prime} of size N to calculate $E_{\text {in }}^{\prime}$
- BAD h of $E_{\text {in }}-E_{\text {out }}$ $\stackrel{\text { probably }}{\Longrightarrow}$ BAD h of $E_{\text {in }}-E_{\text {in }}^{\prime}$

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$

$$
\begin{aligned}
& \frac{1}{2} \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \\
\leq & \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
\end{aligned}
$$

- $E_{\text {in }}(h)$ finitely many, $E_{\text {out }}(h)$ infinitely many -replace the evil $E_{\text {out }}$ first
- how? sample verification set \mathcal{D}^{\prime} of size N to calculate $E_{\text {in }}^{\prime}$
- BAD h of $E_{\text {in }}-E_{\text {out }}$ $\stackrel{\text { probably }}{\Longrightarrow}$ BAD h of $E_{\text {in }}-E_{\text {in }}^{\prime}$

Step 1: Replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$

$$
\begin{aligned}
& \frac{1}{2} \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \\
\leq & \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
\end{aligned}
$$

- $E_{\text {in }}(h)$ finitely many, $E_{\text {out }}(h)$ infinitely many -replace the evil $E_{\text {out }}$ first
- how? sample verification set \mathcal{D}^{\prime} of size N to calculate $E_{\text {in }}^{\prime}$
- BAD h of $E_{\text {in }}-E_{\text {out }}$ $\stackrel{\text { probably }}{\Longrightarrow}$ BAD h of $E_{\text {in }}-E_{\text {in }}^{\prime}$
 verification with 'ghost data'

Step 2: Decompose \mathcal{H} by Kind

$$
\text { BAD } \leq 2 \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
$$

- $E_{\text {in }}$ with $\mathcal{D}, E_{\text {in }}^{\prime}$ with \mathcal{D}^{\prime} —now $m_{\mathcal{H}}$ comes to play

Step 2: Decompose \mathcal{H} by Kind

$$
\text { BAD } \leq 2 \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
$$

- $E_{\text {in }}$ with $\mathcal{D}, E_{\text {in }}^{\prime}$ with \mathcal{D}^{\prime} -now $m_{\mathcal{H}}$ comes to play
- how? infinite \mathcal{H} becomes $\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime}\right)\right|$ kinds

Step 2: Decompose \mathcal{H} by Kind

$$
\text { BAD } \leq 2 \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
$$

- $E_{\text {in }}$ with $\mathcal{D}, E_{\text {in }}^{\prime}$ with \mathcal{D}^{\prime} -now $m_{\mathcal{H}}$ comes to play
- how? infinite \mathcal{H} becomes $\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime}\right)\right|$ kinds
- union bound on $m_{\mathcal{H}}(2 N)$ kinds

(a) Hoeffding Inequality

(b) Union Bound

(c) Now

Step 2: Decompose \mathcal{H} by Kind

$$
\begin{aligned}
\text { BAD } & \leq 2 \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\text { fixed } h \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
\end{aligned}
$$

- $E_{\text {in }}$ with $\mathcal{D}, E_{\text {in }}^{\prime}$ with \mathcal{D}^{\prime} -now $m_{\mathcal{H}}$ comes to play
- how? infinite \mathcal{H} becomes $\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime}\right)\right|$ kinds
- union bound on $m_{\mathcal{H}}(2 N)$ kinds

(a) Hoeffding Inequality

(b) Union Bound

(c) Now

Step 2: Decompose \mathcal{H} by Kind

$$
\begin{aligned}
\text { BAD } & \leq 2 \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\text { fixed } h \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]
\end{aligned}
$$

- $E_{\text {in }}$ with $\mathcal{D}, E_{\text {in }}^{\prime}$ with \mathcal{D}^{\prime} -now $m_{\mathcal{H}}$ comes to play
- how? infinite \mathcal{H} becomes $\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime}\right)\right|$ kinds
- union bound on $m_{\mathcal{H}}(2 N)$ kinds

(a) Hoeffding Inequality

(b) Union Bound

(c) Now use $m_{\mathcal{H}}(2 N)$ to calculate BAD-overlap properly

Step 3: Use Hoeffding without Replacement $\mathrm{BAD} \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\right.$ fixed h s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$

- consider bin of 2 N examples, choose N for $E_{\text {in }}$, leave others for $E_{\text {in }}^{\prime}$

$$
\left|E_{\text {in }}-E_{\text {in }}^{\prime}\right|>\frac{\epsilon}{2} \Leftrightarrow\left|E_{\text {in }}-\frac{E_{\text {in }}+E_{\text {in }}^{\prime}}{2}\right|>\frac{\epsilon}{4}
$$

Step 3: Use Hoeffding without Replacement

 $\operatorname{BAD} \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\right.$ fixed h s.t. $\left.\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right]$- consider bin of $2 N$ examples, choose N for $E_{\text {in }}$, leave others for $E_{\text {in }}^{\prime}$ $\left|E_{\text {in }}-E_{\text {in }}^{\prime}\right|>\frac{\epsilon}{2} \Leftrightarrow\left|E_{\text {in }}-\frac{E_{\text {in }}+E_{\text {in }}^{\prime}}{2}\right|>\frac{\epsilon}{4}$
- so? just 'smaller bin', 'smaller ϵ ', and Hoeffding without replacement

Step 3: Use Hoeffding without Replacement

$$
\begin{aligned}
\operatorname{BAD} & \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\text { fixed } h \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \leq 2 m_{\mathcal{H}}(2 N) \cdot 2 \exp \left(-2\left(\frac{\epsilon}{4}\right)^{2} N\right)
\end{aligned}
$$

- consider bin of 2 N examples, choose N for $E_{\text {in }}$, leave others for $E_{\text {in }}^{\prime}$ $\left|E_{\text {in }}-E_{\text {in }}^{\prime}\right|>\frac{\epsilon}{2} \Leftrightarrow\left|E_{\text {in }}-\frac{E_{\text {in }}+E_{\text {in }}^{\prime}}{2}\right|>\frac{\epsilon}{4}$
- so? just 'smaller bin', 'smaller ϵ ', and Hoeffding without replacement

Step 3: Use Hoeffding without Replacement

$$
\begin{aligned}
\operatorname{BAD} & \leq 2 m_{\mathcal{H}}(2 N) \mathbb{P}\left[\text { fixed } h \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\frac{\epsilon}{2}\right] \\
& \leq 2 m_{\mathcal{H}}(2 N) \cdot 2 \exp \left(-2\left(\frac{\epsilon}{4}\right)^{2} N\right)
\end{aligned}
$$

- consider bin of 2 N examples, choose N for $E_{\text {in }}$, leave others for $E_{\text {in }}^{\prime}$ $\left|E_{\text {in }}-E_{\text {in }}^{\prime}\right|>\frac{\epsilon}{2} \Leftrightarrow\left|E_{\text {in }}-\frac{E_{\text {in }}+E_{\text {in }}^{\prime}}{2}\right|>\frac{\epsilon}{4}$
- so? just 'smaller bin', 'smaller ϵ ', and Hoeffding without replacement

use Hoeffding after zooming to fixed h

That's All!

Vapnik-Chervonenkis (VC) bound:

$$
\begin{aligned}
& \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \\
\leq & 4 m_{\mathcal{H}}(2 N) \exp \left(-\frac{1}{8} \epsilon^{2} N\right)
\end{aligned}
$$

- replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$
- decompose \mathcal{H} by kind
- use Hoeffding without replacement

That's All!

Vapnik-Chervonenkis (VC) bound:

$$
\begin{aligned}
& \mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \\
\leq & 4 m_{\mathcal{H}}(2 N) \exp \left(-\frac{1}{8} \epsilon^{2} N\right)
\end{aligned}
$$

- replace $E_{\text {out }}$ by $E_{\text {in }}^{\prime}$
- decompose \mathcal{H} by kind
- use Hoeffding without replacement

2D perceptrons:

- break point? 4
- $m_{\mathcal{H}}(N)$? $O\left(N^{3}\right)$
learning with 2D perceptrons feasible! :-)

Fun Time

For positive rays, $m_{\mathcal{H}}(N)=N+1$. Plug it into the VC bound for $\epsilon=0.1$ and $N=10000$. What is VC bound of BAD events?

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 4 m_{\mathcal{H}}(2 N) \exp \left(-\frac{1}{8} \epsilon^{2} N\right)
$$

(1) 2.77×10^{-87}
(2) 5.54×10^{-83}
(3) 2.98×10^{-1}
(4) 2.29×10^{2}

Fun Time

For positive rays, $m_{\mathcal{H}}(N)=N+1$. Plug it into the VC bound for $\epsilon=0.1$ and $N=10000$. What is VC bound of BAD events?

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. }\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 4 m_{\mathcal{H}}(2 N) \exp \left(-\frac{1}{8} \epsilon^{2} N\right)
$$

(1) 2.77×10^{-87}
(2) 5.54×10^{-83}
(3) 2.98×10^{-1}
(4) 2.29×10^{2}

Reference Answer: (3)

Simple calculation. Note that the BAD probability bound is not very small even with 10000 examples.

Summary

(1) When Can Machines Learn?
(2) Why Can Machines Learn?

Lecture 5: Training versus Testing
Lecture 6: Theory of Generalization

- Restriction of Break Point
break point 'breaks' consequent points
- Bounding Function: Basic Cases
$B(N, k)$ bounds $m_{\mathcal{H}}(N)$ with break point k
- Bounding Function: Inductive Cases

$$
B(N, k) \text { is poly }(N)
$$

- A Pictorial Proof
$m_{\mathcal{H}}(N)$ can replace M with a few changes
- next: how to 'use' the break point?
(3) How Can Machines Learn?

4 How Can Machines Learn Better?

