Homework \#0

1 Probability and Statistics

(1) (combinatorics)

Let $C(N, K)=1$ for $K=0$ or $K=N$, and $C(N, K)=C(N-1, K)+C(N-1, K-1)$ for $N \geq 1$. Prove that $C(N, K)=\frac{N!}{K!(N-K)!}$ for $N \geq 1$ and $0 \leq K \leq N$.
(2) (counting)

What is the probability of getting exactly 4 heads when flipping 10 fair coins?
What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of a deck of 52 cards?
(3) (conditional probability)

If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what is the probability that all three tosses resulted in heads?
(4) (Bayes theorem)

A program selects a random integer X like this: a random bit is first generated uniformly. If the bit is $0, X$ is drawn uniformly from $\{0,1, \ldots, 7\}$; otherwise, X is drawn uniformly from $\{0,-1,-2,-3\}$. If we get an X from the program with $|X|=1$, what is the probability that X is negative?
(5) (union/intersection)

If $P(A)=0.3$ and $P(B)=0.4$,
what is the maximum possible value of $P(A \cap B)$?
what is the minimum possible value of $P(A \cap B)$?
what is the maximum possible value of $P(A \cup B)$?
what is the minimum possible value of $P(A \cup B)$?

2 Linear Algebra

(1) (rank)

What is the rank of $\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2\end{array}\right)$?
(2) (inverse)

What is the inverse of $\left(\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1\end{array}\right)$?
(3) (eigenvalues/eigenvectors)

What are the eigenvalues and eigenvectors of $\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$?
(4) (singular value decomposition)
(a) For a real matrix M , let $\mathrm{M}=\mathrm{U} \Sigma \mathrm{V}^{T}$ be its singular value decomposition. Define $\mathrm{M}^{\dagger}=\mathrm{V} \Sigma^{\dagger} \mathrm{U}^{T}$, where $\Sigma^{\dagger}[i][j]=\frac{1}{\Sigma[i][j]}$ when $\Sigma[i][j]$ is nonzero, and 0 otherwise. Prove that $\mathrm{MM}^{\dagger} \mathrm{M}=\mathrm{M}$.
(b) If M is invertible, prove that $\mathrm{M}^{\dagger}=\mathrm{M}^{-1}$.
(5) $(\mathrm{PD} / \mathrm{PSD})$

A symmetric real matrix A is positive definite (PD) iff $\mathbf{x}^{T} \mathrm{Ax}>0$ for all $\mathbf{x} \neq \mathbf{0}$, and positive semidefinite (PSD) if " $>$ " is changed to " \geq ". Prove:
(a) For any real matrix $\mathrm{Z}, \mathrm{ZZ}^{T}$ is PSD.
(b) A symmetric A is PD iff all eigenvalues of A are strictly positive.
(6) (inner product)

Consider $\mathbf{x} \in R^{d}$ and some $\mathbf{u} \in R^{d}$ with $\|\mathbf{u}\|=1$.
What is the maximum value of $\mathbf{u}^{T} \mathbf{x}$? What \mathbf{u} results in the maximum value?
What is the minimum value of $\mathbf{u}^{T} \mathbf{x}$? What \mathbf{u} results in the minimum value?
What is the minimum value of $\left|\mathbf{u}^{T} \mathbf{x}\right|$? What \mathbf{u} results in the minimum value?

3 Calculus

(1) (differential and partial differential)

Let $f(x)=\ln \left(1+e^{-2 x}\right)$. What is $\frac{d f(x)}{d x}$? Let $g(x, y)=e^{x}+e^{2 y}+e^{3 x y^{2}}$. What is $\frac{\partial g(x, y)}{\partial y}$?
(2) (chain rule)

Let $f(x, y)=x y, x(u, v)=\cos (u+v), y(u, v)=\sin (u-v)$. What is $\frac{\partial f}{\partial v} ?$
(3) (gradient and Hessian)

Let $E(u, v)=\left(u e^{v}-2 v e^{-u}\right)^{2}$. Calculate the gradient ∇E and the Hessian $\nabla^{2} E$ at $u=1$ and $v=1$.
(4) (Taylor's expansion)

Let $E(u, v)=\left(u e^{v}-2 v e^{-u}\right)^{2}$. Write down the second-order Taylor's expansion of E around $u=1$ and $v=1$.
(5) (optimization)

For some given $A>0, B>0$, solve

$$
\min _{\alpha} A e^{\alpha}+B e^{-2 \alpha}
$$

(6) (vector calculus)

Let \mathbf{w} be a vector in R^{d} and $E(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathrm{~A} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}$ for some symmetric matrix A and vector \mathbf{b}. Prove that the gradient $\nabla E(\mathbf{w})=\mathrm{A} \mathbf{w}+\mathbf{b}$ and the $\operatorname{Hessian} \nabla^{2} E(\mathbf{w})=\mathrm{A}$.

