
Selection of Negative Samples for One-class Matrix Factorization

Hsiang-Fu Yu* Mikhail Bilenko� Chih-Jen Lin�

Abstract

Many recommender systems have only implicit user feed-

back. The two possible ratings are positive and negative,

but only part of positive entries are observed. One-class

matrix factorization (MF) is a popular approach for such

scenarios by treating some missing entries as negative. Two

major ways to select negative entries are by sub-sampling a

set with similar size to that of observed positive entries or by

including all missing entries as negative. They are referred

to as “subsampled” and “full” approaches in this work, re-

spectively. Currently detailed comparisons between these

two selection schemes on large-scale data are still lacking.

One important reason is that the “full” approach leads to a

hard optimization problem after treating all missing entries

as negative. In this paper, we successfully develop efficient

optimization techniques to solve this challenging problem

so that the “full” approach becomes practically viable. We

then compare in detail the two approaches “subsampled”

and “full” for selecting negative entries. Results show that

the “full” approach of including much more missing entries

as negative yields better results.

1 Introduction

Matrix factorization (MF) is a popular technique for
collaborative filtering. With observed ratings given by
m users to n items, MF aims to find a model such
that we can use it to predict the unobserved rating of
a user on an item. To this end, MF learns a model
from existing observations by solving the following
optimization problem.

min
W,H

∑
(i,j)∈Ω

(Aij −w>i hj)
2 +

∑
i

λi‖wi‖2 +
∑
j

λ̄j‖hj‖2,
(1.1)

where each entry Aij ∈ R (e.g., score of 1 to 5) is the
rating given by user i to item j and

Ω = {(i, j) : Aij is observed}

is the set of observed ratings. With the regularization
parameters λi, λ̄j , the goal is to find two low-rank latent

*Amazon Inc. This work was done when H.-F. Yu was in

University of Texas at Austin.
�Microsoft Inc.
�National Taiwan University.

matrices

W =

w
>
1
...

w>m

 ∈ Rm×k and H =

h
>
1
...

h>n

 ∈ Rn×k
so that w>i hj is a good approximation of the observed
rating Aij . Note that k is a pre-specified latent factor
satisfying

k � m and k � n.

The rating-based MF with Aij ∈ R has been well
studied in the literature [e.g., 13]. However, in some
applications, Aij possesses only two possible values with
Aij ∈ {0, 1}. We refer to 1 as a positive rating while 0 as
a negative rating. Further, only part of positive entries
are observed. For example, in [22] for Xbox movies
recommendation, we only know movies that have been
watched by users. By assuming that users do not watch
movies they do not like, we have some partial positive
data but lack any negative information. To handle such
a one-class scenario, one popular approach [11, 15, 20–
22] is to treat some missing entries as negative and the
sum of losses in (1.1) becomes

(1.2)
∑

(i,j)∈Ω+

(1−w>i hj)
2 +

∑
(i,j)∈Ω−

(0−w>i hj)
2,

where Ω+ is the set of observed positive entries, and Ω−

includes negative entries sampled from missing entries
in A. The rationale is that among the large number
of items, a user likes only a small subset of them.
Therefore, most of the missing entries in A are negative.
Currently two major approaches to select the set Ω− are:

1. Subsampled: the size of Ω− is roughly similar to
that of Ω+.

(1.3) |Ω−| = O(|Ω+|)� mn.

Some reasons support this setting. First, given the
so few observed positive entries, a large Ω− may
cause serious imbalance between positive and neg-
ative entries. Second, using a too large Ω− causes
difficulties to solve the optimization problem. Stud-
ies that have considered this setting include [21, 22].

2. Full: all missing entries are considered as negative:

(1.4) Ω− = {(i, j) | (i, j) /∈ Ω+}.

One apparent reason of using this setting is that
all missing entries are considered. From this view-
point, the Subsampled approach is just an approxi-
mation of the Full approach.

Handling the huge number of |Ω−| = O(mn) elements
causes the Full approach to be practically infeasible.
However, under some circumstances the alternating
least squares (ALS) optimization method given in [11,
20] can have similar complexity to that for Subsampled.

At the first glance it is unclear if the two approaches
give different performances. Surprisingly, few works
have compared them. The main existing study is [21],
which reports the following observations on two rather
small data sets (thousands of users and items).
� The Subsampled approach is worse than the Full.
� By a bagging approach to select 20 different Ω−

sets and average the resulting predictions, the per-
formance is as good as the Full.

We feel there is a need to detailedly study the two
approaches because of the following concerns.
� Experiments in [21] are for small data. Observations

may be very different for large-scale data sets.
� The lack of studies caused that in some papers

incapable baselines may be used to compare with
newly proposed techniques. For example, in [12] to
propose a one-class MF approach incorporating meta-
features, they compare with a Subsampled setting. It
is possible that Full is a better baseline.

� Because of the huge set Ω− used by the Full approach,
traditional optimization methods for MF fail to han-
dle large data. Thus, the Full approach may not be
useful even if it can give better models.

In this paper, we make major contributions as follows:
� We propose a novel coordinate descent algorithm for

the Full approach which is significantly faster than
existing alternating minimization based methods [11,
20, 21].

� We conduct thorough comparisons between Full and
Subsampled with their best settings on large-scale
data sets..

Our conclusion is that Full yields much better results
than Subsampled. With our proposed optimization
techniques for training large problems, the Full approach
by treating all missing entries as negative becomes
practically viable.

One-class MF is a case of PU (positive-unlabeled)
learning [10], which includes other important applica-
tions such as link prediction [17]. Our proposed opti-
mization methods can be easily applied to them.

Some studies extend the positive versus negative

Table 1: Notation

m,n, k numbers of users, items, and latent variables
A m× n rating matrix
W,H m× k and n× k latent matrices
wi,hj k × 1 vector; ith row of W and jth row of H
λi, λ̄j regularization parameters
Ω set of observed entries for standard MF
Ω+ set of observed positive entries for one-class MF
Ω− set of selected negative entries for one-class MF
Ω+
i set of user i’s observed entries (one-class MF)

Ω̄+
j set of item j’s observed entries (one-class MF)

C m× n matrix for weights of entries

setting to other optimization problems. For example,
instead of a squared loss, various ranking loss functions
are considered in [16, 25]. We will include one ranking-
loss approach in our empirical comparison. In [27],
a variable is simultaneously optimized to decide if a
missing entry is negative or not. To be focused, in the
current work we do not discuss this approach.

This paper is organized as follows. Section 2 reviews
past studies on both Subsampled and Full approaches. In
Section 3, we propose methods to solve large optimiza-
tion problems for the Full approach. Section 4 gives
detailed comparisons, while discussions and conclusions
are in Section 5. Table 1 gives main notation in this
paper. Supplementary materials and code for experi-
ments are available at http://www.csie.ntu.edu.tw/

~cjlin/papers/one-class-mf.

2 Existing Studies on Subsampled and Full
Approaches

We briefly discuss existing studies of using the Full and
the Subsampled settings. This discussion is important
for the investigation in Section 3 to propose efficient
optimization algorithms. To begin, we extend (1.1) to
have the following general weighted MF formulation.
(2.5)

min
W,H

∑
i,j∈Ω

Cij(Aij−w>i hj)2+
∑
i

λi‖wi‖2+
∑
j

λ̄j‖hj‖2,

where Cij is a cost associated with the loss. For one-
class MF, the set Ω includes both positive and negative
entries:

Ω = Ω+ ∪ Ω−.

For each user i we define

Ωi ≡ Ω+
i ∪ Ω−i , where

Ω+
i ≡ {j | (i, j) is an observed entry}, and

Ω−i ≡ {j | (i, j) is a missing entry selected as negative}.

Similarly, for each item j, we let

Ω̄+
j ≡ set of observed entries of item j.

http://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf
http://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf

Usually in (2.5) we set

(2.6) λi = λ|Ω+
i |, ∀i and λ̄j = λ|Ω̄+

j |, ∀j.

2.1 The Full Approach Because Ω− is a fixed set,
weights Cij are the main concern. In [20, 21], they
consider Cij = 1,∀(i, j) ∈ Ω+ and the following settings
for Cij ,∀(i, j) ∈ Ω−.
� Cij is a constant.
� Cij ∝ |Ω+

i |. That is, under the same j, Cij =
|Ω+
i |∆, ∀i, where ∆ is a constant. The reason is that

users associated with few items provide less reliable
information.

� Cij ∝ n − |Ω̄+
j |. Note that |Ω̄+

j | indicates the
popularity of item j. Because popular items are less
likely to be negative, weights for them should be
smaller.

In addition, Cij can be decided by some user and item
features. For example, [15] considers

Cij =

{
1− sim(i, j) if (i, j) ∈ Ω−

1 otherwise
,

where sim(i, j) = similarity between user i and item j.

2.2 The Subsampled Approach Because Ω− is no
longer a fixed set, we have more options as follows:
� Size of |Ω−|.
� Sampling strategies for selecting Ω−.
� Weights Cij .
The number of combined choices is huge. We may
further consider a user- or an item-oriented setting.
For example, instead of |Ω−| ∝ |Ω+|, we can consider
|Ω−i | ∝ |Ω

+
i |, ∀i. Here we show details of two studies

that have used the Subsampled approach. [21] considers

|Ω−| ∝ |Ω+| and Pij ∝ 1, |Ω+
i |, or

1

|Ω̄+
j |
,

where Pij is the probability to select (i, j) /∈ Ω+ as
negative. Their settings of Pij follow from the same
explanation in Section 2.1 for choosing Cij . In another
study [22], for a baseline setting they have

|Ω−i | = |Ω
+
i | and Pij ∝ |Ω̄+

j |.

Neither papers specifically says their Cij values. How-
ever, given that weight information has been used for
selecting Ω−, some simple settings such as Cij = 1 may
suffice. The discussion shows that deciding a suitable
sampling scheme is not easy. We see that these two
studies use opposite strategies: one has Pij ∝ 1/|Ω̄+

j |,
while the other has Pij ∝ |Ω̄+

j |.

Table 2: A summary of results in Section 3 by showing
the complexity per iteration of optimization methods.
For ALS and CD, an iteration means to update W
and H once, while for SG it means to conduct |Ω| SG
updates. ∗: It remains a challenge to apply SG to one-
class MF; see Section 3.2.

ALS CD SG
General MF

O(|Ω|k2 + (m+ n)k3) O(|Ω|k) O(|Ω|k)
One-class MF (Full approach)
Direct O(mnk2 + (m+ n)k3) O(mnk) O(mnk)
New O(|Ω+|k2 + (m+ n)k3) O(|Ω+|k + (m+ n)k2) NA∗

3 Efficient Algorithms for the Full Approach

In this section, we propose methods to solve the large
optimization problem for the Full approach. To handle
the difficulty caused by |Ω| = mn, [20] assumes that
weights Cij are under some conditions.1 We consider a
similar setting by assuming that
(3.7)

Cij =

{
1 if (i, j) ∈ Ω+

piqj otherwise
and Aij =

{
1 if (i, j) ∈ Ω+

ā otherwise,

where p ∈ Rm and q ∈ Rn are vectors. All existing
settings discussed in Section 2.1 except [15] satisfy this
assumption. For example, if Cij ∝ |Ω+

i |,∀(i, j) /∈ Ω+,
then we have Cij = piqj with pi = |Ω+

i |. For negative
entries we consider a slightly more general setting of
Aij = ā, although in practice ā = 0 is most used.

We discuss three optimization approaches in this
section.

� ALS: Alternating Least Squares
� CD: Coordinate Descent
� SG: Stochastic Gradient

Table 2 lists the complexity per iteration, where de-
tails are in subsections. Clearly an mn term causes pro-
hibitive running time if these methods are directly ap-
plied to the optimization problem of the Full approach.
For ALS, [11, 20] have successfully reduced Full’s com-
plexity. We derive their method in Section A.1 of sup-
plementary materials using our notation. Subsequently
we discuss details of the other two optimization ap-
proaches.

3.1 Coordinate Descent (CD) The early use of
CD for MF was in [7], but here we consider the efficient
implementation in [29]. The idea is to update one
column of W and H at a time. Specifically, if the tth

1The condition in [11] is a special case of [20], where they
assume Cij ≥ 1, ∀(i, j) ∈ Ω+ and Cij = 1 otherwise.

Algorithm 1 Coordinate descent for one-class MF.

1: while not optimal do
2: for t = 1, . . . , k do
3: Let W , H’s tth columns be initial u, v
4: Approximately solve (3.8) by ALS:
5: for s = 1, . . . , S do
6: Solve (3.8) by fixing v
7: Solve (3.8) by fixing u

8: Let u, v be W , H’s tth columns

column is chosen, we let two vector variables

u ∈ Rm and v ∈ Rn

denote the corresponding columns in W and H, respec-
tively and form the following optimization problem.
(3.8)

min
u,v

∑
(i,j)∈Ω

Cij(R̂ij − uivj)2 +
∑
i

λiu
2
i +

∑
j

λ̄jv
2
j ,

where

(3.9) R̂ij ≡ Aij −w>i hj +WitHjt.

Note that we add the constant WitHjt to R̂ij so that

R̂ij−uivj is the error for the (i, j) entry. Problem (3.8)
is like an MF problem of using only one latent variable
(i.e., k = 1), so we can solve it by ALS. Our procedure
is described in Algorithm 1. Essentially we have a two-
level CD procedure. At the outer level, sequentially
a pair of columns from W and H are selected, while
at the inner level, these two columns are alternatively
updated several times; see the S inner iterations in
Algorithm 1. For rating-based MF, [30] has shown that
taking some inner iterations leads to shorter running
time than conducting only one update. In general S is
a small constant; here we use 5.

Next we discuss details for solving (3.8) when v is
fixed. By a similar derivation for (A.2), the optimal
solution is

(3.10) ui = (
∑
j∈Ωi

Cijv
2
j + λi)

−1(
∑
j∈Ωi

CijR̂ijvj).

If R̂ij ,∀j ∈ Ωi are available (see implementation details
in Section 3.1.1), the number of operations for (3.10)
is O(|Ωi|). Therefore, the cost of going through all
columns in W and H is

(3.11) O(|Ω|)× k.

A comparison with (A.3) shows that CD is more efficient
than ALS.

For the two approaches (Subsampled and Full) for
one-class MF, |Ω| in (3.11) becomes |Ω+| and mn,
respectively. Because mn is too large, we investigate
if it can be reduced to O(|Ω+|) under the assumption in
(3.7). The first term of (3.10) can be rewritten as

(3.12)
∑
j∈Ωi

Cijv
2
j =

∑
j∈Ω+

i

(1− piqj)v2
j + pi

n∑
j=1

qjv
2
j ,

where
∑n
j=1 qjv

2
j is independent of i and can be pre-

computed in O(n). Then the cost of (3.12) is O(|Ω+
i |).

For the second term in (3.10), using (3.7) and (3.9) we
have∑
j∈Ωi

CijR̂ijvj =
∑
j∈Ω+

i

((1− piqj)R̂ij + piqj(Aij − ā))vj

+ pi

n∑
j=1

qj(ā−w>i hj +WitHjt)vj .(3.13)

If R̂ij ,∀j ∈ Ω+
i are available, the first summation in

(3.13) can be calculated in O(|Ω+
i |) time. The second

summation can be written as

(3.14) ā

n∑
j=1

qjvj −w>i

n∑
j=1

qjhjvj +Wit

n∑
j=1

qjHjtvj ,

in which each summation is independent of i. The main
computational task is

∑n
j=1 qjhjvj that can be pre-

computed in O(nk). Therefore, the cost for updating
u is

O(|Ω+|+ nk).

Then the cost to go through all W and H’s k columns
is

(3.15) O(|Ω+|k + (m+ n)k2).

If k is not large, in general (m + n)k2 is no more
than |Ω+|k. Further, if a small number S of inner
iterations are taken, the O((m+n)k2) operations needed
before them becomes a smaller portion of the total
cost. Therefore, our procedure for the Full approach
has comparable complexity to that for the Subsampled.

In the above analysis we assume that R̂ij , j ∈ Ω+
i

are available. In Section 3.1.1, we show that they can be
obtained in O(|Ω+

i |) cost, the same as other operations
for the first term in (3.13). We also discuss other
implementation details such as column or row access
of W and H.

3.1.1 Implementation Details The discussion so
far assumes that R̂ij defined in (3.9) are available. Here
we investigate how they can be cheaply maintained. We

begin with discussing the situation for rating-based MF
and then extend the result to one-class MF. We note
that for (i, j) ∈ Ω,

R̂ij = Aij −w>i hj +WitHjt.

Directly computing R̂ij requires O(k) operations for the
dot product w>i hj . Thus, the construction of (3.8) costs
O(|Ω|k) operations. In [29], the time complexity can be
reduced to O(|Ω|) by maintaining the following residual
Rij

Rij = Aij −w>i hj , ∀(i, j) ∈ Ω.

If Rij is available, then each R̂ij can be computed in
O(1) without the dot product:

(3.16) R̂ij ← Rij +WitHjt,∀(i, j) ∈ Ω.

The total cost for (3.16) is O(|Ω|). Maintaining Rij after
u,v are obtained can also be done in O(|Ω|).

Rij ← R̂ij − uivj ,∀(i, j) ∈ Ω.

Therefore, in one iteration of going through W and H’s
all columns, the maintenance cost of R and R̂ is the
same as that in (3.11) for updating W and H.

Now consider the one-class scenario. For the Full
approach, O(|Ω|) = O(mn) is too high to maintain
all Rij . However, based on the observation that only

R̂ij ∀(i, j) ∈ Ω+ are involved in (3.13), we can store and
maintain only Rij ∀(i, j) ∈ Ω+. As a result, the total
time/space cost to maintain the residual is O(|Ω+|).

Next we discuss an issue of memory usage. In
(3.13), for

(3.17) −w>i
n∑
j=1

qjhjvj+Wit

n∑
j=1

qjHjtvj , i = 1, . . . ,m,

both W and H’s rows (wi, hj) and columns (Hjt, j =
1, . . . , n) are needed, but in practice one does not want
to double the storage by storing W (or H) in both
row-oriented and column-oriented formats. Here we
demonstrate that all operations can be conducted by
using the column-oriented format. A careful check
shows that the m values in (3.17) can be calculated by

(3.18) −
∑
s:s6=t

w̄sh̄
>
s

q1v1

...
qnvn

,
where w̄s, h̄s, s = 1, . . . , k are column vectors in W and
H. That is,

W =
[
w̄1 · · · w̄k

]
and H =

[
h̄1 · · · h̄k

]
.

Note that (3.18) can be pre-calculated in O(nk) before
ui, i = 1, . . . ,m are updated. Further, in (3.18) all we
need is to access W and H column-wisely. Regarding
the calculation of R̂ij in (3.16), we can extract the t-th
column ofW andH, and then go through all (i, j) ∈ Ω+.

3.1.2 Related Works An earlier study that has
reduced the complexity of ALS to (3.15) is [23]. It
is indeed a combination of ALS and CD. Under fixed
H, instead of calculating the closed-form solution (A.2),
they solve (A.1) by a fixed number of CD iterations. It
has been shown in [30, Section 3.4] that for rating-based
MF, the CD procedure considered here is much faster
than the approach by [23]. Besides, their procedure is
more complicated for needing the eigen-decomposition
of a k by k matrix.

The recent work on PU (positive-unlabeled) learn-
ing [10] has mentioned that the CD framework in [29]
can be modified to have the complexity (3.15), but de-
tailed derivations are not given.

3.2 Stochastic Gradient (SG) SG has been exten-
sively used for MF [e.g., 13]. It reformulates (2.5) to the
following objective function.

min
W,H

∑
(i,j)∈Ω

`ij(Aij ,w
>
i hj),(3.19)

where `ij = Cij(Aij −w>i hj)
2 + λi

|Ωi|‖wi‖2 +
λ̄j

|Ω̄j |
‖hj‖2.

Note that the regularization term is averaged in each
lij because SG would like the expectation on one single
instance to be the same as the whole. Taking ‖wi‖2 as
an example, we can see that∑

j∈Ωi

λi
|Ωi|
‖wi‖2 = λi‖wi‖2.

Recall that in (2.6) λi = λ|Ω+
i | and λj = λ|Ω̄+

j |;
therefore, in the rating-based MF, where Ω = Ω+, we
have λi/|Ωi| = λ̄j/|Ω̄j | = λ, which is exactly the choice
in the common SG update rule used in [13]. At each
step SG randomly selects an entry (i, j) ∈ Ω uniformly
and updates wi and hj using the partial gradient.

wi ← wi − η∇wi
`ij(Aij ,w

>
i hj),

hj ← hj − η∇hj
`ij(Aij ,w

>
i hj),

where η is the learning rate. Because learning rates
may significantly affect the convergence speed of SG,
we adjust them by the advanced setting in [5]. Each SG
update costs O(k) operations. For SG usually an outer
iteration refers to |Ω| updates, so the cost per iteration is
O(|Ω| × k). A huge difference between Subsampled and
Full occurs because |Ω| = |Ω+| and mn, respectively.
Implementing the Full approach faces two challenges:

1 Because we store only Aij , (i, j) ∈ Ω+ rather than ā
of Ω−, for any picked (i, j), an efficient mechanism
is needed to check if it is in Ω+. However, the
implementation is not easy. For example, it takes
O(log |Ω+|) using binary search and O(1) using hash.
Neither is very efficient.

2 The O(mnk) computational cost to go through the
entire Ω is prohibitive.

To address the first issue, we reformulate (3.19) to

(3.20)
∑

(i,j)∈Ω+

`+ij(Aij ,w
>
i hj) +

m∑
i=1

n∑
j=1

`−ij(ā,w
>
i hj),

where

`+ij = Cij(Aij −w>i hj)
2 − piqj(ā−w>i hj)

2

+ λ

∣∣Ω+
i

∣∣‖wi‖2

n+
∣∣Ω+
i

∣∣ +
λ
∣∣Ω̄+
j

∣∣‖hj‖2
m+

∣∣Ω̄+
j

∣∣ ,
`−ij = piqj(ā−w>i hj)

2 +
λ|Ω+

i |‖wi‖2

n+ |Ω+
i |

+
λ|Ω̄+

j |‖hj‖2

m+ |Ω̄+
j |

.

Note that the regularization term is re-distributed be-
cause mn+ |Ω+| terms are now involved. We design the
following procedure to perform updates on `+ij or `−ij .
1 Randomly choose u ∈ (0, 1).
2 If

u <
|Ω+|

mn+ |Ω+|
,

randomly select (i, j) ∈ Ω+, and use ∇wi
`+ij and

∇hj `
+
ij to update wi and hj .

Otherwise, randomly select (i, j) ∈ {1, . . . ,m} ×
{1, . . . , n}, and use ∇wi

`−ij and ∇hj
`−ij to update wi

and hj .
The procedure effectively alleviates the issue of checking
if (i, j) ∈ Ω+ or not. It also generates an un-biased
gradient estimate to the original optimization problem
(2.5). See details in Section A.2.

For the second challenge, unfortunately we have
not devised a good strategy to reduce the mn term
to O(|Ω+|). From the investigation of ALS and CD,
the key to remove the O(mn) calculation is that for
computing

∑n
j=1(· · ·), ∀i, we can reformulate it to

(terms related to i)×
∑

j
(terms related to j),∀i;

see, for example, the calculation in (3.14). Then the
summation over j can be pre-computed. Therefore, we
must be able to aggregate things related to i (or j) in
the algorithm. This is very different from the design
of SG, in which an individual (i, j) is chosen at a time.
We may modify SG in various ways. For example, in

Table 3: Data statistics for training and test sets. Zero
columns/rows in A are removed, so m and n may be
different from those of the original data. Data sets ml1m
and ml10m are movielens with 1m and 10m (user, item)
pairs.

delicious ml1m ml10m netflix yahoo-music
m 2,000 6,040 69,878 480,189 1,000,990
n 3,000 3,952 10,677 17,770 624,961
|Ω+| 197,130 517,770 4,505,820 51,228,351 82,627,856
|Ω+

test| 49,306 57,511 499,864 5,690,839 9,178,962

(3.20), the gradient of the second summation can be
calculated without the O(mn) cost, so we can conduct
SG updates for terms in the first summation over Ω+,
while apply regular gradient descent for the second.
Another possibility is to run SG in the ALS framework.
That is, when H is fixed, we apply SG to update
W . Unfortunately, these modifications move SG toward
other methods such as ALS. Such modifications may be
unnecessary as we can directly apply ALS or CD.

One past study that has observed the difficulty of
sampling from the huge number of entries is [24]. In
a ranking setting they show that SG converges slowly
by uniform sampling. They then propose a context-
dependent setting to oversample informative entries.
However, such settings do not guarantee the complexity
reduction like what we achieved for ALS and CD.
Further, existing methods to parallelize SG for MF such
as [4, 8] may become not applicable because A is split
into blocks. In contrast, ALS and CD under our new
settings for one-class MF can be easily parallelized.

Based on the discussion, SG may be less suitable
for the Full approach. We experimentally confirm this
result in Section 4.

4 Experimental Results

Our experiments include two parts. The first part is the
comparison of the proposed optimization methods for
the Full approach (Section 4.1) in terms of the compu-
tational efficiency. In the second part we investigate in
Section 4.2 the performances of the following approaches
for one-class MF:
� Full: in the experiments for Full approaches, we

consider a simplified setting of (3.7) as follows.

(4.21) Cij =

{
1 ∀(i, j) ∈ Ω+,

α, ∀(i, j) ∈ Ω−.

The selection of the parameter α will be discussed in
Section C.1.

� Subsampled: see Section B.1.1 for details about the
variants of the Subsampled approaches.

� Ensemble: the ensemble of models from the Subsam-
pled approach. See details in Section B.1.1

� BPR: The approach in [25] by considering an AUC
(i.e., rank-based) loss; see details in Section B.1.2.
We use the implementation in [6].

Datasets. The only publicly available one-class
MF data that we are aware of is delicious from [21].2

We use the same 4-to-1 training/test split by [21] in our
experiment.3 Besides this data, following past works
[12], we modify some publicly available rating-based
MF data in Table 3 for experiments. We consider
observed entries with ratings ≥ 4 as positive.4 For some
problems, training and test sets are available, but the
test sets are too small. Therefore, other than delicious,
we merge training and test sets of every problem first,
and then do a 9-to-1 split to obtain training/test sets
for our experiments. See the implementation details and
evaluation criteria in Sections B.1 and B.2, respectively.

4.1 Comparison: Optimization for Full We com-
pare the proposed optimization methods in Section 3 for
the Full approach. For ALS and CD, we use the methods
in [20] (see also Section A) and in Section 3.1, respec-
tively. They are superior to direct implementations on
all mn values. For SG, we consider some variants for
checking the effectiveness of the reformulation (3.20).
1 SG-Dense: the original formulation (3.19) is used and

the whole Ω set (mn elements) is stored for easily
checking if (i, j) ∈ Ω+ or not.

2 SG-BSearch: we still use (3.19), but do not store Ω.
A binary search is conducted to check if (i, j) ∈ Ω+.

3 SG-Reform: the reformulation (3.20) is used.
Because the goal is to compare methods for the same
optimization problem, we simply set α = 0.1 in (4.21).
That is, Cij = 0.1, ∀(i, j) /∈ Ω+ and 1 otherwise. Other
settings include k = 64 and λ = 0.1.

In Figure 1(a), we present the relation between
running time (log-scaled) and the relative difference to
the minimum objective value obtained among all the
algorithms. Results show that CD is much faster than
ALS. This finding is expected because past studies for
general MF has shown the superiority of CD. Now the
mn terms in the complexity analysis of both methods
are reduced to O(|Ω+|), so the relationship still holds.

For smaller data sets ml1m and ml10m, SG-Dense

2A tag recommendation data set from ECML’09 challenge is

used in [24], but it is in fact a multi-label data set, where the

tagging behavior does not reveal user preference. Thus, this data
set is not suitable in our experiments. Furthermore, the data set

is relatively small.
3We use the first 4-to-1 split from http://www.rongpan.net/

data/delicious.tar.bz2.
4For yahoo-music, scores ≥ 80 are considered as positive.

(a) Full (SG may be too slow to be shown)

(b) Subsampled

Figure 1: Comparison of optimization methods. The
y-axis is the relative difference to the minimal value
obtained among all the methods, while the x-axis is the
running time in log-scale. See Section 4.1 for details of
SG variants.

is applicable by storing all mn elements of Ω. We
observe that SG-Reform is close to SG-Dense, so our
reformulation in (3.20) is effective. SG-BSearch is the
slowest because of the binary search on checking if
(i, j) ∈ Ω+. Unfortunately, all the SG variants are
significant slower than CD and ALS for larger problems
like netflix or yahoo-music, for which curves cannot even
be generated in Figure 1(a).

Although we have explained in Section 3 that SG
may be less suitable for Full, the very poor results are
still somewhat surprising. Therefore, we investigate
the running speed when these methods are applied to
the Subsampled approach. We consider |Ω−| = |Ω+|,
uniform sampling strategy, and the optimization prob-
lem (1.2). The comparison results are in Figure 1(b).
Clearly SG becomes as fast as CD and much better
than ALS. This result is consistent with past studies
on rating-based MF. We thus conclude that SG fails
for the Full approach because of the large mn elements.

http://www.rongpan.net/data/delicious.tar.bz2
http://www.rongpan.net/data/delicious.tar.bz2

Further, by comparing Figures 1(a) and 1(b), CD takes
similar time for Full and Subsampled, and so does our
ALS implementation. Therefore, our study enables the
Full approach to be computationally feasible for one-
class MF.

4.2 Comparison: Full versus Subsampled We com-
pare one-class MF approaches listed in the beginning of
this section. After finding that Full is better in initial
experiments, we consider the following settings to check
if the difference between Full and others is significant.
� For Full, we conduct parameter selection for each

evaluation criterion by splitting the training set to
two parts for training (90%) and evaluation (10%).
The parameters achieving the best validation results
are used to train the final model. We then report the
performance on the test set.

� For Subsampled, Ensemble and BPR, we omit the
validation procedure. Instead, for each evaluation
criterion, we consider all parameter combinations
(including several sampling strategies for Subsampled)
and report the best test result. Therefore, we overfit
the test set to get an optimistic estimate of the
performance. Moreover, we combine 20 Subsampled
models [21] as our Ensemble model.5

To see if Full is significantly better, we deliberately
overestimate the performance of others. Parameters
used for each method are in Table 5. In the testing
phase Ω+ is excluded because they may have been well
fitted in training.

Table 4 shows that for nDCG, nHLU, and MAP,
Full is significantly better than all other approaches.
For AUC, all approaches give similar values close to
one. For a recommender system, AUC is less suitable
because it considers the overall number of violating pairs
without emphasizing the position of top-ranked (i.e.,
recommended) items.

Although Ensemble improves the performance of the
pure Subsampled approach on ml1m, ml10m, and netflix,
the performance gap between Ensemble and Full is still
large in Table 4. This observation is very different
from the finding in [21], where Ensemble is able to yield
competitive performance as the Full approach. Based
on the observation in Table 4 that the larger the size of
the data set, the larger the gap between Ensemble and
Full, we think that the finding regarding the Ensemble

5In the published version of the paper, the parameters of

the Ensemble models were set as the same best parameter of
Subsampled models for each individual model. We applied a grid
search on Ensemble models and all the results of Table 4 have

been refreshed by Sheng-Wei Chen (D09944003@ntu.edu.tw) in
November 2020.

Table 4: Comparison of one-class MF approaches. The
best performed method for each criterion is bold-faced.

nDCG
nHLU MAP AUC

@1 @10

delicious
Subsampled 41.40 27.80 26.63 14.44 0.86635

Ensemble 44.15 32.21 31.25 18.98 0.89196
BPR 21.95 27.68 27.98 16.51 0.88889
Full 56.45 38.53 36.86 21.51 0.89244

ml1m
Subsampled 14.45 14.79 15.62 11.14 0.93694

Ensemble 21.80 20.67 21.39 15.06 0.94969
BPR 8.10 15.80 17.07 11.28 0.94474
Full 28.91 23.66 24.11 16.35 0.94536

ml10m
Subsampled 10.71 10.30 10.79 8.22 0.97255

Ensemble 15.99 18.51 19.77 13.97 0.97958
BPR 16.28 16.73 17.67 12.24 0.97700
Full 25.64 23.81 24.94 17.70 0.97372

netflix
Subsampled 10.25 9.96 10.48 7.54 0.97196

Ensemble 14.91 15.00 15.60 10.50 0.97618
BPR 18.28 15.84 16.07 10.33 0.97583
Full 27.05 22.59 22.69 13.92 0.96962

yahoo-music
BPR 12.36 12.46 13.12 8.74 0.99546
Full 38.67 34.74 35.28 26.78 0.99290

performance in [21] only holds for small data sets.6

Note that for the data set delicious used in [21],
here we see a bigger performance gap between Full and
Ensemble. The reason might be that first our k is 64
rather than their 16, and second we have selected the
parameter α for Full by a validation procedure.

5 Discussions and Conclusions

Before giving conclusions, we discuss some interesting
issues and analysis in this section and Section C of
supplementary materials.

Superiority of Full over Subsampled. For Sub-
sampled, by selecting only a small subset of missing en-
tries as negative data, we fit them by using W and H
but ignore others. Then the generalization ability may
not be good. The importance of considering all miss-
ing data can also be seen in the best α selected by the
validation procedure; see (4.21) for the definition of α.
Because of the large number of negative data, we ex-
pect that α should be small. Interestingly, we find that
α can be neither too small nor too large. A too small α
causesW andH to underfit negative missing data, while
a too large α causes W and H to wrongly fit positive
missing data. In the theoretical study of PU (positive-
unlabeled) learning [10], the authors were able to prove
an error bound under the setting of α = ρ̄/(2− ρ̄),
where ρ̄ is the percentage of positive entries that are

6The statistics of two data sets used in [21] are m = 3, 158;n =

1, 536; |Ω+| = 84, 117 and m = 3, 000;n = 2, 000; |Ω+| = 246, 436,
respectively.

observed. When ρ̄ → 1, most missing entries are nega-
tive, so α ≈ 1 causes w>i hj to fit 0 for missing data. In
contrast, when ρ̄ → 0, some missing entries are indeed
positive, so we should not let w>i hj be very close to
zero. Therefore, α should be smaller.

Connection to word2vec. Recently, word2vec
[18] for NLP applications identifies a latent vector
representing each word from a set of observed word-
context pairs. It can be considered as a one-class MF
problem [14]. Currently negative entries are selected
by the Subsampled approach. In particular, the skip
gram negative sampling (SGNS) objective [14] tries
to maximize the probability for the observed word-
context pairs while simultaneously maximizing that for
unobserved (i.e., negative) pairs. Under the assumption
that a randomly selected context for a given word is
likely not an observed pair, SGNS randomly subsamples
a few “negative” contexts from the entire set of contexts
for each observed word-context pair. One can see
that SGNS is essentially a Subsampled approach for
word embedding learning. Thus, our investigation on
Subsampled versus Full may be useful for this NLP
technique. It is also interesting to ask whether the
efficient techniques developed in this paper can be
extended to handle non squared-L2 loss functions such
as the one used in word2vec.

Conclusions. In this paper, we have developed ef-
ficient techniques to solve the hard optimization prob-
lem of the Full approach, which treats every missing
entry as negative. We then conduct thorough experi-
ments to show that the Full approach gives much better
performances than the Subsampled approach. There-
fore, our work has made the Full approach very useful
for large-scale one-class matrix factorization.

References

[1] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir,

N. Koenigstein, N. Nice, and U. Paquet. Speeding up the

Xbox recommender system using a Euclidean transforma-
tion for inner-product spaces. In RecSys, pages 257–264,

2014.
[2] G. Ballard, A. Pinar, T. G. Kolda, and C. Seshadri.

Diamond sampling for approximate maximum all-pairs dot-
product (MAD) search. In ICDM, 2015.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.

In UAI, 1998.
[4] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A fast

parallel stochastic gradient method for matrix factorization
in shared memory systems. ACM TIST, 6:2:1–2:24, 2015.

[5] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A

learning-rate schedule for stochastic gradient methods to

matrix factorization. In PAKDD, 2015.
[6] W.-S. Chin, B.-W. Yuan, M.-Y. Yang, Y. Zhuang, Y.-C.

Juan, and C.-J. Lin. LIBMF: A library for parallel matrix
factorization in shared-memory systems. JMLR, 17(86):1–5,

2016.

[7] A. Cichocki and A.-H. Phan. Fast local algorithms for large
scale nonnegative matrix and tensor factorizations. IEICE

Transaction on Fundamentals, E92-A:708–721, 2009.

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic

gradient descent. In KDD, pages 69–77, 2011.

[9] P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable
recommendation with hierarchical poisson factorization. In

UAI, pages 326–335, 2015.

[10] C.-J. Hsieh, N. Natarajan, and I. Dhillon. PU learning for
matrix completion. In ICML, 2015.

[11] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering

for implicit feedback datasets. In ICDM, 2008.
[12] N. Koenigstein and U. Paquet. Xbox movies recommenda-

tions: Variational bayes matrix factorization with embedded

feature selection. In RecSys, 2013.
[13] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization

techniques for recommender systems. Computer, 42, 2009.
[14] O. Levy and Y. Goldberg. Neural word embedding as

implicit matrix factorization. In NIPS, pages 2177–2185,

2014.
[15] Y. Li, J. Hu, C. Zhai, and Y. Chen. Improving one-class col-

laborative filtering by incorporating rich user information.

In CIKM, 2010.
[16] D. Lim, J. McAuley, and G. Lanckriet. Top-N recoomenda-

tion with missing implicit feedback. In RecSys, pages 309–

312, 2015.
[17] A. K. Menon and C. Elkan. Link prediction via matrix

factorization. In ECML/PKDD, 2011.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases

and their compositionality. In NIPS, pages 3111–3119, 2013.
[19] B. Neyshabur and N. Srebro. On symmetric and asymmet-

ric LSHs for inner product search. In Proceedings of the

Thirty-Second International Conference on Machine Learn-
ing (ICML), pages 1926–1934, 2015.

[20] R. Pan and M. Scholz. Mind the gaps: Weighting the

unknown in large-scale one-class collaborative filtering. In
KDD, 2009.

[21] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,

and Q. Yang. One-class collaborative filtering. In ICDM,
2008.

[22] U. Paquet and N. Koenigstein. One-class collaborative

filtering with random graphs. In WWW, 2013.
[23] I. Pilászy, D. Zibriczky, and D. Tikk. Fast ALS-based matrix

factorization for explicit and implicit feedback datasets. In
RecSys, 2010.

[24] S. Rendle and C. Freudenthaler. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM,
2014.

[25] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-

Thieme. BPR: Bayesian personalized ranking from implicit
feedback. In UAI, 2009.

[26] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for
sublinear time maximum inner product search (MIPS). In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger, editors, NIPS, pages 2321–2329, 2014.

[27] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic. One-
class matrix completion with low-density factorizations. In
ICDM, 2010.

[28] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the atlas project.

Parallel Comput., 27:3–35, 2001.

[29] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable co-

ordinate descent approaches to parallel matrix factorization
for recommender systems. In ICDM, 2012.

[30] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Parallel

matrix factorization for recommender systems. KAIS, 41:
793–819, 2014.

Supplementary Materials:

A Additional Details for Algorithms

A.1 Alternating Least Squares (ALS) Alternat-
ing Least Squares (ALS) has been a popular optimiza-
tion method since the beginning of matrix factorization.
It iteratively updates W and H by the following loop

1: while not optimal do
2: Solve (2.5) by fixing H
3: Solve (2.5) by fixing W

Consider the situation when H is fixed. We would like
to solve for i = 1, . . . ,m,
(A.1)

min
wi

f(wi) ≡
∑
j∈Ωi

Cij
(
Aij −w>i hj

)2
+ λi‖wi‖2.

For a quadratic function like f(wi), by

f(wi) = f(0) +∇f(0)>wi +
1

2
w>i ∇2f(0)wi,

the optimal wi = −
[
∇2f(0)

]−1∇f(0), where

∇f(wi) = −
∑
j∈Ωi

Cij(Aij −w>i hj)hj + 2λiwi,

∇2f(wi) =
∑
j∈Ωi

Cijhjh
>
j + 2λiIk.

Thus, the optimal solution is

(A.2) wi =

∑
j∈Ωi

Cijhjh
>
j + λiIk

−1 ∑
j∈Ωi

CijAijhj ,

where Ik ∈ Rk×k is an identity matrix. Thus the cost
of one ALS iteration to update W and H is

(A.3) O(|Ω| × k2 + (m+ n)k3),

where |Ω| × k2 is for
∑
j∈Ωi

Cijhjh
>
j ,∀i and mk3 is for

m matrix inversions. From (A.3), (1.3), and (1.4), for
Subsampled and Full approaches the cost is respectively

O(|Ω+|k2 + (m+ n)k3) and O(mnk2 + (m+ n)k3).

The mn term is huge, but [20] has successfully reduced
Full’s complexity under the assumption in (3.7).7 Here

7[20] considers a more general setting so that C can be a low-

rank matrix but in most cases the rank-one situation in (3.7) is
considered.

we derive there results using our notation. Specifically
we rewrite a summation in (A.2) as follows.∑
j∈Ωi

Cijhjh
>
j =

∑
j∈Ω+

i

(1− piqj)hjh>j + pi

n∑
j=1

qjhjh
>
j .

The crucial point of the above reformulation is that∑n
j=1 qjhjh

>
j can be pre-computed with O(nk2) oper-

ations, so the cost is reduced to be the same as that
for the Subsampled approach. The second term in (A.2)
involves O(mnk) operations, which can be reduced to
O(|Ω+|k) because from (3.7),∑
j∈Ωi

CijAijhj =
∑
j∈Ω+

i

Aijhj−piā
∑
j∈Ω+

i

qjhj+piā
n∑
j=1

qjhj ,

where
∑n
j=1 qjhj can be pre-computed. Then the mn

term does not appear at all in the calculation of (A.2).

A.2 Stochastic Gradient (SG) We show that the
reformulation in (3.20) generates an un-biased gradient
estimate to the original optimization problem (2.5).
Because of the property that one of the mn + |Ω+|
terms in (3.20) is uniformly sampled at each time, the
expected gradient with respect to wi is ∑

(i,j)∈Ω+

∇wi
`+ij(Aij ,w

>
i hj) +

m∑
i=1

n∑
j=1

∇wi
`−(ā,w>i hj)

mn+ |Ω|

,

which is proportional to the gradient of the original
objective function in (3.19).

B Experiments Details

B.1 Implementation Details We tried the best to
have efficient implementations for each optimization
method. Here we show some places of applying highly-
tuned linear algebra packages. When qj = α, ∀j,∑n
j=1 qjhjh

>
j in ALS is essentially the product αHH>

so we employ fast matrix-matrix operations in opti-
mized BLAS (Basic Linear Algebra Subprograms). We
use efficient posv() subroutine in the optimized LA-
PACK (Linear Algebra PACKage) to solve the system
of linear equations in (A.2).8 All three methods in Sec-
tion 3 can be parallelized, but to focus on algorithmic
differences, we use single-core implementations in our
experiments.

8In all timing experiments, ATLAS [28] is used as the opti-
mized BLAS/LAPACK.

B.1.1 Subsampled and Ensemble: Sampling
Schemes Let multinomial({pi}) be the distribution
such that the i-th user index is selected with probability
pi and multinomial({qj}) be the distribution such
that the j-th item index is selected with probability qj .
Most sampling schemes considered for the Subsampled
approach in the past [21, 22] can be described by the
following procedure:
� Sample i′ ∼ multinomial({pi})
� Sample j′ ∼ multinomial({qj})
� Add (i′, j′) into Ω−

Following the discussion in Section 2.2, we give the de-
tailed specification for the five Subsampled variants and
the Ensemble approach compared in the experiments:

Sampling {pi} {qj}scheme

user pi ∝ |Ω+
i | qj = 1/n

item-f pi = 1/m qj ∝ |Ω̄+
j |

item-w pi = 1/m qj ∝ m− |Ω̄+
j |

item-s pi = 1/m qj ∝ 1/|Ω̄+
j |

uniform pi = 1/m qj = 1/n

For the Ensemble approach [21], 20 Subsampled models
with the uniform sampling scheme are aggregated to
generate the ensemble model as follows:

AEnsemble =
1

20

20∑
s=1

WsH
>
s ,

where (Ws, Hs) is the s-th Subsampled model. The
result for Ensemble is derived from the ranking induced
by AEnsemble.

B.1.2 Some Details of BPR BPR is an approach for
one-class collaborative filtering by solving the following
optimization problem:

min
W,H

m∑
i=1

∑
(j+,j−)∈Ω+

i ×Ω−i

{
log
(
1 + exp

(
−w>i

(
hj+ − hj−

)))

+
λ

2

(
‖wi‖2 + ‖hj+‖2 + ‖hj−‖2

)}
.

(B.4)

In (B.4), all the pairs between observed items and
unknown items are included into the formulation by a
logistic loss. It can be seen as an approach to minimize
the empirical AUC [25]. As the number of pairs is
very large, [25] proposes to apply SG to solve (B.4).
At each SG step for BPR, a pair is selected randomly
for the update. In our experiments, we use the BPR
implementation available in LIBMF [6].

B.2 Evaluation Criteria For the i-th user, let
Ωtest(i) be the set of candidate items whose preference
is predicted and evaluated in the testing phase. We
exclude Ω+

i because the model has been trained to fit
data in Ω+. Thus Ωtest(i) = [n]\Ω+

i . We further denote
Ω+

test(i) ⊂ Ωtest(i) as the subset of items which receive
a positive response from the i-th user. Let

πi : Ωtest(i)→ {1, . . . , |Ωtest(i)|}

be the ranking predicted by the recommender system
(i.e., πi(j) = rank of the j-th item) and π−1

i (r) be the
item with rank r; that is, πi(π

−1
i) = r. We consider the

following evaluation criteria.
� nDCG@p: normalized discounted cumulated gain.

The following criterion is widely used to evaluate the
performance of the top p-ranked items.

DCGi@p(πi) =

p∑
r=1

[π−1
i (r) ∈ Ω+

test(i)]

log2(1 + r)
.

This value might be in a different range depending
on p and |Ω+

test(i)|, so people usually consider the
normalized DCG as follows:

nDCGi@p = 100× DCGi@p(πi)

DCGi@pmax
,

where DCGi@p
max = maxπ DCGi@p(π). In this paper,

we report the average nDCG@p, i.e.,
∑
i nDCGi@p/m,

among all users.
� nHLU: normalized half life utility. HLU was first

proposed in [3, Eq. 5] to evaluate the performance
of recommender systems. For one-class recommender
systems (i.e., the ground truth rating is either 1 or
0), the HLU for a user, HLUi(πi), can be defined as
follows

HLUi(πi) =
∑

j∈Ω+
test(i)

1

2(πi(j)−1)/(β−1)
,

where β is the “half life” parameter denoting the rank
of the item on the list such that there is a 50-50 chance
the i-th user will review that item.9 Following the
usage in [3, 20, 21], β = 5 is used in our experiments.
Similar to nDCG, the normalized half life utility can
be defined as follows:

nHLUi = 100× HLUi(πi)

HLUmax
i

,

where HLUmax
i ≡ maxπ HLUi(π). In this paper, we

report the average nHLU,
∑
i nHLUi/m, among all

users.10

9Note that there is a typo in the description of HLU in [20, 21],

where “/” is missing.
10This is slightly different from the original formulation in [3],

where 100×
∑

i HLUi(πi)∑
i HLU

max
i

is reported.

� MAP: mean average precision. For the i-th user, the
average precision APi is defined as follows:

APi =

∑
j∈Ω+

test(i)
100× |{j

′∈Ω+
test(i):πi(j

′)≤πi(j)}|
πi(j)

|Ω+
test(i)|

.

In this paper, we report MAP, which is
∑
i APi/m.

� AUC: area under the ROC curve. For the i-th user,
this is equivalent to the ratio of violating pairs among
all the pairs from Ω+

test(i) × Ω−test(i), and can be
computed as follows [25]:

AUCi =
|{(j, j′) ∈ Ω+

test(i)× Ω−test(i) : πi(j) > πi(j
′)}|

|Ω+
test(i)| × |Ω−test(i)|

.

In this paper, we report the average AUC,∑
i AUCi/m, among all users.

Among these four evaluation criteria, nDCG and nHLU
are more appropriate to evaluate the ranking perfor-
mance of recommendation systems, as they put more
weights on the top-ranked items. On the other hand,
AUC is less appropriate because of its insensitivity to
the position of the violating pairs.

B.3 Analysis of Sampling Schemes for the Sub-
sampled Approach The numbers reported for the Sub-
sampled approach in Table 4 are the best results from
all the sampling schemes. Table 6 shows the detailed
comparison among various sub-sampling schemes. We
can make the following observations:
� The “uniform” scheme performs the best in general,

and the “user” scheme is also competitive among all
sampling schemes. This result is slightly different
from the conclusion in [21], where the “user” scheme
is slightly better than the “uniform” scheme.

� The “item-f” scheme is considered as a baseline
in [22]. However, this scheme gives the worst per-
formance among all schemes considered here.

C More Discussions

C.1 Performance versus Various Values of α To
better understand the influence of the α parameter in
(4.21), we generate a synthetic ground truth matrix A
as follows:
� W ← rand(m, k) and H ← rand(n, k)
� Ā←WH>

� Aij ←

{
1 if Āij ≥ ā,
0 otherwise,

where ā is the value such that

|{Āij ≥ ā}| = 0.2×mn.

As mentioned earlier, theoretical results in [10] suggest
that the best α is a function of ρ̄, which is the ratio
of the observed positive entries over the entire positive

entries. For a given ρ̄, we construct a training set Ω+(ρ̄)
by sampling positive entries from A such that

|Ω+(ρ̄)|
|{(i, j) : Aij = 1}|

= ρ̄.

As the ground truth is available in the synthetic data
set, we report the ranking performance over the entire
item set. That is, Ωtest(i) = {1, . . . , n},∀i because we
do not exclude Ω+

i .
Figures 2–3 show the results on synthetic matrices

A of various sizes (m = n = 500, m = n = 1, 000,
and m = n = 5, 000) with k = 10. The x-axis denotes
the value of α used in the optimization problem, and
we report results for α ∈ {2−20, 2−18, . . . , 28}. The
y-axis denotes the performance for each α with the
best λ selected from {10−12, . . . , 10−1}. Each curve in
Figures 2–3 corresponds to a pair of training and test
sets generated under a specific ρ̄. Four values of ρ̄ are
considered: 0.95, 0.1, 0.05, and 0.01. We make the
following observations:
� The shape of curves for ρ̄ = 0.1 and ρ̄ = 0.05 is

concave, which means that the best α cannot be
too large or too small. The result reconfirms the
discussion in Section 5. Therefore, suitable validation
procedures are required to get the best performance.

� The theoretical results by [10] suggest that with an
appropriate choice of λ, thresholding parameter ā and

α =
ρ̄

2− ρ̄
,

the Full approach can recover the ground truth binary
matrix A from WH> obtained by (1.4) with high
probability (i.e., high point-wise accuracy). This
suggests that if ρ̄ is close to 1, the best α should also
close to 1; on the other hand, if ρ̄ is close to 0, the
best α should also close to 0. Although the evaluation
criteria considered here is not the point-wise accuracy
considered in [10], we can still observe a similar trend
on these ranking-based criteria.

C.2 Regularization for One-Class MF In this
section, we explain what we claimed earlier in Sec-
tion 3.2 that the second term of (3.20),

∑
i

∑
j `
−
ij , can

be considered as a regularization function for one-class
MF. Based on the definition on `−ij , it is not hard to see

m∑
i=1

n∑
j=1

`−ij(ā,w
>
i hj) = ‖Cw(WH> − āE)Ch‖2F

+ λ‖DwW‖2F + λ‖DhH‖2F ,(C.5)

where E is the all one matrix, Cw =
√
diag(p) and

Ch =
√
diag(q) are diagonal matrices with

(Cw)ii =
√
pi, ∀i, and (Ch)jj =

√
qj , ∀j

Table 5: Range of parameters considered for each one-class MF approach.

Parameter Subsampled Ensemble Full BPR

λ {10−4, ..., 10−1} {10−4, ..., 10−1} {10−4, ..., 10−1} {10−8, ..., 10−1}
k {24, 25, 26} {24, 25, 26} {24, 25, 26} 26

Cij = α,∀(i, j) /∈ Ω+ 1 1 {2−5, 2−3, 2−1, 20} 1
|Ω−|/|Ω+| {1, 2} {1, 2} - -

sampling schemes
user/item-f/item-w/item-s user/item-f/item-w/item-s

- -
uniform/uniform-ens uniform/uniform-ens

Table 6: Comparison among various sampling schemes for the Subsampled approach. See detailed descriptions for
each sampling scheme in Section B.1.1.

(a) delicious

Scheme
nDCG

nHLU MAP AUC
@1 @5 @10

user 41.40 32.62 27.74 26.58 14.37 0.85985
item-f 1.55 1.84 1.89 1.98 2.04 0.69648
item-w 39.15 31.21 26.63 25.65 14.15 0.86687
item-s 29.65 24.05 21.92 21.35 12.26 0.84855

uniform 38.40 30.94 26.05 25.29 13.94 0.86578

(b) ml1m

nDCG
nHLU MAP AUC

@1 @5 @10

13.16 11.54 12.23 12.87 9.14 0.93290
0.78 0.94 1.17 1.33 1.47 0.78903

13.56 13.67 14.74 15.67 11.12 0.93723
7.88 7.08 8.06 8.53 5.80 0.90470

14.69 13.89 14.94 15.79 11.17 0.93743
(c) ml10m

Scheme
nDCG

nHLU MAP AUC
@1 @5 @10

user 10.55 9.55 10.17 10.87 8.17 0.97250
item-f 0.91 1.36 1.93 2.27 1.95 0.85310
item-w 9.47 9.99 11.96 13.18 9.92 0.97304
item-s 2.84 3.29 4.21 4.81 4.35 0.95693

uniform 9.33 10.07 12.10 13.31 10.00 0.97293

(d) netflix

nDCG
nHLU MAP AUC

@1 @5 @10

10.26 9.61 9.96 10.48 7.54 0.97192
1.26 1.74 2.07 2.27 1.66 0.85662

10.43 10.02 11.01 11.77 8.75 0.97212
4.45 4.70 5.37 5.80 4.69 0.95741

10.62 10.22 11.27 12.03 8.91 0.97224

Figure 2: Performance versus various values of α on synthetic data sets with m = n = 500.

Figure 3: Performance versus various values of α on synthetic data sets with m = n = 1, 000.

and Dw and Dh are diagonal matrices11 with

(Dw)ii =
√
n|Ω+

i |/
(
n+ |Ω+

i |
)
, ∀i

(Dh)jj =
√
m|Ω̄+

j |/
(
m+ |Ω̄+

j |
)
, ∀j.

As we can see, (C.5), derived from the summation of
`− terms, can be regarded as a special regularization
function on the model W and H which encourages
the structure that all the missing entries are close to
ā. From this point of view, the Full approach can be
considered as an empirical risk minimization problem
in the following form:

∑
(i,j)∈Ω+

`+(Aij ,w
>
i hh) +R(W,H),

where the loss function `+ only applies to the explicitly
observed entries, while the implicit responses are cap-
tured by the regularization R(W,H). Interestingly, this
interpretation to incorporate implicit responses into reg-
ularization also fits in a recent proposed implicit matrix
factorization approach [9], where the likelihood of A for

11If all the regularization are distributed to `−ij terms in the

reformulation (3.20), (Dw)ii =
√
λ/λi and (Dh)jj =

√
λ/λ̄j .

a given model (W,H) is

logPJA |W,HK =

 ∑
(i,j):Aij>0

Aij log(w>i hj)−Aij !

− e>WH>e,(C.6)

where Aij ! is the factorial of the integer rating Aij , and
the corresponding MLE problem is

(C.7) min
W,H

∑
(i,j):Aij>0

−Aij log(w>i hj)︸ ︷︷ ︸
`+ij

+ e>WH>e︸ ︷︷ ︸
R(W,H)

.

We can clearly see that the first term of (C.7) corre-
sponds to the Poisson loss for the explicitly observed
positive ratings, while the second term can be regarded
a regularizer accounting for the implicit responses.

C.3 Computational Issue in Prediction With
the proposed efficient algorithms in Section 3, the time
complexity of the training procedure for one-class MF
is only linear in |Ω+| for both Full and Subsampled
approaches.

Test time is an important concern for one-class MF
because for each user i, we must calculate w>i hj ,∀j to
find the top items. However, item prediction remains a
computational challenge. Given a recommender model
(W,H) with m users and n items, item prediction for
the i-th user requires the ranking or the maximum over
n −

∣∣Ω+
i

∣∣ inner products (i.e, w>i hj , j ∈ [n] \ Ω+
i),

which is close to O(nk) as
∣∣Ω+
i

∣∣ is usually small. Thus,
item prediction for all the m users requires O(mnk)
operations, which can be orders of magnitude more
than the training phase. As a result, the Ensemble
approach particularly suffers from lengthy test time
because the use of 20 models causes a 20-fold increase
of the prediction cost. For example, the test time
for yahoo-music is about 70 times more than the time
required for netflix, so we omit the experiments for
Subsampled/Ensemble in Table 4. There have been a few
recent works about how to reduce the time complexity of
searching the maximum of inner products [1, 2, 19, 26].

	Introduction
	Existing Studies on Subsampled and Full Approaches
	The Full Approach
	The Subsampled Approach

	Efficient Algorithms for the Full Approach
	Coordinate Descent (CD)
	Implementation Details
	Related Works

	Stochastic Gradient (SG)

	Experimental Results
	Comparison: Optimization for Full
	Comparison: Full versus Subsampled

	Discussions and Conclusions
	Additional Details for Algorithms
	Alternating Least Squares (ALS)
	Stochastic Gradient (SG)

	Experiments Details
	Implementation Details
	Subsampled and Ensemble: Sampling Schemes
	Some Details of BPR

	Evaluation Criteria
	Analysis of Sampling Schemes for the Subsampled Approach

	More Discussions
	Performance versus Various Values of
	Regularization for One-Class MF
	Computational Issue in Prediction

