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Kernel Support Vector Machine

Roadmap

© Embedding Numerous Features: Kernel Models

Lecture 2: Dual Support Vector Machine

dual SVM: another QP with valuable geometric
messages and almost no dependence on d

v

Lecture 3: Kernel Support Vector Machine

e Kernel Trick

e Polynomial Kernel

e Gaussian Kernel

e Comparison of Kernels

@® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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Kernel Support Vector Machine Kernel Trick

Dual SVM Revisited
goal: SVM without dependence on d

half-way done:

i 1.7 T
min za QDa -1

o

(07

subjectto  y'a =0;
an>0,forn=1,2,...,N
® Qnm = YnYm2z! Zm: inner product in R
o need: z/z;, = ®(x,)” ®(x,,) calculated faster than O(d)

can we do so? ]
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Kernel Support Vector Machine Kernel Trick

Fast Inner Product for &,
2nd order polynomial transform

2 2
Do(X) = (1, X1, X, . .., Xy X7, X1 X2, - .« s X1 Xty X2 X1, X5, . ., X2 X, . - -

—include both x;xo & x> x; for ‘simplicity’ :-)

o (x) dy(x) = 1+Zx,x —i—ZZX,XJXX

/1/1

= 1+Zx,x —i—ZX, Zx/
i=1

= 14+ x7x' +(x x)(xTx/)

for ®,, transform + inner product can be
carefully done in O(d) instead of O(d?) J
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Kernel Support Vector Machine Kernel Trick

Kernel: Transform + Inner Product

transform & < kernel function: K¢ (x,x') = &(x)" d(x')
Dy = Ko, (X, X') =1+ (XTx') + (xTx')?

quadratic coefficient gn.m = YnYmzn'Zm = YnymK (Xn, Xm)
optimal bias b? from SV (s, ys),

N N
b=ys—w T2 = Vs — ( > anynzn) Zs=Yys — E anyn(K(xn,xs))
n=1

n=1

optimal hypothesis gsyw: for test input x,

N
Fsvm(X) = sign (wT¢(x) + b) = sign (Z anynK(Xp, X) + b)

n=1

kernel trick: plug in efficient kernel function
to avoid dependence on d J
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Kernel Support Vector Machine Kernel Trick

Kernel SVM with QP

Hard-Margin M Algorithm

@ gn.m = YnYmK(Xn,Xm); P = —1n; (A, ) for equ./bound constraints

@ o« QP(Qp,p,A,c)
© b« (ys _ v anynK(xn,xs)) with SV (x.. )

SVindices n
@ return SVs and their a, as well as b such that for new x,

Gsvu(X) = sign ( > anVnK (%0, X) + b)

SVindices n

o @: time complexity O(N?) - (kernel evaluation)
. @: QP with N variables and N + 1 constraints
o @ & @: time complexity O(#SV) - (kernel evaluation)

kernel SVM: )
use computational shortcut to avoid d & predict with SV only

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques

5/22



Kernel Trick

Fun Time

Kernel Support Vector Machine

Consider two examples x and x’ such that x”x’ = 10. What is
Ko, (X, x)?

Q1

o 11

® 111

o 1111




Kernel Trick

Fun Time

Kernel Support Vector Machine

Consider two examples x and x’ such that x”x’ = 10. What is
Ko, (X, x)?

o1

0 11

O 111

O 1111 |

Reference Answer: @

Using the derivation in previous slides,
Keo,(X,X') =1+ xTx" + (xTx")2.
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Kernel Support Vector Machine Polynomial Kernel

General Poly-2 Kernel

Do(x) = (1,%1, .., Xg, X2, ..., X5) & Ko,(X,X)=1+x"x + (x"X)

Do(x) = (1,V2x1,...,V2xg,X2,...,x3) & Ky(x,X)=1+2x"x + (x"x')?

2

¢2(X) = (17 \/2’YX17"'7 V27Xd”yx'|2)"'?’yxczi)
& Ko(X,X') = 1+ 29xT X' + +2(xTx')?

Ko(x,x') = (1 +~x"x')2 with v > 0
K>: somewhat ‘easier’ to calculate than K¢,

&, and ®,: equivalent power,
different inner product = different geometry

K> commonly used J
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Kernel Support Vector Machine Polynomial Kernel

Poly-2 Kernels in Action

(1 4+0.001x7x")2 14+ x"x + (xTx')?

¢ Gsvm ’

—'hard’ to say which is better before learning

e change of kernel < change of

need selecting K, just like selecting ® ]
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Kernel Support Vector Machine Polynomial Kernel

General Polynomial Kernel

Ka(x,X') = (¢+7x"x)? withy >0, >0
Ka(x,x') = (¢+7x"x)>withy>0,{ >0
Kao(x,x) = ((+x"x)%withy >0, >0

o

e embeds ® specially with parameters
(7, €)

e allows computing large-margin polynomial
classification without dependence on d

SVM + Polynomial Kernel: Polynomial SVM ]

10-th order polynomial
with margin 0.1
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Kernel Support Vector Machine Polynomial Kernel

Special Case: Linear Kernel
Kix,x) = (0+1-x"x)'

Kao(x,X) = (¢+x"x)?withy>0,(>0

e Kj: just usual inner product, called
linear kernel x

» ‘even easier’: can be solved (often in
primal form) efficiently

linear first, remember? :-) J
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Kernel Support Vector Machine Polynomial Kernel

Fun Time

Consider the general 2-nd polynomial kernel Ko(x, x') = (¢ +vyx7x’).
Which of the following transform can be used to derive this kernel?

O(X) = (1, VK1, VEXg, 1, . 1XD)
D(X) = ((,V2yX1, ... V2Xg, X2, ... X5)
d(x) = (¢, vV27CX1, ... V27 (X, X2, ..., X3)
D(x) = (¢, vV27CX1, ..o, V2 Xa YX2, .. YXT)




Kernel Support Vector Machine Polynomial Kernel

Fun Time

Consider the general 2-nd polynomial kernel Ko(x, x') = (¢ +vyx7x’).

Which of the following transform can be used to derive this kernel?

D(x) = (1,vV29X1, ..., V/27Xg, VX2, . .., yX3)
D(X) = ((,V2yX1, ... V2Xg, X2, ... X5)
d(x) = (¢, vV27CX1, ... V27 (X, X2, ..., X3)
D(x) = (¢, vV27CX1, ..o, V2 Xa YX2, .. YXT)

Reference Answer: @

We need to have ¢? from the 0-th order terms,
2v(¢xTx’ from the 1-st order terms, and
72(xTx")? from the 2-nd order terms.
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Kernel Support Vector Machine Gaussian Kernel

Kernel of Infinite Dimensional Transform
infinite dimensional ®(x)? Yes, if K(x, x’) efficiently computable! J

whenx = (x), K(x,xX') = exp(—(x —x')?)
= exp(— (x)*)exp( — (x')?)exp(2xx)
Taylor exp(—(x ) exp(— < 2xx >
i=0
- Z(exp(—(xf)exp(—(x')z)ﬁ 2y
i=0 o
= ¢(X)Ttb(x/)
with infinite dimensional ®(x) = exp(— ( \/> \/?zx2 >
more generally, Gaussian kernel
K(x,x') = exp (—v|/x — x/||?) with v > 0 J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/22



Kernel Support Vector Machine Gaussian Kernel

Hypothesis of Gaussian SVM

Gaussian kernel K(x,x') = exp (—v||x — x'||2)

)

gsvu(X) = sign (Z anynK (%0, X) + b)

SV

— sign (Z nY/nEXP (—7||x - xn||2) b

SV

linear combination of Gaussians centered at SVs x,
also called Radial Basis Function (RBF) kernel

)

Gaussian SVM:
find o, to combine Gaussians centered at x,
& achieve large margin in infinite-dim. space
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Kernel Support Vector Machine Gaussian Kernel

Support Vector Mechanism

large-margin
hyperplanes
+ higher-order transforms with kernel trick
# not many
boundary sophisticated

« transformed vector z = ®(x) —> efficient kernel K(x,x’)
» store optimal w = store a few SVs and «,

new possibility by Gaussian SVM:
infinite-dimensional linear classification, with
generalization ‘guarded by’ large-margin :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/22



Kernel Support Vector Machine Gaussian Kernel

Gaussian SVM in Action
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e large v = sharp Gaussians =

*
exp(—1lx — x'[|?) exp(—10[jx — x'[|?)

exp(—100|/x — x'||?)

Gaussian SVM: need
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Kernel Support Vector Machine Gaussian Kernel

Fun Time

Consider the Gaussian kernel K(x,x’) = exp(—v||x — x||?). What
function does the kernel converge to if v — co0?

(1 Klim(xax,) =0
O Kim(x,X') = [x =x']
O Kim(x,x) = [x # X]
O Kim(x,Xx') =1




Kernel Support Vector Machine Gaussian Kernel

Fun Time

Consider the Gaussian kernel K(x,x’) = exp(—v||x — x||?). What
function does the kernel converge to if v — co0?

Reference Answer: @

If x = x/, K(x,x") = 1 regardless of ~. If x # X/,
K(x,x’) = 0 when v — co. Thus, Kjn is an
impulse function, which is an extreme case of
how the Gaussian gets sharper when v — oc.
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Kernel Support Vector Machine Comparison of Kernels

Linear Kernel: Cons and Pros

K(x,x') = x"x'

x o o
e restricted e safe—linear first,
—not always separable?! remember? :-)
o o fast—with special QP
° 2 solver in primal
°o  very explainable—w and
| SVs say something
linear kernel: an important basic tool J
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Kernel Support Vector Machine Comparison of Kernels

Polynomial Kernel: Cons and Pros

o ogo&t% °
n x
- N K(x,X) = (¢ +x"x)?
hx s XX:X& x
e numerical difficulty for e less restricted than linear
large Q . « strong physical control
o [(+xX[<1:K—0 —'knows’ degree Q

o [¢+yxTX|>1: K — big

o three parameters (v, ¢, Q)
—more difficult to select |

polynomial kernel: perhaps small-Q only
—sometimes efficiently done by linear on ®g(x) J
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Kernel Support Vector Machine

Comparison of Kernels

Gaussian Kernel: Cons and Pros

© o
00000@ (o]
o O,
oo *\o
x* (o]
x
Oo .
kx SRR &
B *% x
x

Pros

e mysterious—no w
e slower than linear
e too powerful?!

v

K(x,x') = exp(—|x—x'||?)

o more powerful than
linear/poly.

e bounded—less numerical
difficulty than poly.

e one parameter
only—easier to select
than poly.

4

Gaussian kernel: one of most popular but shall be used with care J
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Kernel Support Vector Machine Comparison of Kernels

Other Valid Kernels

o kernel represents special similarity: ®(x)"®(x')
e any similarity = valid kernel? not really

e necessary & sufficient conditions for valid kernel:
Mercer’s condition
e symmetric
o let kj = K(X;,X;), the matrix K

o(x1)Td(x1) O(x))Td(x2) ... (x1)TD(xp)
_ ¢(X2)T¢(X1) ¢(X2)T¢(X2) Ce ¢(X2)T¢(XN)

O(xn)TO(X1) Dxn)TO(X) ... Bxn)TD(xn)
= [z 2 ... zn]"[21 2o ... zn]

= 77" must always be positive semi-definite

define your own kernel: possible, but hard |
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Kernel Support Vector Machine Comparison of Kernels

Fun Time

Which of the following is not a valid kernel? (Hint: Consider two
1-dimensional vectors Xy = (1) and x, = (—1) and check Mercer’s
condition.)

O K(x,x) = (—14+x"x)?
® K(x,x') = (04 x"x')?
® K(x,x)=(1+x"x/)?
O K(x,x')=(—-1—-xTx)?




Kernel Support Vector Machine Comparison of Kernels

Fun Time

Which of the following is not a valid kernel? (Hint: Consider two
1-dimensional vectors Xy = (1) and x, = (—1) and check Mercer’s
condition.)

Reference Answer: @

The kernels in @ and @ are just polynomial
kernels. The kernel in @ is equivalent to the
kernel in @ For @ the matrix K formed
from the kernel and the two examples is not
positive semi-definite. Thus, the underlying
kernel is not a valid one.

v
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Kernel Support Vector Machine Comparison of Kernels

Summary

© Embedding Numerous Features: Kernel Models

Lecture 3: Kernel Support Vector Machine

e Kernel Trick
kernel as shortcut of transform + inner product
e Polynomial Kernel
embeds specially-scaled polynomial transform
e Gaussian Kernel
embeds infinite dimensional transform

o Comparison of Kernels

linear for efficiency or Gaussian for power

¢ next: avoiding overfitting in Gaussian (and other kernels)

® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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