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Abstract

Non-negative matrix factorization (NMF) can be formulated as a minimiza-

tion problem with bound constraints. Although bound-constrained optimization

has been studied extensively in both theory and practice, so far no study has

formally applied its techniques to NMF. In this paper, we propose two projected

gradient methods for NMF, both of which exhibit strong optimization properties.

We discuss efficient implementations and demonstrate that one of the proposed

methods converges faster than the popular multiplicative update approach. A

simple MATLAB code is also provided.

1 Introduction

Non-negative matrix factorization (NMF) (Paatero and Tapper, 1994; Lee and

Seung, 1999) is useful for finding representations of non-negative data. Given

an n × m data matrix V with Vij ≥ 0 and a pre-specified positive integer r <

min(n,m), NMF finds two non-negative matrices W ∈ Rn×r and H ∈ Rr×m such

that

V ≈ WH.

If each column of V represents an object, NMF approximates it by a linear com-

bination of r “basis” columns in W . NMF has been applied to many areas such as

finding basis vectors of images (Lee and Seung, 1999), document clustering (Xu

et al., 2003), molecular pattern discovery (Brunet et al., 2004), etc. Donoho and
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Stodden (2004) have addressed the theoretical issues associated with the NMF

approach.

The conventional approach to find W and H is by minimizing the difference

between V and WH:

min
W,H

f(W,H) ≡ 1

2

n∑
i=1

m∑
j=1

(
Vij − (WH)ij

)2
subject to Wia ≥ 0, Hbj ≥ 0, ∀i, a, b, j. (1)

The inequalities such that variables are upper- and lower-bounded are referred to

as bound constraints. Hence, (1) is a standard bound-constrained optimization

problem. We also note that

n∑
i=1

m∑
j=1

(
Vij − (WH)ij

)2
= ‖V −WH‖2F ,

where ‖ · ‖F is the Frobenius norm.

The most popular approach to solve (1) is the multiplicative update algorithm

proposed by Lee and Seung (2001). It is simple to implement and often yields good

results. At each iteration of this method, the elements of W and H are multiplied

by certain factors. As the zero elements are not updated, all the components of

W and H are strictly positive for all iterations. This type of strategy is contrary

to the traditional bound-constrained optimization methods, which usually allow

iterations to have bounded elements (i.e., zero elements in this case). Thus far, no

study has formally applied bound-constrained optimization techniques to NMF.

This paper investigates such methods in detail. Some earlier NMF studies require

all W ’s column sums to be ones:
∑n

i=1Wia = 1, ∀a = 1, . . . , r. The function value

does not change because f(WD,D−1H) = f(W,H) for any r×r positive diagonal

matrix D. With the inclusion of such additional constraints, (1) no longer remains

a bounded problem. As adding these constraints may complicate the optimization

procedures, we do not consider this modification in this study.

Among the existing bound-constrained optimization techniques, the projected

gradient method is simple and effective. Though several researchers have used

this method for NMF (Hoyer, 2002; Chu et al., 2005; Shepherd, 2004), there is

neither a systematic study nor an easy implementation comparable to that of
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the multiplicative update method. This paper presents a comprehensive study

on using projected gradient methods for NMF. Several useful modifications lead

to efficient implementations. While the multiplicative update method still lacks

convergence results, our proposed methods exhibit strong optimization proper-

ties. We experimentally show that one of the proposed methods converges faster

than the multiplicative update method. This new method is thus an attractive

approach to solve NMF. We also provide a complete MATLAB implementation.

Another popular NMF optimization formula is to minimize the (generalized)

Kullback-Leibler divergence between V and WH (Lee and Seung, 1999):

min
W,H

n∑
i=1

m∑
j=1

(
Vij log

Vij
(WH)ij

− Vij + (WH)ij

)
subject to Wia ≥ 0, Hbj ≥ 0,∀i, a, b, j.

Strictly speaking, this formula is not a bound-constrained problem, which requires

the objective function to be well-defined at any point of the bounded region. The

log function is not well-defined if Vij = 0 or (WH)ij = 0. Hence, we do not

consider this formulation in this study.

This paper is organized as follows. Section 2 discusses existing approaches

for solving NMF problem (1), and presents several new properties. Section 3

introduces the projected gradient methods for bound-constrained optimization.

Section 4 investigates specific but essential modifications for applying the proposed

projected gradients methods to NMF. The stopping conditions in an NMF code are

discussed in Section 5. Experiments on synthetic and real data sets are presented

in Section 6. The discussion and conclusions are presented in Section 7. Appendix

B contains the MATLAB code of one of the proposed approaches. All source codes

used in this paper are available online at http://www.csie.ntu.edu.tw/~cjlin/

nmf.

2 Existing Methods and New Properties

There are many existing methods for NMF. Some discussions are in (Paatero,

1999), but bound constraints are not rigorously handled. A more recent and

complete survey is by Chu et al. (2005). This section briefly discusses some existing
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methods and presents several previously unmentioned observations.

To begin, we need certain properties of the NMF problem (1). The gradient

of the function f(W,H) consists of two parts:

∇Wf(W,H) = (WH − V )HT and ∇Hf(W,H) = W T (WH − V ), (2)

which are, respectively, partial derivatives to elements in W and H. From the

Karush-Kuhn-Tucker (KKT) optimality condition (e.g., Bertsekas, 1999), (W,H)

is a stationary point of (1) if and only if

Wia ≥ 0, Hbj ≥ 0,

∇Wf(W,H)ia ≥ 0,∇Hf(W,H)bj ≥ 0,

Wia · ∇Wf(W,H)ia = 0, and Hbj · ∇Hf(W,H)bj = 0, ∀i, a, b, j.

(3)

Optimization methods for NMF produce a sequence {W k, Hk}∞k=1 of iterations.

Problem (1) is non-convex and may have several local minima. A common mis-

understanding is that limit points of the sequence are local minima. In fact, most

non-convex optimization methods guarantee only the stationarity of the limit

points. Such a property is still useful, as any local minimum must be a stationary

point.

2.1 Multiplicative Update Methods

The most used approach to minimize (1) is a simple multiplicative update method

proposed by Lee and Seung (2001):

Algorithm 1 Multiplicative Update

1. Initialize W 1
ia > 0, H1

bj > 0,∀i, a, b, j.

2. For k = 1, 2, . . .

W k+1
ia = W k

ia

(V (Hk)T )ia
(W kHk(Hk)T )ia

, ∀i, a, (4)

Hk+1
bj = Hk

bj

((W k+1)TV )bj
((W k+1)TW k+1Hk)bj

, ∀b, j. (5)

This algorithm is a fixed-point type method: If (W kHk(Hk)T )ia 6= 0 and
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W k+1
ia = W k

ia > 0, then

(V (Hk)T )ia = (W kHk(Hk)T )ia implies ∇Wf(W k, Hk)ia = 0,

which is part of the KKT condition (3). Lee and Seung (2001) have shown that

the function value is non-increasing after every update:

f(W k+1, Hk) ≤ f(W k, Hk) and f(W k+1, Hk+1) ≤ f(W k+1, Hk). (6)

They claim that the limit of the sequence {W k, Hk}∞k=1 is a stationary point (i.e.,

a point satisfying the KKT condition (3)). However, Gonzales and Zhang (2005)

indicate that this claim is wrong as having (6) may not imply the convergence.

Therefore, this multiplicative update method still lacks optimization properties.

To have Algorithm 1 well-defined, one must ensure that denominators in (4)

and (5) are strictly positive. Moreover, if W k
ia = 0 at the kth iteration, then

Wia = 0 at all subsequent iterations. Thus, one should keep W k
ia > 0 and Hk

bj > 0,

∀k. The following theorem discusses when this property holds:

Theorem 1 If V has neither zero column nor row, and W 1
ia > 0 and H1

bj >

0,∀i, a, b, j, then
W k
ia > 0 and Hk

bj > 0,∀i, a, b, j,∀k ≥ 1. (7)

The proof is straightforward, and is in Appendix A.

If V has zero columns or rows, a division by zero may occur. Even if Theorem

1 holds, denominators close to zero may still cause numerical problems. Some

studies such as (Piper et al., 2004) have proposed adding a small positive number

in the denominators of (4)-(5). We observe numerical difficulties in a few situations

and provide more discussions in Section 6.3.

Regarding the computational complexity, V (Hk)T and (W k+1)TV in (4) and

(5) are both O(nmr) operations. One can calculate the denominator in (4) by

either

(WH)HT or W (HHT ). (8)

The former takes O(nmr) operations, but the latter costs O(max(m,n)r2). As

r < min(m,n), the latter is better. Similarly for (5), (W TW )H should be used.
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This discussion indicates the importance of having fewer O(nmr) operations (i.e.,

WH, W TV , or V HT ) in any NMF code.

In summary, the overall cost of Algorithm 1 is

#iterations×O(nmr).

All time complexity analysis in this paper assumes that V,W , and H are imple-

mented as dense matrices.

2.2 Alternating Non-negative Least Squares

From the non-increasing property (6), Algorithm 1 is a special case of a general

framework, which alternatively fixes one matrix and improves the other:

Find W k+1 such that f(W k+1, Hk) ≤ f(W k, Hk), and

Find Hk+1 such that f(W k+1, Hk+1) ≤ f(W k+1, Hk).

The extreme situation is to obtain the best point (Paatero, 1999; Chu et al., 2005):

Algorithm 2 Alternating non-negative least squares

1. Initialize W 1
ia ≥ 0, H1

bj ≥ 0,∀i, a, b, j.

2. For k = 1, 2, . . .

W k+1 = arg min
W≥0

f(W,Hk), (9)

Hk+1 = arg min
H≥0

f(W k+1, H). (10)

This approach is the “block coordinate descent” method in bound-constrained

optimization (Bertsekas, 1999), where sequentially one block of variables is min-

imized under corresponding constraints and the remaining blocks are fixed. For

NMF, we have the simplest case of only two block variables W and H.

We refer to (9) or (10) as a sub-problem in Algorithm 2. When one block of

variables is fixed, a sub-problem is indeed the collection of several non-negative

least square problems: From (10),

Hk+1’s jth column = min
h≥0
‖v −W k+1h‖2, (11)
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where v is the jth column of V and h is a vector variable. Chu et al. (2005)

suggest projected Newton’s methods (Lawson and Hanson, 1974) to solve each

problem (11). Clearly, solving sub-problems (9) and (10) per iteration could be

more expensive than the simple update in Algorithm 1. Then Algorithm 2 may be

slower even though we expect that it better decreases the function value at each

iteration. Efficient methods to solve sub-problems are thus essential. Section 4.1

proposes using project gradient methods and discusses why they are suitable for

solving sub-problems in Algorithm 2.

Regarding the convergence of Algorithm 2, one may think that it is a trivial

result. For example, Paatero (1999) states that for the alternating non-negative

least square approach, no matter how many blocks of variables we have, the con-

vergence is guaranteed. However, this issue deserves some attention. Past con-

vergence analysis for “block coordinate descent” methods requires sub-problems

to have unique solutions (Powell, 1973; Bertsekas, 1999), but this property does

not hold here: Sub-problems (9) and (10) are convex, but they are not strictly

convex. Hence, these sub-problems may have multiple optimal solutions. For ex-

ample, when Hk is the zero matrix, any W is optimal for (9). Fortunately, for the

case of two blocks, Grippo and Sciandrone (2000) have shown that this uniqueness

condition is not needed. Directly from Corollary 2 of (Grippo and Sciandrone,

2000), we have the following convergence result:

Theorem 2 Any limit point of the sequence {W k, Hk} generated by Algorithm 2

is a stationary point of (1).

The remaining issue is whether the sequence {W k, Hk} has at least one limit

point (i.e., there is at least one convergent subsequence). In optimization analysis,

this property often comes from the boundedness of the feasible region, but our

region under constraints Wia ≥ 0 and Hbj ≥ 0 is unbounded. One can easily add

a large upper bound to all variables in (1). As the modification still leads to a

bound-constrained problem, Algorithm 2 can be applied and Theorem 2 holds. In

contrast, it is unclear how to easily modify the multiplicative update rules if there

are upper bounds in (1).

In summary, contrary to Algorithm 1, which still lacks convergence results,

Algorithm 2 has nice optimization properties.

7



2.3 Gradient Approaches

In (Chu et al., 2005, Section 3.3), several gradient-type approaches have been

mentioned. In this subsection, we briefly discuss methods that select the step size

along the negative gradient direction. By defining

Wia = E2
ia and Hbj = F 2

bj,

Chu et al. (2005) reformulate (1) as an unconstrained optimization problem of

variables Eia and Fbj. Then standard gradient descent methods can be applied.

The same authors also mention that Shepherd (2004) uses

W k+1 = max(0,W k − αk∇Wf(W k, Hk)),

Hk+1 = max(0, Hk − αk∇Hf(W k, Hk)),

where αk is the step size. This approach is already a projected gradient method.

However, in the above references, details are not discussed.

3 Projected Gradient Methods for Bound-constrained

Optimization

We consider the following standard form of bound-constrained optimization prob-

lems:

min
x∈Rn

f(x)

subject to li ≤ xi ≤ ui, i = 1, . . . , n, (12)

where f(x) : Rn → R is a continuously differentiable function, and l and u are

lower and upper bounds, respectively. Assume k is the index of iterations. Pro-

jected gradient methods update the current solution xk to xk+1 by the following

rule:

xk+1 = P [xk − αk∇f(xk)],

where

P [xi] =


xi if li < xi < ui,

ui if xi ≥ ui,

li if xi ≤ li,
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maps a point back to the bounded feasible region. Variants of projected gradient

methods differ on selecting the step size αk. We consider a simple and effective one

called “Armijo rule along the projection arc” in Bertsekas (1999), which originates

from Bertsekas (1976). The procedure is illustrated in Algorithm 3.

Algorithm 3 A projected gradient method for bound-constrained optimization

1. Given 0 < β < 1, 0 < σ < 1. Initialize any feasible x1.

2. For k = 1, 2, . . .
xk+1 = P [xk − αk∇f(xk)],

where αk = βtk , and tk is the first non-negative integer t for which

f(xk+1)− f(xk) ≤ σ∇f(xk)T (xk+1 − xk). (13)

The condition (13), used in most proofs of projected gradient methods, ensures

the sufficient decrease of the function value per iteration. By trying the step sizes

1, β, β2, . . ., Bertsekas (1976) has proved that αk > 0 satisfying (13) always exists

and every limit point of {xk}∞k=1 is a stationary point of (12). A common choice

of σ is 0.01, and we consider β = 1/10 in this paper. In the experiment section

6.2, we have some discussions about the choice of β.

Searching αk is the most time consuming operation in Algorithm 3, so one

should check as few step sizes as possible. Since αk−1 and αk may be similar,

a trick in (Lin and Moré, 1999) uses αk−1 as the initial guess and then either

increases or decreases it in order to find the largest βtk satisfying (13). Moreover,

with non-negative tk, Algorithm 4 may be too conservative by restricting αk ≤ 1.

Sometimes, a larger step more effectively projects variables to bounds at one

iteration. Algorithm 4 implements a better initial guess of α at each iteration and

allows α to be larger than one.
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Algorithm 4 An improved projected gradient method

1. Given 0 < β < 1, 0 < σ < 1. Initialize any feasible x1. Set α0 = 1.

2. For k = 1, 2, . . .

(a) Assign αk ← αk−1

(b) If αk satisfies (13), repeatedly increase it by

αk ← αk/β

until either αk does not satisfy (13) or x(αk/β) = x(αk).

Else repeatedly decrease αk by

αk ← αk · β

until αk satisfies (13).

(c) Set
xk+1 = P [xk − αk∇f(xk)].

The convergence result has been proved in, for example, Calamai and Moré

(1987). One may think that finding α with the largest function reduction leads

to faster convergence:

αk ≡ arg min
α≥0

f
(
P [xk − α∇f(xk)]

)
. (14)

The convergence of selecting such an αk is proved in McCormick and Tapia (1972).

However, (14) is a piecewise function of α, which is difficult to be minimized.

A major obstacle for minimizing bounded problems is to identify free (i.e., li <

xi < ui) and active (i.e., xi = li or ui) components at the convergent stationary

point. Projected gradient methods are considered effective for doing so since

they are able to add several active variables at a single iteration. However, once

these sets have been (almost) identified, the problem in a sense reduces to an

unconstrained one, and the slow convergence of gradient-type methods may occur.

We will explain in Section 4.1 that for NMF problems, this issue may not be

serious.
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4 Projected Gradient Methods for NMF

We apply projected gradient methods to NMF in two situations. The first case

solves non-negative least square problems discussed in Section 2.2. The second

case directly minimizes (1). Both approaches have convergence properties follow-

ing from Theorem 2 and Calamai and Moré (1987), respectively. Several modifi-

cations specific to NMF will be presented.

4.1 Alternating Non-negative Least Squares Using Pro-
jected Gradient Methods

Section 2.2 indicates that Algorithm 2 relies on efficiently solving sub-problems

(9) and (10), each of which is a bound-constrained problem. We propose using

project gradient methods to solve them.

Sub-problem (10) consists of m independent non-negative least square prob-

lems (11), so one could solve them separately, a situation suitable for parallel

environments. However, in a serial setting, treating them together is better be-

cause of the following reasons:

1. These non-negative least square problems are closely related as they share

the same constant matrices V and W k+1 in (11).

2. Working on the whole H but not its individual columns implies that all

operations are matrix-based. Since finely tuned numerical linear algebra

codes have better speed-up on matrix than on vector operations, we can

thus save computational time.

For a simpler description of our method, we focus on (10) and rewrite it as

min
H

f̄(H) ≡ 1

2
‖V −WH‖2F

subject to Hbj ≥ 0, ∀b, j. (15)

Both V and W are constant matrices in (15). If we concatenate H’s columns to
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a vector vec(H), then

f̄(H) =
1

2
‖V −WH‖2F

=
1

2
vec(H)T

W
TW

. . .

W TW

 vec(H) +H’s linear terms.

The Hessian matrix (i.e., second derivative) of f̄(H) is block diagonal, and each

block W TW is an r × r positive semi-definite matrix. As W ∈ Rn×r and r � n,

W TW and the whole Hessian matrix tend to be well-conditioned, a good property

for optimization algorithms. Thus, gradient-based methods may converge fast

enough. A further investigation of this conjecture is in the experiment section

6.2.

The high cost of solving the two sub-problems (9) and (10) at each iteration

is a concern. It is thus essential to analyze the time complexity and find efficient

implementations. Each sub-problem requires an iterative procedure, whose itera-

tions are referred to as sub-iterations. When using Algorithm 4 to solve (15), we

must maintain the gradient

∇f̄(H) = W T (WH − V )

at each sub-iteration. Following the discussion near Eq. (8), one should calculate

it by (W TW )H −W TV . Constant matrices W TW and W TV can be computed

respectively in O(nr2) and O(nmr) operations before running sub-iterations.

The main computational task per sub-iteration is to find a step size α such

that the sufficient decrease condition (13) is satisfied. Assume H̄ is the current

solution. To check if

H̃ ≡ P [H̄ − α∇f̄(H̄)],

satisfies (13), calculating f̄(H̃) takes O(nmr) operations. If there are t trials of

H̃’s, the computational cost O(tnmr) is prohibitive. We propose the following

strategy to reduce the cost: For a quadratic function f(x) and any vector d,

f(x + d) = f(x) +∇f(x)Td +
1

2
dT∇2f(x)d. (16)

Hence, for two consecutive iterations x̄ and x̃, (13) can be written as

(1− σ)∇f(x̄)T (x̃− x̄) +
1

2
(x̃− x̄)T∇2f(x̄)(x̃− x̄) ≤ 0.
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Now f̄(H) defined in (15) is quadratic, so (13) becomes

(1− σ)〈∇f̄(H̄), H̃ − H̄〉+
1

2
〈H̃ − H̄, (W TW )(H̃ − H̄)〉 ≤ 0, (17)

where 〈·, ·〉 is the sum of the component-wise product of two matrices. The major

operation in (17) is the matrix product (W TW ) · (H̃ − H̄), which takes O(mr2).

Thus, the cost O(tnmr) of checking (13) is significantly reduced to O(tmr2). With

the cost O(nmr) for calculating W TV in the beginning, the complexity of using

Algorithm 4 to solve the sub-problem (15) is

O(nmr) + #sub-iterations×O(tmr2),

where t is the average number of checking (13) at each sub-iteration.

The pseudo code for optimizing (15) is in Appendix B.2. We can use the same

procedure to obtain W k+1 by rewriting (10) as a form similar to (15):

f̄(W ) ≡ 1

2
‖V T −HTW T‖2F ,

where V T and HT are constant matrices.

The overall cost to solve (1) is

#iterations×
(
O(nmr) + #sub-iterations×O(tmr2 + tnr2)

)
. (18)

At each iteration, there are two O(nmr) operations: V (Hk)T and (W k+1)TV , the

same as those in the multiplicative update method. If t and #sub-iterations are

small, this method is efficient.

To reduce the number of sub-iterations, a simple but useful technique is

to warm start the solution procedure of each sub-problem. At final iterations

(W k, Hk)’s are all similar, so W k is an effective initial point for solving (9).

4.2 Directly Applying Projected Gradients to NMF

We may directly apply Algorithm 4 to minimize (1). Similar to solving the non-

negative least square problems in Section 4.1, the most expensive operation is

checking the sufficient decrease condition (13). From the current solution (W̄ , H̄),

we simultaneously update both matrices to (W̃ , H̃):

(W̃ , H̃) ≡ P
[
(W̄ , H̄)− α

(
∇Wf(W̄ , H̄),∇Hf(W̄ , H̄)

)]
.
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As f(W,H) is not a quadratic function, (16) does not hold. Hence the trick (17)

cannot be applied to save the computational time. Then, calculating f(W̃ , H̃) =

1
2
‖V − W̃ H̃‖2F takes O(nmr) operations. The total computational cost is

#iterations×O(tnmr),

where t is the average number of condition (13) checked per iteration.

Given any random initial (W 1, H1), if ‖V − W 1H1‖2F > ‖V ‖2F , very often

after the first iteration (W 2, H2) = (0, 0) causes the algorithm to stop. The

solution (0, 0) is a useless stationary point of (1). A simple remedy is to find

a new initial point (W 1, H̄1) such that f(W 1, H̄1) < f(0, 0). By solving H̄1 =

arg min
H≥0

f(W 1, H) using the procedure described in Section 4.1, we have

‖V −W 1H̄1‖2F ≤ ‖V −W 1 · 0‖2F = ‖V ‖2F .

The strict inequality generally holds, so f(W 1, H̄1) < f(0, 0).

5 Stopping Conditions

In all algorithms mentioned so far, we did not specify when the procedure should

stop. Several implementations of the multiplicative update method (e.g., Hoyer,

2004) have an infinite loop, which must be interrupted by users after a time

or iteration limit. Some researchers (e.g., Brunet, 2004) check the difference

between recent iterations. If the difference is small enough, then the procedure

stops. However, such a stopping condition does not reveal whether a solution

is close to a stationary point or not. In addition to a time or iteration limit,

standard conditions to check the stationarity should also be included in NMF

software. Moreover, in alternating least squares, each sub-problem involves an

optimization procedure, which needs a stopping condition as well.

In bound-constrained optimization, a common condition to check if a point xk

is close to a stationary point is the following (Lin and Moré, 1999):

‖∇Pf(xk)‖ ≤ ε‖∇f(x1)‖, (19)
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where ∇Pf(xk) is the projected gradient defined as

∇Pf(x)i ≡


∇f(x)i if li < xi < ui,

min(0,∇f(x)i) if xi = li,

max(0,∇f(x)i) if xi = ui.

(20)

This condition follows from an equivalent form of the KKT condition for bounded

problems: li ≤ xi ≤ ui,∀i, and

‖∇Pf(x)‖ = 0.

For NMF, (19) becomes

‖∇Pf(W k, Hk)‖F ≤ ε‖∇f(W 1, H1)‖F . (21)

For alternating least squares, each sub-problem (9) or (10) requires a stopping

condition as well. Ideally, the condition for them should be related to the “global”

one for (1), but a suitable condition is not obvious. For example, we cannot use

the same stopping tolerance in (21) for sub-problems. A user may specify ε = 0

and terminate the code after a certain time or iteration limit. Then the same ε = 0

in solving the first sub-problem will cause Algorithm 2 to keep running at the first

iteration. We thus use the following stopping conditions for sub-problems. The

returned matrices W k+1 and Hk+1 from the iterative procedures of solving the

sub-problem (9) and (10) should respectively satisfy

‖∇P
Wf(W k+1, Hk)‖F ≤ ε̄W , and

‖∇P
Hf(W k+1, Hk+1)‖F ≤ ε̄H ,

where we set

ε̄W = ε̄H ≡ max(10−3, ε)
∥∥∇f(W 1, H1)

∥∥
F

in the beginning and ε is the tolerance in (21). If the projected gradient method

for solving (9) stops without any iterations, we decrease the stopping tolerance by

ε̄W ← ε̄W/10. (22)

For the sub-problem (10), ε̄H is reduced in a similar way.
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Table 1: Results of running synthetic data sets (from small to large) under
various stopping tolerances. We present the average time (in seconds), number
of iterations, and objective values of using 30 initial points. Approaches with the
smallest time or objective values are in bold type. Note that when ε = 10−5, mult
and pgrad often exceed the iteration limit of 8,000.

(a) m = 25, r = 5, n = 125.

Time #iterations Objective values
ε 10−3 10−4 10−5 10−610−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

mult 0.10 1.22 2.60 698 4651 7639 390.4 389.3 389.3
alspgrad 0.03 0.10 0.45 0.97 6 26 100 203412.9 392.8 389.2 389.1
pgrad 0.05 0.24 0.68 53 351 1082 401.6 389.9 389.1
lsqnonneg 6.32 27.76 57.57 23 96 198 391.1 389.1 389.0

(b) m = 50, r = 10, n = 250.

Time #iterations Objective values
ε 10−3 10−4 10−5 10−610−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

mult 0.16 14.73 21.53 349 6508 8000 1562.1 1545.7 1545.6
alspgrad 0.03 0.13 0.99 5.51 4 14 76 3521866.6 1597.1 1547.8 1543.5
pgrad 0.38 3.17 10.29 47 1331 4686 1789.4 1558.4 1545.5

(c) m = 100, r = 20, n = 500.

Time #iterations Objective values
ε 10−3 10−4 10−5 10−610−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

mult 0.41 8.28 175.55 170 2687 8000 6535.2 6355.7 6342.3
alspgrad 0.02 0.21 1.09 10.02 2 8 31 2349198.7 6958.6 6436.7 6332.9
pgrad 0.60 2.88 35.20 2 200 3061 8141.1 6838.7 6375.0

6 Experiments

We compare four methods discussed in this paper and refer to them in the following

way:

1. mult: the multiplicative update method described in Section 2.1.

2. alspgrad: alternating non-negative least squares using the projected gradient

method for each sub-problem (Section 4.1).

3. pgrad: a direct use of the projected gradient method on (1) (Section 4.2).

4. lsqnonneg: Using MATLAB command lsqnonneg to solve m problems (11)

in the alternating least squares framework.
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All implementations are in MATLAB (http://www.mathworks.com). We con-

duct experiments on an Intel Xeon 2.8GHz computer. Results of using synthetic

and real data are presented in the following subsections. All source codes for

experiments are available online at http://www.csie.ntu.edu.tw/~cjlin/nmf.

6.1 Synthetic Data

We consider three problem sizes:

(m, r, n) = (25, 5, 25), (50, 10, 250), and (100, 20, 500).

The matrix V is randomly generated by the normal distribution (mean 0 and

standard deviation 1)

Vij = |N(0, 1)|.

The initial (W 1, H1) is constructed in the same way, and all four methods share

the same initial point. These methods may converge to different points due to

the non-convexity of the NMF problem (1). To have a fair comparison, for the

same V we try 30 different initial (W 1, H1), and report the average results. As

synthetic data may not resemble practical problems, we leave detailed analysis of

the proposed algorithms in Section 6.2, which considers real data.

We set ε in (21) to be 10−3, 10−4, 10−5, and 10−6 in order to investigate the

convergence speed to a stationary point. We also impose a time limit of 1,000

seconds and a maximal number of 8,000 iterations on each method. As lsqnonneg

takes long computing time, we run it only on the smallest data. Due to the slow

convergence of mult and pgrad, for ε = 10−6 we run only alspgrad.

Results of average time, number of iterations, and objective values are in

Tables 1(a)-1(c). For small problems, Table 1(a) shows that all four methods

give similar objective values as ε → 0. The method lsqnonneg is rather slow,

a result supporting our argument in Section 4.1 that a matrix-based approach

is better than a vector-based one. For larger problems, when ε = 10−5, mult

and pgrad often exceed the maximal number of iterations. Clearly, mult quickly

decreases the objective value in the beginning, but slows down in the end. In

contrast, alspgrad has the fastest final convergence. For the two larger problems,

it gives the smallest objective value under ε = 10−6, but takes less time than that
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by mult under ε = 10−5. Due to the poor performance of pgrad and lsqnonneg,

subsequently we focus on comparing mult and alspgrad.

6.2 Image Data

We consider three image problems used in Hoyer (2004):

1. CBCL face image database.

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.

2. ORL face image database.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

3. Natural image data set (Hoyer, 2002).

All settings are the same as those in Hoyer (2004). We compare objective values

and projected-gradient norms of mult and alspgrad after running 25 and 50 sec-

onds. Table 2 presents average results of using 30 random initial points. For all

three problems, alspgrad gives smaller objective values. While mult may quickly

lower the objective value in the beginning, alspgrad catches up very soon and has

faster final convergence. Results here are consistent with the findings in Section

6.1. Regarding the projected-gradient norms, those by alspgrad are much smaller.

Hence, solutions by alspgrad are closer to stationary points.

To further illustrate the slow final convergence of mult, Figure 1 checks the

relation between the running time and the objective value. The CBCL set with

the first of the 30 initial (W 1, H1) is used. The figure clearly demonstrates that

mult very slowly decreases the objective value at final iterations.

The number of sub-iterations for solving (9) and (10) in alspgrad is an impor-

tant issue. First, it is related to the time complexity analysis. Second, Section

4.1 conjectures that the number should be small as W TW and HHT are generally

well-conditioned. Table 3 presents the number of sub-iterations and the condition

numbers of W TW and HHT . Compared to gradient-based methods in other sce-

narios, the number of sub-iterations is relatively small. Another projected gradient

method pgrad discussed in Table 1 easily takes hundreds or thousands of iterations.

For condition numbers, both CBCL and Natural sets have r < n < m, so HHT
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Table 2: Image data: Average objective values and projected-gradient norms of
using 30 initial points under specified time limits. Smaller values are in bold type.

Problem CBCL ORL Natural
Size (n r m) 361 49 2, 429 10, 304 25 400 288 72 10, 000
Time limit (in seconds) 25 50 25 50 25 50
Objective Value mult 963.81 914.09 16.14 14.31 370797.31 353709.28

alspgrad 923.77 870.18 14.34 13.82 377167.27 352355.64
‖∇fP (W,H)‖F mult 488.72 327.28 19.37 9.30 54534.09 21985.99

alspgrad 230.67 142.13 4.82 4.33 19357.03 4974.84

tends to be better conditioned than W TW . ORL has the opposite as r < m < n.

All condition numbers are small, and this result confirms our earlier conjecture.

For ORL, cond(W TW ) > cond(HHT ), but the number of sub-iterations on solv-

ing W is more. One possible reason is the different stopping tolerances for solving

(9) and (10).

In the implementation of alspgrad, there is a parameter β, which is the rate of

reducing the step size to satisfy the sufficient decrease condition (13). It must be

between 0 and 1, and for the above experiments, we use β = 0.1. One may wonder

the effect of using other β. Clearly, a smaller β more aggressively reduce the step

size, but it may also cause a step size that in the end is too small. We consider

the CBCL set with the first of the 30 initial (W 1, H1) (i.e., the setting to generate

Figure 1), and check the effect of using β = 0.5 and 0.1. In both cases, alspgrad

works well, but the one using 0.1 slightly more quickly reduces the function value.

Therefore, β = 0.5 causes too many checks for the sufficient decrease condition

(13). The cost per iteration is thus higher.

6.3 Text Data

NMF is useful for document clustering, so we next consider a text set RCV1 (Lewis

et al., 2004). This set is an archive of manually categorized newswire stories from

Reuters Ltd. The collection has been fully pre-processed, including removing stop

words, stemming, and transforming into vector space models. Each vector, cosine

normalized, contains features of logged TF-IDF (term frequency, inverse document
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Figure 1: Time (seconds in log scale) vs. objective values for mult (dashed line)
and alspgrad (solid line).

Table 3: Number of sub-iterations and condition numbers in solving (9) and (10)
of alspgrad. For sub-iterations, we calculate (total sub-iterations)/(total itera-
tions) under each initial point, and report the average of 30 values. For condition
numbers, we find the median at all iterations, and report the average. Note that
HHT (W TW ) corresponds to the Hessian of minimizing W (H).

Problem CBCL ORL Natural
Time limit (in seconds) 25 50 25 50 25 50
W : # sub-iterations 34.51 47.81 9.93 11.27 21.94 27.54
cond(HHT ) 224.88 231.33 76.44 71.75 93.88 103.64
H: # sub-iterations 11.93 18.15 6.84 7.70 3.13 4.39
cond(W TW ) 150.89 124.27 478.35 129.00 38.49 17.19

frequency). Training/testing splits have been defined. We remove documents in

the training set which are associated with more than one class and obtain a set of

15,933 instances in 101 classes. We further remove classes which have less than five

documents. Using r = 3 and 6, we then randomly select r classes of documents to

construct the n×m matrix V , where n is the number of the vocabulary set and m

is the number of documents. Some words never appear in the selected documents

and cause zero rows in V . We remove them before experiments. The parameter

r is the number of clusters that we intend to assign documents to. Results of

running mult and alspgrad by 25 and 50 seconds are in Table 4. We again have

that alspgrad gives smaller objective values. In addition, projected-gradient norms

of alspgrad are smaller.

In Section 2.1, we mention that mult is well-defined if Theorem 1 holds. Now
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Table 4: Text data: Average objective values and projected-gradient norms of
using 30 initial points under specified time limits. Smaller values are bold-faced.
Due to the unbalanced class distribution, interestingly the random selection of six
classes results in less documents (i.e., m) than that of selecting three classes.

Size (n r m) 5, 412 3 1, 588 5, 737 6 1, 401
Time limit (in seconds) 25 50 25 50
Objective Value mult 710.160 710.135 595.245 594.869

alspgrad 710.128 710.128 594.631 594.520
‖∇fP (W,H)‖F mult 4.646 1.963 13.633 11.268

alspgrad 0.016 0.000 2.250 0.328

V is a sparse matrix with many zero elements since words appeared in a document

are only a small subset of the whole vocabulary set. Thus, some columns of V

are close to zero vectors, and for a few situations, numerical difficulties occur. In

contrast, we do not face such problems for projected gradient methods.

7 Discussion and Conclusions

We discuss some future issues and draw conclusions.

7.1 Future Issues

As resulting W and H usually have many zero components, NMF is said to pro-

duce a sparse representation of the data. To achieve better sparseness, some

studies such as (Hoyer, 2002; Piper et al., 2004) add penalty terms to the NMF

objective function:

1

2

n∑
i=1

m∑
j=1

(
Vij − (WH)ij

)2
+ α‖W‖2F + β‖H‖2F , (23)

where α and β are positive numbers. Besides the Frobenius norm, which is

quadratic, we can also use a linear penalty function

α
∑
i,a

Wia + β
∑
b,j

Hbj. (24)

Our proposed methods can be used for such formulations. As penalty parameters

α and β only indirectly control the sparseness, Hoyer (2004) proposes a scheme
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to directly specify the desired sparsity. It is interesting to investigate how to

incorporate projected gradient methods in such frameworks.

7.2 Conclusions

This paper proposes two projected gradient methods for NMF. The one solving

least square sub-problems in Algorithm 2 leads to faster convergence than the

popular multiplicative update method. Its success is due to our following findings:

1. Sub-problems in Algorithm 2 for NMF generally have well-conditioned Hes-

sian matrices (i.e., second derivative) due to the property r � min(n,m).

Hence, projected gradients converge quickly, although they use only the first

order information.

2. The cost of selecting step sizes in the projected gradient method for the sub-

problem (15) is significantly reduced by some reformulations which again use

the property r � min(n,m).

Therefore, taking special NMF properties is crucial when applying an optimization

method to NMF.

Roughly speaking, optimization methods are between the following two ex-

treme situations:

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

For example, Newton’s methods are expensive per iteration but have very fast

final convergence. Approaches with low cost per iteration usually decrease the

objective value more quickly in the beginning, a nice property enjoyed by the

multiplicative update method for NMF. Based on our analysis, we feel that the

multiplicative update is very close to the first extreme. The proposed method of

alternating least squares using projected gradients tends to be more in between.

With faster convergence and strong optimization properties, it is an attractive

approach for NMF.
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A Proof of Theorem 1

When k = 1, (7) holds by the assumption of this theorem. Using induction, if (7)

is correct at k, then at (k + 1), clearly denominators of (4) and (5) are strictly

positive. Moreover, as V has neither zero column nor row, both numerators are

strictly positive as well. Thus, (7) holds at (k + 1), and the proof is complete.

B MATLAB Code

B.1 Main Code for alspgrad (Alternating Non-negative Least
Squares Using Projected Gradients)

function [W,H] = nmf(V,Winit,Hinit,tol,timelimit,maxiter)

% NMF by alternative non-negative least squares using projected gradients

% Author: Chih-Jen Lin, National Taiwan University

% W,H: output solution

% Winit,Hinit: initial solution

% tol: tolerance for a relative stopping condition

% timelimit, maxiter: limit of time and iterations

W = Winit; H = Hinit; initt = cputime;

gradW = W*(H*H’) - V*H’; gradH = (W’*W)*H - W’*V;

initgrad = norm([gradW; gradH’],’fro’);
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fprintf(’Init gradient norm %f\n’, initgrad);

tolW = max(0.001,tol)*initgrad; tolH = tolW;

for iter=1:maxiter,

% stopping condition

projnorm = norm([gradW(gradW<0 | W>0); gradH(gradH<0 | H>0)]);

if projnorm < tol*initgrad | cputime-initt > timelimit,

break;

end

[W,gradW,iterW] = nlssubprob(V’,H’,W’,tolW,1000); W = W’; gradW = gradW’;

if iterW==1,

tolW = 0.1 * tolW;

end

[H,gradH,iterH] = nlssubprob(V,W,H,tolH,1000);

if iterH==1,

tolH = 0.1 * tolH;

end

if rem(iter,10)==0, fprintf(’.’); end

end

fprintf(’\nIter = %d Final proj-grad norm %f\n’, iter, projnorm);

B.2 Solving the Sub-problem (15) by the Projected Gra-
dient Algorithm 4

function [H,grad,iter] = nlssubprob(V,W,Hinit,tol,maxiter)

% H, grad: output solution and gradient

% iter: #iterations used

% V, W: constant matrices

% Hinit: initial solution

% tol: stopping tolerance

% maxiter: limit of iterations

H = Hinit; WtV = W’*V; WtW = W’*W;

alpha = 1; beta = 0.1;

for iter=1:maxiter,

grad = WtW*H - WtV;

projgrad = norm(grad(grad < 0 | H >0));

if projgrad < tol,

break

end

% search step size
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for inner_iter=1:20,

Hn = max(H - alpha*grad, 0); d = Hn-H;

gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));

suff_decr = 0.99*gradd + 0.5*dQd < 0;

if inner_iter==1,

decr_alpha = ~suff_decr; Hp = H;

end

if decr_alpha,

if suff_decr,

H = Hn; break;

else

alpha = alpha * beta;

end

else

if ~suff_decr | Hp == Hn,

H = Hp; break;

else

alpha = alpha/beta; Hp = Hn;

end

end

end

end

if iter==maxiter,

fprintf(’Max iter in nlssubprob\n’);

end
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