
A Note on Platt’s Probabilistic Outputs for Support

Vector Machines

Hsuan-Tien Lin (htlin@ntu.edu.tw)
Chih-Jen Lin (cjlin@csie.ntu.edu.tw)
Department of Computer Science and Information Engineering,
National Taiwan University, Taipei 106, Taiwan

Ruby C. Weng (chweng@nccu.edu.tw)
Department of Statistics,
National Chengchi University, Taipei 116, Taiwan

Abstract. Platt’s probabilistic outputs for Support Vector Machines (Platt, 2000)
has been popular for applications that require posterior class probabilities. In this
note, we propose an improved algorithm that theoretically converges and avoids
numerical difficulties. A simple and ready-to-use pseudo code is included.

Keywords: Support Vector Machine, Posterior Probability

1. Introduction

Given training examples xi ∈ Rn, i = 1, . . . , l, labeled by yi ∈ {+1,−1},
the binary Support Vector Machine (SVM) computes a decision func-
tion f(x) such that sign(f(x)) can be used to predict the label of any
test example x.

Instead of predicting the label, many applications require a posterior
class probability Pr(y = 1|x). Platt (2000) proposes approximating the
posterior by a sigmoid function

Pr(y = 1|x) ≈ PA,B(f) ≡ 1
1 + exp(Af + B)

, where f = f(x). (1)

Let each fi be an estimate of f(xi). The best parameter setting z∗ =
(A∗, B∗) is determined by solving the following regularized maximum
likelihood problem (with N+ of the yi’s positive, and N− negative):

min
z=(A,B)

F (z) = −
l∑

i=1

(
ti log(pi) + (1− ti) log(1− pi)

)
, (2)

for pi = PA,B(fi), and ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1

, i = 1, . . . , l.

Platt (2000) gives a pseudo code for solving (2). In this note, we show
how the pseudo code could be improved. We analyze (2) in Section 2,

2

and propose a more robust algorithm to solve it. Better implementation
that avoids numerical difficulties is then discussed in Section 3. We
compare our algorithm with Platt’s in Section 4. Finally, a ready-to-use
pseudo code is in Appendix C.

2. Choice of Optimization Algorithm

We first introduce the simple optimization algorithm used in Platt’s
pseudo code (Platt, 2000). Then, after proving that (2) is a convex
optimization problem, we propose a more robust algorithm that enjoys
similar simplicity, and theoretically converges.

2.1. Platt’s Approach: Levenberg-Marquardt Method

Platt (2000) uses a Levenberg-Marquardt (LM) algorithm from Press
et al. (1992) to solve (2). The LM method was originally designed for
solving nonlinear least-square problems. As an iterative procedure, at
the k-th step, this method solves (H̃k + λkI)δk = −∇F (zk) to obtain
a direction δk, and moves the solution from zk to zk+1 = zk + δk if the
function value is sufficiently decreased. Here, H̃k is a special approx-
imation of the Hessian of the least-square problem, I is the identity
matrix, and {zk}∞k=0 is the sequence of iteration vectors. When λk is
large, δk is close to the negative gradient direction. On the contrary, a
small λk leads δk to be more like a Newton’s direction.

In the pseudo code, Platt (2000) adapts the following rule for up-
dating λk (Press et al., 1992):

If F (zk + δk) < F (zk) then λk+1 ← 0.1 · λk ; Else λk+1 ← 10 · λk.

That is, if the new solution decreases the function value, λk is
reduced, and in the next iteration a more aggressive direction like
Newton’s is tried. Otherwise, δk is unacceptable so we increase λk to
obtain a shorter vector which, more likely being a descent direction,
may lower the function value.

Unfortunately, such an implementation may not converge to the
minimum solution of (2). To the best of our knowledge, existing con-
vergence proofs (e.g., Moré, 1978) all require more complicated or more
robust rules for updating λk.

In fact, since (2) is not exactly a least-squares problem, the imple-
mentation of Platt (2000) aims for general unconstrained optimization.
It is known (e.g., Fletcher, 1987) that for unconstrained optimization
we should avoid directly dealing with λk. Instead, the update of λk can
be replaced by a trust-region concept, where the size of δk is controlled.

3

Thus, currently the optimization community uses trust-region methods
for unconstrained optimization and the LM method is considered as its
“progenitor” (Nocedal and Wright, 1999).

The LM-type implementation of Platt (2000) has one advantage:
simplicity. However, the above discussion shows that it may not be the
best choice for solving (2). Next, we propose an algorithm that is also
simple, but enjoys better convergence properties.

2.2. Our Approach: Newton’s Method with Backtracking

As indicated by Platt (2000), any method for unconstrained optimiza-
tion can be used for solving (2). Before we choose a suitable method,
we analyze the optimization problem in more detail. First, the gradi-
ent ∇F (z) and the Hessian matrix H(z) = ∇2F (z) are computed:

∇F (z) =

[∑l
i=1 fi(ti − pi)∑l
i=1(ti − pi)

]
,

H(z) =

[∑l
i=1 f2

i pi(1− pi)
∑l

i=1 fipi(1− pi)∑l
i=1 fipi(1− pi)

∑l
i=1 pi(1− pi)

]
.

Some analysis of this Hessian matrix is in the following theorem:

Theorem 1 The Hessian matrix H(z) is positive semi-definite. In ad-
dition, H(z) is positive definite if and only if min

1≤i≤l
fi 6= max

1≤i≤l
fi.

The proof is in Appendix A. Therefore, problem (2) is convex (and in
general strictly convex). With such a nice property, we decide to use a
simple Newton’s method with backtracking line search (Algorithm 6.2,
Nocedal and Wright, 1999, and Section 10.5, Nash and Sofer, 1996).
Though the trust-region type method mentioned in the end of Sec-
tion 2.1 may be more robust, the implementation is more complicated.
For this two-variable optimization problem, simplicity is important,
and hence trust-region methods are less favorable.

Our proposed algorithm is in Algorithm 1. As Hk = H(zk) may be
singular, a small positive diagonal matrix is added to the Hessian. With

∇F (zk)T δk = −∇F (zk)T (Hk + σI)−1∇F (zk) < 0,

the step size αk can be backtracked until the sufficient decrease condi-
tion (3) is satisfied.

If H(z) is positive definite for all z, the convergence of Algorithm 1
can be established from, for example, Theorem 10.2 by Nash and Sofer
(1996). A simplified statement is shown in Theorem 2.

4

Input: Initial point z0, and parameter σ ≥ 0 such that H(z) + σI is
positive definite for all z

1: for k = 0, 1, 2, · · · do
2: Solve (Hk + σI)δk = −∇F (zk)
3: Find αk as the first element of the sequence 1, 1

2 , 1
4 , · · · to satisfy

F (zk + αkδk) ≤ F (zk) + 0.0001 · αk

(
∇F (zk)T δk

)
(3)

4: Set zk+1 = zk + αkδk

5: end for
Algorithm 1: Newton’s method with backtracking line search

Theorem 2 (Convergence of Algorithm 1 for general F (z))
If F (z) is twice continuously differentiable, H(z) is positive definite for
all z, and F (z) attains an optimal solution at z∗, then limk→∞ zk = z∗.

From Theorem 1, in some rare situations, H(z) is positive semi-
definite but not positive definite. Then, Theorem 2 cannot be directly
applied. In Appendix B, we show that if σ > 0, Algorithm 1 still con-
verges to an optimal solution. Therefore, we get the following theorem:

Theorem 3 (Convergence of Algorithm 1 for (2))
If Algorithm 1 is applied to (2) such that H(z) + σI is always positive
definite, then limk→∞ zk exists and is a global optimal solution.

3. Numerical Implementation

Next, we study the numerical difficulties that arise when solving (2)
using Platt’s pseudo code. Then, we show our implementation that
avoids the difficulties.

3.1. Platt’s Implementation

Platt (2000) uses the following pseudo code to calculate the objective
value of (2) for a new pair of (A,B):

for i = 1 to len {
p = 1/(1+exp(deci[i]*A+B))
// At this step, make sure log(0) returns -200
err -= t*log(p)+(1-t)*log(1-p)

}

5

Here, len is l, the number of examples used, and err is the objective
value. In addition, deci[i] is fi, and hence p stores the calculated pi.
However, t was lastly assigned to tl before this loop, and the calculation
does not use all ti, i = 1, . . . , l. Therefore, this pseudo code does not
correctly calculate the objective value of (2).

Furthermore, the above code assumes that log(0) returns −200,
which reveals possible numerical difficulties:

1. log and exp could easily cause an overflow. If Afi + B is large,
exp(Afi + B) → ∞. In addition, when pi is near zero, log(pi) →
−∞. Although these problems do not always happen, consider-
ing log(0) to be −200 is not a good solution.

2. 1−pi = 1− 1
1+exp(Afi+B) is a “catastrophic cancellation” (Goldberg,

1991) when pi is close to one. That is, when subtracting two nearby
numbers that are already results of floating-point operations, the
relative error can be so large that most digits are meaningless.
For example, if fi = 1, and (A,B) = (−64, 0), in a simple C++
program with double precision, 1−pi returns zero but its equivalent
form exp(Afi+B)

1+exp(Afi+B) gives a more accurate result. This catastrophic
cancellation actually introduces most of the log(0) occurrences.

Almost all algorithms that solve (2) need to face these issues. Next,
we will discuss some techniques to resolve them.

3.2. Our Implementation

A problem of catastrophic cancellation can usually be resolved by
reformulation:

−
(
ti log pi + (1− ti) log(1− pi)

)
(4)

= (ti − 1)(Afi + B) + log
(
1 + exp(Afi + B)

)
(5)

= ti(Afi + B) + log
(
1 + exp(−Afi −B)

)
. (6)

With (5) or (6), 1−pi does not appear. Moreover, log(0) never happens.1

Note, however, that even if (5) or (6) is used, the overflow problem
may still occur. The problem is not serious if the IEEE floating-point
standard is supported (Goldberg, 1991): an overflow leads to a special
number INF, which can still be used in further operations. For example,

1 As pointed out by a reviewer, in many popular languages, log(1+...) can
be replaced by log1p(...) to compute the result more accurately when the
operand exp(Afi + B) or exp(−Afi −B) is close to zero.

6

if a large αk in Line 3 of Algorithm 1 makes the exp operation of (5)
to overflow for some Afi + B, the new objective value would also be
evaluated as INF. Then, under the IEEE standard, INF is bigger than
the current F (zk), and hence αk is reduced to a smaller value, with
which Afi + B may not cause an overflow again.

Furthermore, regardless of whether the IEEE standard is supported,
we can replace an overflow operation with an underflow one, a rule-
of-thumb which has been frequently used in numerical computation.
In general, an underflow is much less disastrous than an overflow.
Therefore, we propose implementing (4) with the rule:

If Afi + B ≥ 0 then use (6); Else use (5).

In addition, we can evaluate (1) by a similar trick:

If Af + B ≥ 0 then use exp(−Af−B)
1+exp(−Af−B) ; Else use (1).

The trick can be used in calculating ∇F (z) and H(z) as well: The
term 1−pi in H(z) can also cause a catastrophic cancellation. An easy
solution is to replace 1− pi with the rule:

If Afi + B ≥ 0 then use 1
1+exp(−Afi−B) ; Else use exp(Afi+B)

1+exp(Afi+B) .

4. Experiment

We implemented Platt’s pseudo code (Platt, 2000), fixed the bug that
was discussed in the beginning of Subsection 3.1, and compared it to
our proposed algorithm. For fairness, both algorithms were realized in
python, and were set with a stopping condition ‖∇F (zk)‖∞ < 10−5.

For the value of σ in Algorithm 1, we considered two approaches:

− fixed: use a small fixed σ = 10−12.

− dynamic: apply Theorem 1 to check whether H(z) is positive def-
inite, and set σ = 0 instead if the condition is true.

We compared the algorithms on two UCI data sets, sonar and shut-
tle (D. J. Newman and Merz, 1998). Only classes 2 and 4 were taken
from shuttle to form a binary problem. The values fi were generated
with the scaled data sets by LIBSVM using the RBF kernel (Chang
and Lin, 2001). The soft-margin parameter log2 C was varied in −5,
−3, · · ·, 15, and the kernel parameter log2 γ was varied in −15, −13,
· · ·, 3. That is, 110 different problems (2) were tested for each data set.

Tables I and II list the average results for each data set. We first
compared each algorithm based on the number of overflow errors en-
countered, the number of iterations, and the final objective value F (z).

7

Table I. Average results of different algorithms for solving (2) on sonar

algorithm
overflow

errors
iterations

final
F (z)

backtracking
steps per iteration

Platt’s 0 5.77 107.78 —

ours, fixed 0 5.56 107.78 0

ours, dynamic 0 5.56 107.78 0

Table II. Average results of different algorithms for solving (2) on shuttle

algorithm
overflow

errors
iterations

final
F (z)

backtracking
steps per iteration

Platt’s 589.30 8.00 158.62 —

ours, fixed 0 6.66 157.83 0.17

ours, dynamic 0 6.68 157.83 0.24

While Platt’s algorithm did reasonably well on sonar, it encountered
numerous overflow errors on shuttle, needed more iterations, and some-
times could not return a solution with decent F (z). On the other hand,
our proposed algorithm worked well on both data sets.

The number of backtracking steps per iteration was also listed for
the two approaches of setting σ. We can see that the fixed approach
needed less backtracking steps per iteration on shuttle. The benefit
came from the regularization on some nearly singular H(z). In addition,
the fixed approach is simpler to implement in practice, and hence shall
be preferred.

Finally, a simple and robust code is in Appendix C. It has been
integrated into LIBSVM since version 2.6 (Chang and Lin, 2001). Source
code in several popular languages can be downloaded at http://www.
csie.ntu.edu.tw/∼cjlin/libsvmtools.

Acknowledgment

We thank John Platt, S. Sathiya Keerthi, and the anonymous reviewers
for helpful comments.

References

Chang, C.-C. and C.-J. Lin: 2001, ‘LIBSVM: a library for support vector machines’.
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

D. J. Newman, S. Hettich, C. L. B. and C. J. Merz: 1998, ‘UCI Repository of machine
learning databases’. Technical report, University of California, Irvine, Dept. of
Information and Computer Sciences.

Fletcher, R.: 1987, Practical Methods of Optimization. John Wiley and Sons.

8

Goldberg, D.: 1991, ‘What every computer scientist should know about floating-
point arithmetic’. ACM Computing Surveys 23(1), 5–48.

Moré, J. J.: 1978, ‘The Levenberg-Marquardt algorithm Implementation and the-
ory’. In: G. Watson (ed.): Numerical Analysis. New York, pp. 105–116,
Sprmger-Verlag.

Nash, S. G. and A. Sofer: 1996, Linear and Nonlinear Programming. McGraw-Hill.
Nocedal, J. and S. J. Wright: 1999, Numerical Optimization. New York, NY:

Springer-Verlag.
Platt, J.: 2000, ‘Probabilistic outputs for support vector machines and comparison

to regularized likelihood methods’. In: A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans (eds.): Advances in Large Margin Classifiers. Cambridge, MA,
MIT Press.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling: 1992, Numerical
Recipes: The Art of Scientific Computing. Cambridge (UK) and New York:
Cambridge University Press, 2nd edition.

Appendix

A. Proof of Theorem 1

Since the definition of pi in (1) implies that 0 < pi < 1, we can
define vectors u and v with ui = fi

√
pi(1− pi), and vi =

√
pi(1− pi),

respectively. Then H(z) =

[
uT u uT v
vT u vT v

]
. By Cauchy inequality,

det
(
H(z)

)
=

(
l∑

i=1

u2
i

)(
l∑

i=1

v2
i

)
−
(

l∑
i=1

uivi

)2

≥ 0. (7)

Since the two diagonal terms and the determinant are all nonnegative,
the matrix H(z) is positive semi-definite.

From (7), det
(
H(z)

)
= 0 if and only if u and v are parallel vectors.

Since ui = fivi and vi > 0, this situation happens if and only if
all fi’s are equal. That is, the matrix H(z) is positive definite if and
only if min

1≤i≤l
fi 6= max

1≤i≤l
fi.

B. Proof of Theorem 3

Case 1: H(z) is always positive definite. If one can prove that

S =
{
(A,B):F (A,B) ≤ F (A0, B0)

}
(8)

is bounded, then F (A,B) attains an optimal solution within S and The-
orem 2 can be applied to show the convergence.

9

From Theorem 1, assume without loss of generality that f1 6= f2.

Let â =
[

f1 1
f2 1

] [
A
B

]
. Since

[
f1 1
f2 1

]
is invertible, it suffices to show

that Ŝ = {â: (A,B) ∈ S} is bounded. If not, there exists an infinite
sequence {âk}∞k=1 in Ŝ such that

lim
k→∞

max
(
|(âk)1|, |(âk)2|

)
=∞.

Then, without loss of generality, there exists an infinite subsequence K
such that limk→∞,k∈K|(ak)1| = ∞. However, since F (Ak, Bk) is the
summation of positive terms,

F (Ak, Bk) ≥ −t1 log
1

1 + e(âk)1
− (1− t1) log

e(âk)1

1 + e(âk)1
.

The right-hand-side above goes to ∞ as |(âk)1| → ∞. Therefore, there
exists some k such that F (Ak, Bk) > F (A0, B0), which somehow con-
tradicts âk ∈ Ŝ. Thus, Ŝ is bounded and the proof is complete.
Case 2: When H(z) is only positive semi-definite for some z, from
Theorem 1, all fi’s are equal. By considering fi = f for all i, we can
define a = Af +B and a single-variable function F̄ (a) = F (A,B). Then

F̄ ′(a) =
l∑

i=1

ti −
l

1 + ea
, F̄

′′
(a) =

lea

(1 + ea)2
.

By simplifying (3), in Algorithm 1, (H(z) + σI)δ = −∇F (z) is

(
lea

(1+ea)2

[
f2 f
f 1

]
+ σI

)[
(δ)1
(δ)2

]
= −

(
l∑

i=1

ti − l
1+ea

)[
f
1

]
. (9)

If σ > 0, the solution δ satisfies (δ)1 = f · (δ)2. Then, the first (and the
second) equation of the linear system (9) is the same as(

F̄
′′
(a) +

σ

f2 + 1

)(
f · (δ)1 + (δ)2

)
= −F̄ ′(a). (10)

Interestingly, if we apply Algorithm 1 to minimize F̄ (a) with σ
f2+1

added to its Hessian F̄
′′
(a), equation (10) is exactly the linear system

to be solved. Therefore, if a0 = A0f + B0, then for all k,

ak+1 = ak + αk

(
f · (δk)1 + (δk)2

)
=
(
Ak + αk(δk)1

)
f +

(
Bk + αk(δk)2

)
. (11)

10

Since F̄ (a) is strictly convex from F̄
′′
(a) > 0, similar techniques in

Case 1 can be used to prove that F̄ (a) attains an optimal solution.
Therefore, from Theorem 2, the sequence {ak}∞k=0 globally converges.
Then, from (δk)1 = f · (δk)2 and (11),

lim
k→∞

ak = (A0f + B0) + (f2 + 1)
∞∑

k=0

αk(δk)2

exists. Therefore, limk→∞Bk = B0 +
∑∞

k=0 αk(δk)2 exists, and so does
limk→∞Ak. In addition, they form an optimal solution of minimiz-
ing F (A,B).

C. Pseudo Code of Algorithm 1

We recommend using double precision for the algorithm.

Input parameters:
deci = array of SVM decision values
label = array of booleans: is the example labeled +1?
prior1 = number of positive examples
prior0 = number of negative examples

Outputs:
A, B = parameters of sigmoid

//Parameter setting
maxiter=100 //Maximum number of iterations
minstep=1e-10 //Minimum step taken in line search
sigma=1e-12 //Set to any value > 0
//Construct initial values: target support in array t,
// initial function value in fval
hiTarget=(prior1+1.0)/(prior1+2.0), loTarget=1/(prior0+2.0)
len=prior1+prior0 // Total number of data
for i = 1 to len {
if (label[i] > 0)
t[i]=hiTarget

else
t[i]=loTarget

}

A=0.0, B=log((prior0+1.0)/(prior1+1.0)), fval=0.0
for i = 1 to len {
fApB=deci[i]*A+B
if (fApB >= 0)

11

fval += t[i]*fApB+log(1+exp(-fApB))
else
fval += (t[i]-1)*fApB+log(1+exp(fApB))

}
for it = 1 to maxiter {
//Update Gradient and Hessian (use H’ = H + sigma I)
h11=h22=sigma, h21=g1=g2=0.0
for i = 1 to len {
fApB=deci[i]*A+B
if (fApB >= 0)
p=exp(-fApB)/(1.0+exp(-fApB)), q=1.0/(1.0+exp(-fApB))

else
p=1.0/(1.0+exp(fApB)), q=exp(fApB)/(1.0+exp(fApB))

d2=p*q
h11 += deci[i]*deci[i]*d2, h22 += d2, h21 += deci[i]*d2
d1=t[i]-p
g1 += deci[i]*d1, g2 += d1

}
if (abs(g1)<1e-5 && abs(g2)<1e-5) //Stopping criteria
break

//Compute modified Newton directions
det=h11*h22-h21*h21
dA=-(h22*g1-h21*g2)/det, dB=-(-h21*g1+h11*g2)/det
gd=g1*dA+g2*dB
stepsize=1
while (stepsize >= minstep){ //Line search
newA=A+stepsize*dA, newB=B+stepsize*dB, newf=0.0
for i = 1 to len {
fApB=deci[i]*newA+newB
if (fApB >= 0)
newf += t[i]*fApB+log(1+exp(-fApB))

else
newf += (t[i]-1)*fApB+log(1+exp(fApB))

}
if (newf<fval+0.0001*stepsize*gd){
A=newA, B=newB, fval=newf
break //Sufficient decrease satisfied

}
else
stepsize /= 2.0

}
if (stepsize < minstep){
print ’Line search fails’

12

break
}

}
if (it >= maxiter)
print ’Reaching maximum iterations’

return [A,B]

