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Abstract

Truncated Newton method is one of the most effective optimization methods for large-scale
linear classification. The main computational task at each Newton iteration is to approx-
imately solve a quadratic sub-problem by an iterative procedure such as the conjugate
gradient (CG) method. It is known that CG has slow convergence if the sub-problem is
ill-conditioned. Preconditioned CG (PCG) methods have been used to improve the con-
vergence of the CG method, but it is difficult to find a preconditioner that performs well
in most situations. Further, because Hessian-free optimization techniques are incorporated
for handling large data, many existing preconditioners are not directly applicable. In this
work, we detailedly study some preconditioners that have been considered in past works
for linear classification. We show that these preconditioners may not help to improve the
training speed in some cases. After some investigation, we propose simple and effective
techniques to make the PCG method more robust in a truncated Newton framework. The
idea is to avoid the situation when a preconditioner leads to a much worse condition num-
ber than when it is not applied. We provide theoretical justification. Through carefully
designed experiments, we demonstrate that our method can effectively reduce the training
time for large-scale problems.

Keywords: large-scale linear classification, preconditioned conjugate gradient, Newton
method

1. Introduction

In linear classification, logistic regression and linear SVM are two commonly used models.
The model parameters, denoted as w ∈ Rn, are obtained by solving an unconstrained
optimization problem

minw f(w).

Truncated Newton method is one of the most effective optimization methods for large-
scale linear classification. The core computational task at the kth Newton iteration is to
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approximately solve a sub-problem that is related to the following linear system

∇2f(wk)sk = −∇f(wk), (1)

where ∇f(wk) and ∇2f(wk) are gradient and Hessian, respectively. For large-scale prob-
lems, the Hessian matrix is too large to be stored. Past works such as Keerthi and DeCoste
(2005); Lin et al. (2008) have addressed this difficulty by showing that the special structure
in linear classification allows us to solve (1) by a conjugate gradient (CG) procedure without
forming the whole Hessian matrix. However, even with such a Hessian-free approach, the
training of large-scale data sets is still a time-consuming process because of a possibly large
number of CG steps.

It is well known that for ill-conditioned matrices, the convergence of CG methods may
be slow. To reduce the number of CG steps, a well-known technique is the preconditioned
conjugate gradient (PCG) method (e.g., Concus et al., 1976; Nash, 1985). The idea is
to apply a preconditioner matrix to possibly improve the condition of the linear system.
Unfortunately, designing a suitable preconditioner is never an easy task. Because we need
extra efforts to find and use the preconditioners, the cost per CG step becomes higher.
Therefore, a smaller number of CG steps may not lead to shorter running time. Further, a
PCG method is not guaranteed to reduce the number of CG steps.

For linear classification, some past works such as Lin et al. (2008); Zhang and Xiao
(2015); Ma and Takáč (2016) have applied PCG in the truncated Newton framework. How-
ever, whether PCG is useful remains a question to be studied. One challenge is that training
a linear classifier is different from solving a single linear system in the following aspects.

1. Because a sequence of CG procedures is conducted, reducing the number of CG steps
at one Newton iteration may not lead to the overall improvement. For example,
suppose at the first iteration PCG takes fewer steps than CG but goes to a bad point
for the overall optimization process. Then the total number of CG steps by using
PCG may not be less.

2. The effectiveness of PCG may depend on when the optimization procedure is ter-
minated. The work by Lin et al. (2008) concludes that a diagonal preconditioner is
not consistently better than the ordinary CG. Later Chin et al. (2016) point out the
conclusion in Lin et al. (2008) is based on a strict stopping condition in solving the
optimization problem. If the optimization procedure is terminated earlier, a situation
suitable for machine learning applications, PCG is generally useful. Therefore, careful
designs are needed in evaluating the effectiveness of PCG.

3. Because the Hessian matrix is too large to be stored and we consider a Hessian-free
approach, most existing preconditioners can not be directly used. This fact makes the
application of PCG for linear classification very difficult.

In this work we show that existing preconditioners may not help to improve the training
speed in some cases. After some investigation, we propose a simple and effective technique
to make the PCG method more robust in a truncated Newton framework. The idea is to
avoid the situation when a preconditioner leads to a much worse condition number than
when it is not applied. The proposed technique can be applied in single-core, multi-core, or
distributed settings because the running time is always proportional to the total number of
CG steps.
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This work is organized as follows. In Section 2, we introduce Newton methods for large-
scale linear classification and discuss how PCG methods are applied to a trust-region Newton
framework. In Section 3, we discuss several existing preconditioners and their possible
weakness. We then propose a strategy in Section 4 to have a more robust preconditioner in
the truncated Newton framework. Theoretical properties are investigated. In Section 5, we
conduct thorough experiments and comparisons to show the effectiveness of our proposed
setting. Proofs and additional experimental results are available in supplementary materials.
The proposed method has been incorporated into the software LIBLINEAR (version 2.20
and after). Supplementary materials and experimental codes are at https://www.csie.

ntu.edu.tw/~cjlin/papers/tron_pcg/.

2. Conjugate Gradient in Newton Methods for Linear Classification

In this section we review how CG and PCG are applied in a Newton method for linear
classification.

2.1. Truncated Newton Methods

Consider training data (yi,xi), i = 1, . . . , l, where yi = ±1 is the label and xi ∈ Rn is a
feature vector. In linear classification, the model vector w ∈ Rn is obtained by solving

min
w

f(w),where f(w) ≡ 1

2
wTw + C

l∑
i=1

ξ(yiw
Txi).

In f(w), wTw/2 is the L2-regularization term, ξ(yiw
Txi) is the loss function and C > 0 is

a parameter to balance the two terms. Here we consider logistic and L2 losses

ξLR(ywTx) = log
(
1 + exp

(
−ywTx

))
, (2)

ξL2(ywTx) = (max(0, 1− ywTx))2. (3)

Truncated Newton methods are one of the main approaches for large-scale linear classi-
fication. It iteratively finds a direction sk that minimizes the quadratic approximation
of

f(wk + s)− f(wk) ≈ qk(s) ≡ ∇f(wk)Ts +
1

2
sT∇2f(wk)s, (4)

where wk is the current iterate, ∇f(wk) and ∇2f(wk) are the gradient and the Hessian,
respectively. Because L2 Loss is not twice differentiable, we can consider the generalized
Hessian matrix (Mangasarian, 2002). The direction sk from minimizing (4) can be obtained
by solving the linear system

∇2f(wk)s = −∇f(wk). (5)

Exactly solving (5) for large-scale problems is expensive and furthermore ∇2f(wk) may
be too large to be stored. Currently, conjugate gradient (CG) methods are commonly
used to approximately solve (5) for obtaining a truncated Newton direction. A CG pro-
cedure involves a sequence of Hessian-vector products. Past developments (e.g., Keerthi
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and DeCoste, 2005; Lin et al., 2008) have shown that the special structure of the Hessian
in (6) allows us to conduct Hessian-vector products without explicitly forming the matrix.
Specifically, from f(w) we have

Hk = ∇2f(wk) = I + CXTDX, (6)

where D is a diagonal matrix with Dii = ξ′′(yiw
T
k xi), I is the identity matrix, and X =

[x1, . . . ,xl]
T is the data matrix. The Hessian-vector product is conducted by

∇2f(w)s = (I + CXTDX)s = s + CXT (D(Xs)). (7)

The CG procedure stops after, for example, the following relative error in solving (5) is
small. ∥∥∇2f(wk)s +∇f(wk)

∥∥ ≤ εCG‖∇f(wk)‖, (8)

where εCG is a small positive value.1

To ensure the convergence, after finding a direction sk, we should adjust the step size
along sk (line search strategy) or decide if sk should be accepted (trust region method).
In this work we focus on the trust region approach because first, it is used in the package
LIBLINEAR (Fan et al., 2008), the platform considered in this study, and second, for logistic
regression, in some situations the trust region approach is superior (Hsia et al., 2017).

2.2. Trust-region Newton Method

A trust region method indirectly adjusts the step size by finding a direction sk within a
trust region. The direction is taken if it results in a sufficient function-value reduction. The
size of the trust region is then adjusted. Here we mainly follow the description in Hsia et al.
(2017).

Given a trust region with size ∆k at the kth iteration, we compute the approximate
Newton direction sk by solving the following trust-region sub-problem:

mins qk(s) subject to ‖s‖ ≤ ∆k, (9)

where qk(s) is defined in (4). Then, we check the ratio between the real and the predicted
reduction of f(w):

ρk =
f(wk + sk)− f(wk)

qk(sk)
. (10)

The iterate w is updated only if the ratio is large enough:

wk+1 =

{
wk + sk, if ρ > η0,

wk, if ρ ≤ η0,
(11)

where η0 > 0 is a pre-defined constant. The trust-region size ∆k is adjusted by comparing
the actual and the predicted function-value reduction. More details can be found in, for
example, Lin et al. (2008). We summarize a trust region Newton method in Algorithm 1.

Solving the sub-problem (9) is similar to solving the linear system (5) though a constraint
‖s‖ ≤ ∆k must be satisfied. A classic approach in Steihaug (1983) applies CG with the
initial s = 0 and has that ‖s‖ is monotonically increasing. Then CG stops after either (8)
is satisfied or an s on the boundary of the trust region is obtained. The procedure to solve
the trust-region sub-problem is given in Algorithm 2.

1. In experiments, we use εCG = 0.1 by following the setting in the software LIBLINEAR (Lin et al., 2008).
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Algorithm 1: A CG-based trust region Newton method

1 Given w0. for k = 0, 1, 2, ... do
2 Approximately solve trust-region sub-problem (9) by the CG method to obtain a

direction sk.
3 Compute ρk via (10).
4 Update wk to wk+1 according to (11).
5 Update ∆k+1 (details not discussed).

6 end

Algorithm 2: CG for the trust-region sub-problem (9)

1 Given εCG < 1,∆k > 0, let s̄ = 0, r = d = −∇f(wk)
2 rTr← rTr
3 while True do

4 if
√
rTr < εCG‖∇f(wk)‖ then

5 return sk = s̄
6 end

7 v ← ∇2f(wk)d, α← rTr/(dTv), s̄← s̄ + αd
8 if ‖s̄‖ ≥ ∆k then
9 s̄← s̄− αd

10 compute τ such that ‖s̄ + τd‖ = ∆k

11 return sk = s̄ + τd

12 end
13 r ← r − αv, rTrnew ← rTr
14 β ← rTrnew/rTr,d← r + βd
15 rTr← rTrnew

16 end

We explain that the computational cost per iteration of truncated Newton methods is
roughly

O(nl)× (# CG steps). (12)

From (7), O(nl) is the cost per CG step. Besides CG, function and gradient evaluation
costs about the same as one CG step. Because in general each Newton iteration requires
several CG steps, we omit function/gradient evaluation in (12) and hence the total cost is
proportional to the total number of CG steps. If X is a sparse matrix with #nnz non-zero
entries, then the O(nl) term can be replaced by O(#nnz).

2.3. PCG for Trust-region Sub-problem

From (12), reducing the number of CG steps can speed up the Newton method. The
preconditioning technique (Concus et al., 1976) has been widely used to possibly improve
the condition of linear systems and reduce the number of CG steps. PCG considers a
preconditioner

M = EET ≈ ∇2f(wk)
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Algorithm 3: PCG for solving the transformed trust-region sub-problem (14). As-
sume M has not been factorized to EET .

1 Given εCG < 1,∆k > 0
2 Let s̄ = 0, r = −∇f(wk),d = z = M−1r, γ = rTz
3 while True do

4 if
√
rTz < εCG‖∇f(wk)‖M−1 then

5 return sk = s̄
6 end

7 v ← ∇2f(wk)d, α← rTz/(dTv)
8 s̄← s̄ + αd
9 if ‖s̄‖M ≥ ∆k then

10 s̄← s̄− αd
11 compute τ such that ‖s̄ + τd‖M = ∆k

12 return sk = s̄ + τd

13 end
14 r ← r − αv, z ←M−1r
15 γnew ← rTz, β ← γnew/γ
16 d← z + βd
17 γ ← γnew

18 end

and transforms the original linear system (5) to

E−1∇2f(wk)E−T ŝ = −E−1∇f(wk). (13)

If the approximation is good, the condition number of E−1∇2f(wk)E−T is close to 1 and
less CG steps are needed. After obtaining ŝk, we can get the original solution by sk =
E−T ŝk. More discussion about the condition number and the convergence of CG is in the
supplement.

To apply PCG for the trust-region sub-problem, we follow Steihaug (1983) to modify
the sub-problem (9) to

min
ŝ

1

2
ŝT (E−1∇2f(wk)E−T )ŝ + (E−1∇f(wk))T ŝ

subject to ‖ŝ‖ ≤ ∆k. (14)

Then the same procedure in Algorithm 2 can be applied to solve the new sub-problem.
See details in Algorithm I in supplementary materials. By comparing Algorithms 2 and I,
clearly the extra cost of PCG is for calculating the product between E−1 (or E−T ) and a
vector; see

E−1(∇2f(wk)(E−T d̂)) (15)

in Algorithm I. In some situations the factorization of M = EET is not practically viable,
but it is known (Golub and Van Loan, 1996) that PCG can be performed without a fac-
torization of M . We show the procedure in Algorithm 3. The extra cost of PCG is shifted
from (15) to the product between M−1 and a vector; see

M−1r
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in Algorithm 3.
If the factorization M = EET is available, a practical issue is whether Algorithm 3

or Algorithm I in supplementary materials should be used. We give a detailed investiga-
tion in Section IV of supplementary materials. In the end we choose Algorithm 3 for our
implementation.

3. Existing Preconditioners

We discuss several existing preconditioners which have been applied to linear classification.

3.1. Diagonal Preconditioner

It is well known that extracting all diagonal elements in the Hessian can form a simple
preconditioner.

M = diag(Hk),where Mij =

{
(Hk)ij , if i = j,

0, otherwise.

From (6),

(Hk)jj = 1 + C
∑

i
DiiX

2
ij ,

so constructing the preconditioner costs O(nl). At each CG step, the cost of computing
M−1r is O(n). Thus, the extra cost of using the diagonal preconditioner is

O(n)× (# CG steps) +O(nl). (16)

In comparison with (12), the cost of using a diagonal preconditioner at each Newton iteration
is insignificant.

For linear classification, Lin et al. (2008) have applied the diagonal preconditioner, but
conclude that it is not consistently better. However, Chin et al. (2016) pointed out that the
comparison is conducted by strictly solving the optimization problem. Because in general a
less accurate optimization solution is enough for machine learning applications, Chin et al.
(2016) find that diagonal preconditioning is practically useful. We will conduct a thorough
evaluation in Section 5.1.

3.2. Subsampled Hessian as Preconditioner

In Section 2.3, we have shown that a good preconditioner M should satisfy M ≈ ∇2f(wk).
In linear classification, the object function involves the sum of training losses. If we ran-
domly select l̄ instance-label pairs (ȳi, x̄i) and construct a subsampled Hessian (Byrd et al.,
2011)

H̄k = I + C
l

l̄
X̄T D̄X̄,

where X̄ = [x̄T
1 , . . . , x̄

T
l̄

] ∈ Rl̄×n and D̄ ∈ Rl̄×l̄ is a diagonal matrix with D̄ii = ξ′′(ȳiw
T
k x̄i),

then H̄k is an unbiased estimator for ∇2f(wk). Therefore, M = H̄k can be considered as a
reasonable preconditioner.
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However, H̄k ∈ Rn×n has the same size as Hk so it may be too large to be stored. To
get H̄−1

k r in PCG, Ma and Takáč (2016) apply the following Woodbury formula. Consider
A ∈ Rn×n, U ∈ Rn×m and V ∈ Rm×n. If A and (I + V A−1U) are invertible, then

(A+ UV )−1 = A−1 −A−1U(I + V A−1U)−1V A−1.

To apply this formula on the sub-sampled Hessian H̄k, we first let

G = (
lC

l̄
D)

1
2 .

Then
H̄k = In + (X̄TG)Il̄(GX̄)

and we have
H̄−1

k = In − X̄TG(Il̄ +GX̄X̄TG)−1GX̄, (17)

where G = ( lC
l̄
D)

1
2 . If the chosen l̄ satisfies l̄� l, then

(Il̄ +GX̄X̄TG)−1 ∈ Rl̄×l̄

can be calculated in O(nl̄2 + l̄3) time and is small enough to be stored. Note that l̄3 is for
calculating the inverse. Then in PCG the product

H̄−1
k r = r − X̄T (G((Il̄ +GX̄X̄TG)−1(G(X̄r))))

can be done in the cost of O(nl̄) + O(l̄2). For large and sparse data, l̄ � n, so at each
Newton iteration, the additional cost of using H̄k as the preconditioner is

O(nl̄)× (# CG steps) +O(nl̄2). (18)

A comparison with (12) shows that we can afford this cost if l̄� l. Further, from (16) and
(18), using a sub-sampled Hessian as the preconditioner is in general more expensive than
diagonal preconditioning. We will discuss the selection of l̄ in Section 5.2.

4. Our Proposed Method

It is hard to find a preconditioner that works well in all cases. We give a simple example
showing that the diagonal preconditioner may not reduce the condition number. If

Hk = I +

2 2 2
2 3 3
2 3 4

 and M = EET = diag(Hk),

then
κ(E−1HkE

−T ) = 6.781 > κ(Hk) = 6.723.

In a Newton method, each iteration involves a sub-problem. A preconditioner may be
useful for some sub-problems, but not for others. Thus it is difficult to ensure the shorter
overall training time of using PCG. We find that if some Newton iterations need many CG
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steps because of inappropriate preconditioning, the savings by PCG in subsequent Newton
iterations may not be able to recover the loss. Thus we check if a more robust setting can
be adopted. Assume

M = EET ≈ Hk

is any preconditioner considered for the current sub-problem. We hope to derive a new
preconditioner M̄ = ĒĒT that satisfies

κ(Ē−1HkĒ
−T ) ≈ min{κ(Hk), κ(E−1HkE

−T )}. (19)

This property avoids the situation when E−1HkE
−T has a larger condition number and

somehow ensures that PCG is useful at each Newton iteration. Note that we assume the
existence of the factorization EET and ĒĒT only for discussing theoretical properties (19).
In practice we can just use M or M̄ as indicated in Section 2.3.

The next issue is how to achieve the inequality (19). We offer two approaches.

4.1. Running CG and PCG in Parallel

If in an ideal situation we can run CG and PCG in parallel, then we can conjecture that
the one needing fewer steps has a smaller condition number. Therefore, the following rule
can choose between CG and PCG at each Newton iteration.

M̄ =

{
I, if CG uses less steps,

M, if PCG uses less steps.

Because we consider preconditioners that do not incur much extra cost, this setting is similar
to checking which one finishes first. Our proposed strategy can be easily implemented in a
multi-core or distributed environment.

4.2. Weighted Average of the Preconditioner and the Identity Matrix

The method in Section 4.1 to run CG and PCG in parallel is a direct way to achieve (19), but
it is not useful in a single-thread situation. Unfortunately, developing a new preconditioner
satisfying (19) is extremely difficult. In general we do not have that one preconditioner is
consistently better than another. Therefore, we consider a more modest goal of improving
the situation when preconditioning is harmful. The property (19) is revised to

κ(Ē−1HkĒ
−T ) 6≈ max{κ(Hk), κ(E−1HkE

−T )},

or equivalently
κ(Ē−1HkĒ

−T ) < max{κ(Hk), κ(E−1HkE
−T )}. (20)

To achieve (20), we prove in the following theorem that one possible setting is by a weighted
average of M and an identity matrix (details of the proof are in supplementary materials).

Theorem 1 For any symmetric positive definite Hk and positive definite M = EET with
κ(E−1HkE

−T ) 6= κ(Hk), the following matrix satisfies (20) for all 0 < α < 1.

M̄ = αM + (1− α)I.
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Data sets #instances #features
log2(CBest)
LR L2

news20 19,996 1,355,191 9 3
yahookr 460,554 3,052,939 6 1
url 2,396,130 3,231,962 -7 -10
kddb 19,264,097 29,890,095 -1 -4
criteo 45,840,617 1,000,000 -15 -12
kdd12 149,639,105 54,686,452 -4 -11

Table 1: Data statistics. CBest is the regularization parameter selected by cross validation.

Note that α = 0 and 1 respectively indicate that CG (no preconditioning) and PCG (with
preconditioner M) are used. By choosing an α ∈ (0, 1), we avoid the worse one of the two
settings.

If M is the diagonal preconditioner in Section 3.1, then

M̄ = α× diag(Hk) + (1− α)× I. (21)

In Section 5.1 we will investigate the effectiveness of using (21) and the selection of α.

5. Experiments

In Section 5.1, we compare the diagonal preconditioner and the proposed methods. For the
subsampled-Hessian preconditioner, we check the performance in Section 5.2. Finally, an
overall comparison is in Section 5.3.

We consider binary classification data sets listed in Table 1. All data sets except yahookr
can be downloaded from LIBSVM Data Sets (2007). We extend the trust region Newton
implementation in a popular linear classification package LIBLINEAR (version 2.11) to
incorporate various preconditioners. By extending from CG to PCG, many implementation
details must be addressed. See Section IV of supplementary materials.

We present results of using the logistic loss, while leaving results of the l2 loss in the
supplementary materials. Some preliminary results on linear support vector regression are
also given there.

In experiments, if the same type of preconditioners are compared, we check the total
number of CG steps when the optimization procedure reaches the following default stopping
condition of LIBLINEAR

‖∇f(wk)‖ ≤ εmin(#pos,#neg)

l
‖∇f(w0)‖, (22)

where ε = 10−2, #pos, #neg are the numbers of positive- and negative-labeled instances
respectively, and l is the total number of instances.

From (12), if the cost of preconditioning is insignificant, a comparison on CG steps is
the same as a running time comparison. However, for experiments in Section 5.3 using
expensive preconditioners, we give timing results. For the regularization parameter C, we
consider

C = CBest × {0.01, 0.1, 1, 10, 100}, (23)

where CBest for each data set is the value leading to the best cross validation accuracy.
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(a) C = CBest

Data Diag CG or Diag Mixed

news20 1.61 1.06 0.98
url 1.25 0.86 0.87
yahookr 0.29 0.44 0.67
kddb 0.24 0.25 0.28
kdd12 0.19 0.19 0.31
criteo 0.65 0.68 0.70

(b) C = 100CBest

Data Diag CG or Diag Mixed

news20 2.38 0.85 0.98
url 1.14 0.50 1.29
yahookr 0.31 0.11 0.16
kddb 0.04 0.03 0.05
kdd12 0.29 0.10 0.38
criteo 0.82 0.37 0.49

Table 2: The ratio between the total number of CG steps of a method and that of using
standard CG. The smaller the ratio is better. Ratios larger than one are boldfaced,
indicating that preconditioning is not helpful. We run the Newton method until
the stopping condition (22) is satisfied. Logistic loss is used.

5.1. Diagonal Preconditioner and the Proposed Method in Section 4

We compare the following settings.
• CG: LIBLINEAR version 2.11, a trust-region method without preconditioning.
• Diag: the diagonal preconditioner in Section 3.1.
• CG or Diag: the technique in Section 4.1 to run CG and diagonal PCG in parallel.2

• Mixed: the preconditioner in (21) with α = 10−2.
In Table 2, we present

Total #CG steps of a method

Total #CG steps without preconditioner
(24)

by using C = CBest × {1, 100}. Thus a value smaller than 1 indicates that PCG reduces
the number of CG steps. Full results under all C values listed in (23) are in supplementary
materials.

From Table 2, in general the ratio of using the diagonal preconditioner is less than
one, indicating that applying this preconditioner can reduce the total number of CG steps.
However, for news20 and url, diagonal preconditioning is not useful. We conduct a detailed
investigation by checking the relationship between the accumulated number of CG steps and
the following relative function-value reduction

f(wk)− f(w∗)

f(w∗)
,

where w∗ is an approximate optimal solution by running many iterations. Figure 1 shows
that the final convergence of using diagonal preconditioning is much slower than without
preconditioning. Thus the diagonal preconditioner is not robust for practical use.

For the proposed approaches CG or Diag and Mixed, they are generally better or as
good as the two original settings: CG (no preconditioning) and Diag (diagonal precondition-
ing). Therefore, the proposed techniques effectively improve the robustness of the diagonal
preconditioner. In supplementary materials we provide more results including the sensitivity
of the α value in the Mixed approach.

2. Because of checking the total number of CG steps, we can easily use a single machine to simulate the
parallel setting.
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(a) url, C = CBest
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Figure 1: Comparison of the convergence of CG, Diag, CG or Diag and Mixed. Logistic loss
is used. We show a relative difference to the optimal function value (log-scaled)
versus the total CG steps. Horizontal lines show that LIBLINEAR’s stopping
condition (22) with tolerances 10−1, 10−2(default), and 10−3 is reached; such
information indicates when the training algorithm should stop.

(a) C = CBest

Data SH-100 SH-1000 SH-3000

news20 1.00 1.20 2.02
url 0.92 0.73 0.72
yahookr 1.17 0.71 0.50
kddb 0.98 0.50 0.35
kdd12 0.79 0.69 0.61
criteo 0.77 0.47 0.28

(b) C = 100CBest

Data SH-100 SH-1000 SH-3000

news20 0.98 1.20 1.93
url 1.63 1.12 1.05
yahookr 1.01 0.71 1.11
kddb 0.89 0.69 0.38
kdd12 1.31 1.50 1.46
criteo 1.14 0.53 0.53

Table 3: A comparison of using different l̄ values in the sub-sampled Hessian preconditioner.
We present the ratio between the total number of CG steps of a method and that
of using standard CG. The smaller the ratio is better. Ratios larger than one are
boldfaced, indicating that preconditioning is not helpful. Other settings are the
same as Table 2.

5.2. Subsampled Hessian as Preconditioner

We investigate the size l̄ in the subsampled Hessian preconditioner described in Section 3.2
by considering the following settings.
• SH-100: method in Section 3.2 with l̄ = 100.
• SH-1000: method in Section 3.2 with l̄ = 1, 000.
• SH-3000: method in Section 3.2 with l̄ = 3, 000.

For each setting we compare the number of CG steps with that of standard CG by calculating
the ratio in (24). Note that from (18), the cost of using subsampled Hessian is high, so we
will present timing results in Section 5.3.

From Table 3, a larger l̄ generally leads to a smaller number of CG steps. However,
in some situations (e.g., news20), a larger l̄ is not useful. From a detailed investigation
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(a) C = CBest

Data Diagonal Mixed SH-3000

news20 1.76 1.13 44.36
url 1.24 0.91 1.16
yahookr 0.35 0.73 1.17
kddb 0.28 0.31 0.41
kdd12 0.15 0.22 0.37
criteo 0.74 0.80 0.43

(b) C = 100CBest

Data Diagonal Mixed SH-3000

news20 2.51 1.15 48.20
url 1.18 1.28 1.28
yahookr 0.33 0.19 2.22
kddb 0.05 0.05 0.42
kdd12 0.29 0.36 1.27
criteo 0.75 0.47 0.55

Table 4: Running time comparison of using different preconditioners. We show the ra-
tio between the running time of a method and that of using standard CG. The
smaller the ratio is better. Ratios larger than one are boldfaced, indicating that
preconditioning is not helpful. Other settings are the same as Table 2.

in supplementary materials, we even find that the performance is sensitive to the random
seeds in constructing the sub-sampled Hessian. Thus in some cases the current l̄ is not large
enough to give a good approximation of ∇2f(wk). Our observation is slightly different from
that in Ma and Takáč (2016), which uses only l̄ = 100. It is unclear why different results
are reported, but this situation seems to indicate that selecting a suitable l̄ is not an easy
task.

5.3. Running-time Comparison of Different Preconditioners

We conduct an overall timing comparison. Results in Table 4 lead to the following obser-
vations.

1. In some situations, the cost of using a preconditioner is not negligible. For news20,
from Table 3, SH-3000 is not much worse in terms of CG steps, but is dramatically
slower in terms of time.

2. Overall Mixed is the best approach. It is more robust than Diag, and is often much
faster than CG and SH-3000.

For a further illustration, we present a detailed comparison in Figure 2, where the conver-
gences in terms of both the number of CG steps and the running time are checked. Clearly,
CG and Diag are not very robust. They have the fastest and the slowest convergences on dif-
ferent problems. We also see that a good reduction on the number of CG steps by SH-3000

may not lead to shorter training time. A complete set of figures by using all data sets is in
supplementary materials.

6. Conclusions

In this work we show that applying preconditioners in Newton methods for linear classifi-
cation is not an easy task. Improvements made at one Newton iteration may not lead to
better overall convergence. We propose using a reliable preconditioner at each iteration.
The idea is that between the setting of no preconditioning and the setting of using one
particular preconditioner, we try to select the better one. If the selection is not possible in
practice, we propose using a weighted combination to ensure that at least the worse one
is not considered. Experiments confirm that the proposed method leads to faster overall
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Figure 2: Convergence of using different preconditioners. We present the results of using
C = CBest and C = 100CBest. For the same data set and under the same C
value, the x-axis of the upper figure is the cumulative number of CG steps and
the x-axis of the lower one is the running time. We align curves of the approach
CG in upper and lower figures for an easy comparison. Other settings are the
same as those in Figure 1.

convergence. A corresponding implementation has been included in a package for public
use.
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