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Introduction

Matrix factorization (MF) and its extensions are
now widely used in recommender systems

In this talk I will briefly discuss three research works
related to this topic
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Parallel matrix factorization in shared-memory systems

Matrix Factorization

Matrix Factorization is an effective method for
recommender systems (e.g., Netflix Prize and KDD
Cup 2011)

But training is slow.

We developed a parallel MF package LIBMF for
shared-memory systems

http://www.csie.ntu.edu.tw/~cjlin/libmf

Best paper award at ACM RecSys 2013
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Parallel matrix factorization in shared-memory systems

Matrix Factorization (Cont’d)

A group of users give ratings to some items

User Item Rating
1 5 100
1 10 80
1 13 30
. . . . . . . . .
u v r
. . . . . . . . .

The information can be represented by a rating
matrix R
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Parallel matrix factorization in shared-memory systems

Matrix Factorization (Cont’d)

R

m × n

m

:

u

:
2

1

1 2 .. v .. n

ru,v

?2,2

m, n : numbers of users and items

u, v : index for uth user and vth item

ru,v : uth user gives a rating ru,v to vth item
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Parallel matrix factorization in shared-memory systems

Matrix Factorization (Cont’d)

R

m × n

≈ ×

PT

m × k

Q

k × n

m
:
u
:
2
1

1 2 .. v .. .. .. n

ruv

?2,2

pT
1

pT
2

:

pT
u

:

pT
m

q1 q2 .. qv .. .. .. qn

k : number of latent dimensions

ru,v = pT
u qv

?2,2 = pT
2 q2
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Parallel matrix factorization in shared-memory systems

Matrix Factorization (Cont’d)

A non-convex optimization problem:

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

u qv)2 + λP ‖pu‖2
F + λQ ‖qv‖2

F

)
λP and λQ are regularization parameters

SG (Stochastic Gradient) is now a popular
optimization method for MF

It loops over ratings in the training set.
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Parallel matrix factorization in shared-memory systems

Matrix Factorization (Cont’d)

SG update rule:

pu ← pu + γ (eu,vqv − λPpu) ,

qv ← qv + γ (eu,vpu − λQqv)

where
eu,v ≡ ru,v − pT

u qv

SG is inherently sequential
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Parallel matrix factorization in shared-memory systems

SG for Parallel MF

After r3,3 is selected, ratings in gray blocks cannot be
updated

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r6,6

1 2 3 4 5 6

1

2

3

4

5

6

But r6,6 can be used

r3,1 = p3
Tq1

r3,2 = p3
Tq2

..

r3,6 = p3
Tq6

——————

r3,3 = p3
Tq3

r6,6 = p6
Tq6
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Parallel matrix factorization in shared-memory systems

SG for Parallel MF (Cont’d)

We can split the matrix to blocks and update those
which don’t share p or q

1 2 3 4 5 6

1

2

3

4

5

6

This concept is simple, but there are many issues to have
a right implementation under the given architecture
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Parallel matrix factorization in shared-memory systems

Our Approach in the Package LIBMF

Parallelization (Zhuang et al., 2013; Chin et al.,
2015a)

Effective block splitting to avoid
synchronization time
Partial random method for the order of SG
updates

Adaptive learning rate for SG updates (Chin et al.,
2015b)

Details omitted due to time constraint
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Parallel matrix factorization in shared-memory systems

Block Splitting and Synchronization

A naive way for T nodes is to split the matrix to
T × T blocks

This is used in DSGD (Gemulla et al., 2011) for
distributed systems, where communication cost is
the main concern

In distributed systems, it is difficult to move data or
model
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Parallel matrix factorization in shared-memory systems

Block Splitting and Synchronization
(Cont’d)

• For shared memory systems,
synchronization becomes a
concern

1 2 3

1

2

3

• Block 1: 20s

• Block 2: 10s

• Block 3: 20s

We have 3 threads
hi

Thread 0→10 10→20
1 Busy Busy
2 Busy Idle
3 Busy Busy
ok 10s wasted!!
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling

We split the matrix to enough blocks. For example, with
two threads, we split the matrix to 4× 4 blocks

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 is the updated counter recording the number of
updated times for each block
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling (Cont’d)

Firstly, T1 selects a block randomly For T2, it selects a
block neither green nor gray

T1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling (Cont’d)

For T2, it selects a block neither green nor gray randomly
For T2, it selects a block neither green nor gray

T1

T2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling (Cont’d)

After T1 finishes, the counter for the corresponding block
is added by one

T2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling (Cont’d)

T1 can select available blocks to update
Rule: select one that is least updated

T2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Parallel matrix factorization in shared-memory systems

Lock-Free Scheduling (Cont’d)

SG: applying Lock-Free Scheduling
SG**: applying DSGD-like Scheduling
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MovieLens 10M: 18.71s → 9.72s (RMSE: 0.835)

Yahoo!Music: 728.23s → 462.55s (RMSE: 21.985)
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Parallel matrix factorization in shared-memory systems

Memory Discontinuity

Discontinuous memory access can dramatically increase
the training time. For SG, two possible update orders are

Update order Advantages Disadvantages
Random Faster and stable Memory discontinuity

Sequential Memory continuity Not stable

Random Sequential

RR

Our lock-free scheduling gives randomness, but the
resulting code may not be cache friendly
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Parallel matrix factorization in shared-memory systems

Partial Random Method

Our solution is that for each block, access both R̂ and P̂
continuously

R̂ : (one block)

= ×

P̂T

Q̂1 2

3 4

5 6

Partial: sequential in each block
Random: random when selecting block
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Parallel matrix factorization in shared-memory systems

Partial Random Method (Cont’d)
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The performance of Partial Random Method is
better than that of Random Method
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Parallel matrix factorization in shared-memory systems

Experiments

State-of-the-art methods compared

LIBPMF: a parallel coordinate descent method (Yu
et al., 2012)

NOMAD: an asynchronous SG method (Yun et al.,
2014)

LIBMF: earlier version of LIBMF (Zhuang et al.,
2013; Chin et al., 2015a)

LIBMF++: with adaptive learning rates for SG (Chin
et al., 2015c)

Details of data sets are omitted; the largest has 1.7B
ratings.
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Parallel matrix factorization in shared-memory systems

Results: k = 100
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Optimization algorithms for one-class matrix factorization

One-class Matrix Factorization

• Some applications have only two possible ratings
positive (1, watched) and
negative (0, not-watched)

• One-class observation (i.e., implicit feedback)
⇒ only part of positive actions are recorded

User Item Watched∈{0,1}
61 7 1
61 23 1

1647 128 1

• Past works include Pan et al. (2008); Hu et al. (2008);
Pan and Scholz (2009); Li et al. (2010); Paquet and
Koenigstein (2013)
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Optimization algorithms for one-class matrix factorization

Selection of Negative Samples

• One popular solution: treat some missing entries as
negative

Why? Most unknown entries are negative.

⇒ a user cannot watch all the movies

min
P,Q

∑
(u,v)∈Ω+

Cuv(1− pT
u qv)2 +

∑
(u,v)∈Ω−

Cuv(0− pT
u qv)2

+ λ(‖P‖2
F + ‖Q‖2

F )

• Ω+: observed positive entries

• Ω−: negative entries sampled from missing entries

• Cuv : weights
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Optimization algorithms for one-class matrix factorization

Two Ways to Select Negative Entries

We may use a subset or include all missing entries
• Subsampled :

|Ω−| = O(|Ω+|)� mn

Full :
Ω− = {(u, v) | (u, v) /∈ Ω+}

• Subsampled is just an approximation for Full
• Full: no need to worry about the selection
• Full: O(mn) elements lead to a hard optimization

problem
Subsampled: existing MF techniques can be directly
applied
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Optimization algorithms for one-class matrix factorization

Full for One-class Matrix Factorization

• Include all missing entries in Ω−

Ω = Ω+ ∪ Ω− = {1, . . . ,m} × {1, . . . , n}

• Weighted matrix factorization:∑
(i ,j)∈Ω+

Cuv(Auv−pT
u qv)2+

∑
(i ,j)∈Ω−

Cuv(0−pT
u qv)2+λ(‖P‖2

F+‖Q‖2
F )

• For most MF algorithms, the complexity is
proportional to O(|Ω|). Now |Ω| = mn can be huge

• Therefore, even if Full gives better performance, it’s
not useful without efficient training techniques
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Optimization algorithms for one-class matrix factorization

New Optimization Techniques

Under certain conditions on Cuv , we reduce the mn term
to Ω+ in the optimization algorithms:

• ALS: Alternating Least Squares (ALS)
The has been done by Pan and Scholz (2009)

• CD : Coordinate Descent

• SG : Stochastic Gradient

ALS CD SG
rating-MF O(|Ω|k2+(m+n)k3) O(|Ω|k) O(|Ω|k)

Subsampled O(|Ω+|k2+(m+n)k3) O(|Ω+|k) O(|Ω+|k)
Full-direct O(mnk2+(m+n)k3) O(mnk) O(mnk)
Full-new O(|Ω+|k2+(m+n)k3) O(|Ω+|k+(m+n)k2) ??
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Optimization algorithms for one-class matrix factorization

New Optimization Techniques (Cont’d)

Weights Cuv should satisfy certain conditions. Like Pan
and Scholz (2009), we assume

Cuv = puqv ,∀u, v /∈ R .

This is often satisfied in practice. For example, we may
have

Cuv ∝ |Ω+
u |,∀u, when v is fixed

where

|Ω+
u | = # of user u’s observed entries

Chih-Jen Lin (National Taiwan Univ.) 33 / 55



Optimization algorithms for one-class matrix factorization

New Optimization Techniques (Cont’d)

∑
(u,v)∈Ω+

(· · · ) +
∑

(u,v)∈Ω−

(· · · ), u = 1, . . . ,m

can be written as∑
(u,v)∈Ω+

(· · ·+ something from the 2nd summation)+

(a term involving u)
∑n

v=1
(a term involving v),∀u

The derivation is a bit complicated. Also some
implementation issues must be carefully addressed.

Reducing the complexity of SG remains a challenging
issue.
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Optimization algorithms for one-class matrix factorization

Comparison: Subsampled and Full

ml10m
nDCG

nHLU MAP AUC
@1 @10

Subsampled 9.33 12.10 13.31 10.00 0.97293
Full 25.64 23.81 24.94 17.70 0.97372

netflix
nDCG

nHLU MAP AUC
@1 @10

Subsampled 10.62 11.27 12.03 8.91 0.97224
Full 27.04 22.62 22.72 14.36 0.96879

For nDCG, nHLU and MAP, Full is much better than
Subsampled. AUC isn’t a good criterion as we now care
more about top recommendations
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Optimization algorithms for one-class matrix factorization

Summary for One-class MF

With the developed optimization techniques, the
Full approach of treating all missing entries as
negative becomes practical

This work was done while I visited Microsoft
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From matrix factorization to factorization machines and more
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From matrix factorization to factorization machines and more

MF versus Classification/Regression

MF solves

min
P,Q

∑
(u,v)∈R

(
ru,v − pT

u qv

)2

Note that I omit the regularization term

Ratings are the only given information

This doesn’t sound like a classification or regression
problem

In the last part of this talk we will make a
connection and introduce FM (Factorization
Machines)
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From matrix factorization to factorization machines and more

Handling User/Item Features

What if instead of user/item IDs we are given user
and item features?

Assume user u and item v have feature vectors

fu ∈ RU and gv ∈ RV ,

where
U ≡ number of user features
V ≡ number of item features

How to use these features to build a model?
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From matrix factorization to factorization machines and more

Handling User/Item Features (Cont’d)

We can consider a regression problem where data
instances are

value features
...

...
ruv

[
fTu gT

v

]
...

...

and solve

min
w

∑
u,v∈R

(
Ru,v −wT

[
fu
gv

])2
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From matrix factorization to factorization machines and more

Feature Combinations

However, this does not take the interaction between
users and items into account

Following the concept of degree-2 polynomial
mappings in SVM, we can generate new features

(fu)t(gv)s , t = 1, . . . ,U , s = 1, . . .V

and solve

min
wt,s ,∀t,s

∑
u,v∈R

(ru,v −
U∑
t=1

V∑
s=1

wt,s(fu)t(gv)s)
2
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From matrix factorization to factorization machines and more

Feature Combinations (Cont’d)

This is equivalent to

min
W

∑
u,v∈R

(ru,v − fTu Wgv)2,

where
W ∈ RU×V is a matrix

If we have vec(W ) by concatenating W ’s columns,
another form is

min
W

∑
u,v∈R

ru,v − vec(W )T

 ...
(fu)t(gv)s

...




2

,
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From matrix factorization to factorization machines and more

Feature Combinations (Cont’d)

However, this setting fails for extremely sparse
features

Consider the most extreme situation. Assume we
have

user ID and item ID

as features

Then

U = m, J = n,

fi = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T

Chih-Jen Lin (National Taiwan Univ.) 43 / 55



From matrix factorization to factorization machines and more

Feature Combinations (Cont’d)

The optimal solution is

Wu,v =

{
ru,v , if u, v ∈ R

0, if u, v /∈ R

We can never predict

ru,v , u, v /∈ R
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From matrix factorization to factorization machines and more

Factorization Machines

The reason why we cannot predict unseen data is
because in the optimization problem

# variables = mn� # instances = |R |

Overfitting occurs

Remedy: we can let

W ≈ PTQ,

where P and Q are low-rank matrices. This
becomes matrix factorization
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From matrix factorization to factorization machines and more

Factorization Machines (Cont’d)

This can be generalized to sparse user and item
features

min
u,v∈R

(Ru,v − fTu P
TQgv)2

That is, we think

Pfu and Qgv

are latent representations of user u and item v ,
respectively

This becomes factorization machines (Rendle, 2010)
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From matrix factorization to factorization machines and more

Factorization Machines (Cont’d)

Similar ideas have been used in other places such as
Stern et al. (2009)

We see that such ideas can be used for not only
recommender systems.

They may be useful for any classification problems
with very sparse features
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From matrix factorization to factorization machines and more

Field-aware Factorization Machines

We have seen that FM is useful to handle highly
sparse features such as user IDs

What if we have more than two ID fields?

For example, in CTR prediction for computational
advertising, we may have

value features
...

...
CTR user ID, Ad ID, site ID

...
...
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From matrix factorization to factorization machines and more

Field-aware Factorization Machines
(Cont’d)

FM can be generalized to handle different
interactions between fields

Two latent matrices for user ID and Ad ID
Two latent matrices for user ID and site ID
...

This becomes FFM: field-aware factorization
machines (Rendle and Schmidt-Thieme, 2010)
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From matrix factorization to factorization machines and more

FFM for CTR Prediction

It’s used by Jahrer et al. (2012) to win the 2nd prize
of KDD Cup 2012

Recently my students used FFM to win two Kaggle
competitions

After we used FFM to win the first competition, in
the second competition all top teams use FFM

Note that for CTR prediction, logistic rather than
squared loss is used
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From matrix factorization to factorization machines and more

Discussion

How to decide which field interactions to use?

If features are not extremely sparse, can the result
still be better than degree-2 polynomial mappings?

Note that we lose the convexity here

We have a software LIBFFM for public use

http://www.csie.ntu.edu.tw/~cjlin/libffm
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Conclusions

Discussion and Conclusions

From my limited experience on recommender
systems, I feel that the practical use is very problem
dependent

For example, sometimes many features are available,
but sometimes you only have ratings

Developing general algorithms becomes difficult. An
algorithm may be useful only for certain scenarios
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Conclusions

Discussion and Conclusions (Cont’d)

This situation is different from data classification,
where the process is more standardized

I am still learning different aspects of recommender
systems. Your comments/suggestions are very
welcome
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Conclusions
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