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1 Department of Computer Science and Information Engineering
National Taiwan University

Taipei 106, Taiwan
2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract. We briefly describe the main ideas of statistical learning theory, sup-
port vector machines (SVMs), and kernel feature spaces. We place particular em-
phasis on a description of the so-calledν-SVM, including details of the algorithm
and its implementation, theoretical results, and practical applications.

1 An Introductory Example

Suppose we are given empirical data

(x1, y1), . . . , (xm, ym) ∈ X × {±1}. (1)

Here, thedomainX is some nonempty set that thepatternsxi are taken from; theyi

are calledlabelsor targets.
Unless stated otherwise, indicesi andj will always be understood to run over the

training set, i.e.,i, j = 1, . . . , m.
Note that we have not made any assumptions on the domainX other than it being a

set. In order to study the problem of learning, we need additional structure. In learning,
we want to be able togeneralizeto unseen data points. In the case of pattern recognition,
this means that given some new patternx ∈ X , we want to predict the corresponding
y ∈ {±1}. By this we mean, loosely speaking, that we choosey such that(x, y) is in
some sense similar to the training examples. To this end, we need similarity measures in
X and in{±1}. The latter is easy, as two target values can only be identical or different.
For the former, we require a similarity measure

k : X × X → R,

(x, x′) 7→ k(x, x′), (2)

i.e., a function that, given two examplesx andx′, returns a real number characterizing
their similarity. For reasons that will become clear later, the functionk is called akernel
([24], [1], [8]).

A type of similarity measure that is of particular mathematical appeal are dot prod-
ucts. For instance, given two vectorsx,x′ ∈ RN , the canonical dot product is defined

? Parts of the present article are based on [31].



as

(x · x′) :=
N∑

i=1

(x)i(x′)i. (3)

Here,(x)i denotes theith entry ofx.
The geometrical interpretation of this dot product is that it computes the cosine of

the angle between the vectorsx andx′, provided they are normalized to length1. More-
over, it allows computation of the length of a vectorx as

√
(x · x), and of the distance

between two vectors as the length of the difference vector. Therefore, being able to
compute dot products amounts to being able to carry out all geometrical constructions
that can be formulated in terms of angles, lengths and distances.

Note, however, that we have not made the assumption that the patterns live in a
dot product space. In order to be able to use a dot product as a similarity measure, we
therefore first need to transform them into some dot product spaceH, which need not
be identical toRN . To this end, we use a map

Φ : X → H
x 7→ x. (4)

The spaceH is called afeature space. To summarize, there are three benefits to trans-
form the data intoH
1. It lets us define a similarity measure from the dot product inH,

k(x, x′) := (x · x′) = (Φ(x) · Φ(x′)). (5)

2. It allows us to deal with the patterns geometrically, and thus lets us study learning
algorithm using linear algebra and analytic geometry.

3. The freedom to choose the mappingΦ will enable us to design a large variety of
learning algorithms. For instance, consider a situation where the inputs already live
in a dot product space. In that case, we could directly define a similarity measure
as the dot product. However, we might still choose to first apply a nonlinear mapΦ
to change the representation into one that is more suitable for a given problem and
learning algorithm.

We are now in the position to describe a pattern recognition learning algorithm that
is arguable one of the simplest possible. The basic idea is to compute the means of the
two classes in feature space,

c+ =
1

m+

∑

{i:yi=+1}
xi, (6)

c− =
1

m−

∑

{i:yi=−1}
xi, (7)

wherem+ andm− are the number of examples with positive and negative labels, re-
spectively (see Figure 1). We then assign a new pointx to the class whose mean is
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Fig. 1. A simple geometric classification algorithm: given two classes of points (depicted by ‘o’
and ‘+’), compute their meansc+, c− and assign a test patternx to the one whose mean is closer.
This can be done by looking at the dot product betweenx − c (wherec = (c+ + c−)/2) and
w := c+ − c−, which changes sign as the enclosed angle passes throughπ/2. Note that the
corresponding decision boundary is a hyperplane (the dotted line) orthogonal tow (from [31]).

closer to it. This geometrical construction can be formulated in terms of dot products.
Half-way in betweenc+ andc− lies the pointc := (c+ +c−)/2. We compute the class
of x by checking whether the vector connectingc andx encloses an angle smaller than
π/2 with the vectorw := c+ − c− connecting the class means, in other words

y = sgn ((x− c) · w)
y = sgn ((x− (c+ + c−)/2) · (c+ − c−))

= sgn ((x · c+)− (x · c−) + b). (8)

Here, we have defined the offset

b :=
1
2

(‖c−‖2 − ‖c+‖2
)
. (9)

It will be proved instructive to rewrite this expression in terms of the patternsxi in
the input domainX . To this end, note that we do not have a dot product inX , all we
have is the similarity measurek (cf. (5)). Therefore, we need to rewrite everything in
terms of the kernelk evaluated on input patterns. To this end, substitute (6) and (7) into
(8) to get thedecision function

y = sgn


 1

m+

∑

{i:yi=+1}
(x · xi)− 1

m−

∑

{i:yi=−1}
(x · xi) + b




= sgn


 1

m+

∑

{i:yi=+1}
k(x, xi)− 1

m−

∑

{i:yi=−1}
k(x, xi) + b


 . (10)



Similarly, the offset becomes

b :=
1
2


 1

m2−

∑

{(i,j):yi=yj=−1}
k(xi, xj)− 1

m2
+

∑

{(i,j):yi=yj=+1}
k(xi, xj)


 . (11)

Let us consider one well-known special case of this type of classifier. Assume that the
class means have the same distance to the origin (henceb = 0), and thatk can be viewed
as a density, i.e., it is positive and has integral1,

∫

X
k(x, x′)dx = 1 for all x′ ∈ X . (12)

In order to state this assumption, we have to require that we can define an integral on
X .

If the above holds true, then (10) corresponds to the so-called Bayes decision bound-
ary separating the two classes, subject to the assumption that the two classes were gen-
erated from two probability distributions that are correctly estimated by theParzen
windowsestimators of the two classes,

p1(x) :=
1

m+

∑

{i:yi=+1}
k(x, xi) (13)

p2(x) :=
1

m−

∑

{i:yi=−1}
k(x, xi). (14)

Given some pointx, the label is then simply computed by checking which of the two,
p1(x) or p2(x), is larger, which directly leads to (10). Note that this decision is the best
we can do if we have no prior information about the probabilities of the two classes.
For further details, see [31].

The classifier (10) is quite close to the types of learning machines that we will
be interested in. It is linear in the feature space, and while in the input domain, it is
represented by a kernel expansion in terms of the training points. It is example-based
in the sense that the kernels are centered on the training examples, i.e., one of the two
arguments of the kernels is always a training example. The main points that the more
sophisticated techniques to be discussed later will deviate from (10) are in the selection
of the examples that the kernels are centered on, and in the weights that are put on the
individual data in the decision function. Namely, it will no longer be the case thatall
training examples appear in the kernel expansion, and the weights of the kernels in the
expansion will no longer be uniform. In the feature space representation, this statement
corresponds to saying that we will study all normal vectorsw of decision hyperplanes
that can be represented as linear combinations of the training examples. For instance,
we might want to remove the influence of patterns that are very far away from the
decision boundary, either since we expect that they will not improve the generalization
error of the decision function, or since we would like to reduce the computational cost
of evaluating the decision function (cf. (10)). The hyperplane will then only depend on
a subset of training examples, calledsupport vectors.



2 Learning Pattern Recognition from Examples

With the above example in mind, let us now consider the problem of pattern recognition
in a more formal setting ([37], [38]), following the introduction of [30]. In two-class
pattern recognition, we seek to estimate a function

f : X → {±1} (15)

based on input-output training data (1). We assume that the data were generated inde-
pendently from some unknown (but fixed) probability distributionP (x, y). Our goal
is to learn a function that will correctly classify unseen examples(x, y), i.e., we want
f(x) = y for examples(x, y) that were also generated fromP (x, y).

If we put no restriction on the class of functions that we choose our estimatef
from, however, even a function which does well on the training data, e.g. by satisfying
f(xi) = yi for all i = 1, . . . , m, need not generalize well to unseen examples. To see
this, note that for each functionf and any test set(x̄1, ȳ1), . . . , (x̄m̄, ȳm̄) ∈ RN×{±1},
satisfying{x̄1, . . . , x̄m̄} ∩ {x1, . . . , xm} = {}, there exists another functionf∗ such
that f∗(xi) = f(xi) for all i = 1, . . . , m, yet f∗(x̄i) 6= f(x̄i) for all i = 1, . . . , m̄.
As we are only given the training data, we have no means of selecting which of the two
functions (and hence which of the completely different sets of test label predictions) is
preferable. Hence, only minimizing the training error (orempirical risk),

Remp[f ] =
1
m

m∑

i=1

1
2
|f(xi)− yi|, (16)

does not imply a small test error (calledrisk), averaged over test examples drawn from
the underlying distributionP (x, y),

R[f ] =
∫

1
2
|f(x)− y| dP (x, y). (17)

Statistical learning theory ([41], [37], [38], [39]), or VC (Vapnik-Chervonenkis) theory,
shows that it is imperative to restrict the class of functions thatf is chosen from to one
which has acapacitythat is suitable for the amount of available training data. VC theory
providesboundson the test error. The minimization of these bounds, which depend on
both the empirical risk and the capacity of the function class, leads to the principle of
structural risk minimization([37]). The best-known capacity concept of VC theory is
the VC dimension, defined as the largest numberh of points that can be separated in
all possible ways using functions of the given class. An example of a VC bound is the
following: if h < m is the VC dimension of the class of functions that the learning
machine can implement, then for all functions of that class, with a probability of at
least1− η, the bound

R(f) ≤ Remp(f) + φ

(
h

m
,
log(η)

m

)
(18)

holds, where theconfidence termφ is defined as

φ

(
h

m
,
log(η)

m

)
=

√
h

(
log 2m

h + 1
)− log(η/4)

m
. (19)



Tighter bounds can be formulated in terms of other concepts, such as theannealed VC
entropyor theGrowth function. These are usually considered to be harder to evaluate,
but they play a fundamental role in the conceptual part of VC theory ([38]). Alterna-
tive capacity concepts that can be used to formulate bounds include thefat shattering
dimension([2]).

The bound (18) deserves some further explanatory remarks. Suppose we wanted to
learn a “dependency” whereP (x, y) = P (x) · P (y), i.e., where the patternx contains
no information about the labely, with uniformP (y). Given a training sample of fixed
size, we can then surely come up with a learning machine which achieves zero training
error (provided we have no examples contradicting each other). However, in order to
reproduce the random labelling, this machine will necessarily require a large VC di-
mensionh. Thus, the confidence term (19), increasing monotonically withh, will be
large, and the bound (18) willnot support possible hopes that due to the small training
error, we should expect a small test error. This makes it understandable how (18) can
hold independent of assumptions about the underlying distributionP (x, y): it always
holds (provided thath < m), but it does not always make a nontrivial prediction — a
bound on an error rate becomes void if it is larger than the maximum error rate. In order
to get nontrivial predictions from (18), the function space must be restricted such that
the capacity (e.g. VC dimension) is small enough (in relation to the available amount
of data).

3 Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can be
performed in a dot product space (such as the feature space that we introduced previ-
ously). As described in the previous section, to design learning algorithms, one needs
to come up with a class of functions whose capacity can be computed.

[42] considered the class of hyperplanes

(w · x) + b = 0 w ∈ RN , b ∈ R, (20)

corresponding to decision functions

f(x) = sgn ((w · x) + b), (21)

and proposed a learning algorithm for separable problems, termed theGeneralized Por-
trait, for constructingf from empirical data. It is based on two facts. First, among all
hyperplanes separating the data, there exists a unique one yielding the maximum margin
of separation between the classes,

max
w,b

min{‖x− xi‖ : x ∈ RN , (w · x) + b = 0, i = 1, . . . , m}. (22)

Second, the capacity decreases with increasing margin.
To construct thisOptimal Hyperplane(cf. Figure 2), one solves the following opti-

mization problem:

minimize
w,b

1
2
‖w‖2

subject to yi · ((w · xi) + b) ≥ 1, i = 1, . . . , m. (23)
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Fig. 2.A binary classification toy problem: separate balls from diamonds. Theoptimal hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and
intersects it half-way between the two classes. The problem is separable, so there exists a weight
vectorw and a thresholdb such thatyi · ((w · xi) + b) > 0 (i = 1, . . . , m). Rescalingw andb
such that the point(s) closest to the hyperplane satisfy|(w · xi) + b| = 1, we obtain acanonical
form (w, b) of the hyperplane, satisfyingyi ·((w ·xi)+b) ≥ 1. Note that in this case, themargin,
measured perpendicularly to the hyperplane, equals2/‖w‖. This can be seen by considering two
pointsx1,x2 on opposite sides of the margin, i.e.,(w · x1) + b = 1, (w · x2) + b = −1, and
projecting them onto the hyperplane normal vectorw/‖w‖ (from [29]).

A way to solve (23) is through its Lagrangian dual:

max
α≥0

(min
w,b

L(w, b, α)), (24)

where

L(w, b, α) =
1
2
‖w‖2 −

m∑

i=1

αi (yi · ((xi · w) + b)− 1) . (25)

The LagrangianL has to be minimized with respect to theprimal variablesw and
b and maximized with respect to thedual variablesαi. For a nonlinear problem like
(23), called the primal problem, there are several closely related problems of which
the Lagrangian dual is an important one. Under certain conditions, the primal and dual
problems have the same optimal objective values. Therefore, we can instead solve the
dual which may be an easier problem than the primal. In particular, we will see in
Section 4 that when working in feature spaces, solving the dual may be the only way to
train SVM.

Let us try to get some intuition for this primal-dual relation. Assume(w̄, b̄) is an
optimal solution of the primal with the optimal objective valueγ = 1

2‖w̄‖2. Thus, no
(w, b) satisfies

1
2
‖w‖2 < γ andyi · ((w · xi) + b) ≥ 1, i = 1, . . . , m. (26)



With (26), there is̄α ≥ 0 such that for allw, b

1
2
‖w‖2 − γ −

m∑

i=1

ᾱi (yi · ((xi · w) + b)− 1) ≥ 0. (27)

We do not provide a rigorous proof here but details can be found in, for example, [5].
Note that for general convex programming this result requires some additional condi-
tions on constraints which are now satisfied by our simple linear inequalities.

Therefore, (27) implies

max
α≥0

min
w,b

L(w, b, α) ≥ γ. (28)

On the other hand, for anyα,

min
w,b

L(w, b,α) ≤ L(w̄, b̄,α),

so

max
α≥0

min
w,b

L(w, b,α) ≤ max
α≥0

L(w̄, b̄,α) =
1
2
‖w̄‖2 = γ. (29)

Therefore, with (28), the inequality in (29) becomes an equality. This property is
the strong duality where the primal and dual have the same optimal objective value. In
addition, putting(w̄, b̄) into (27), withᾱi ≥ 0 andyi · ((xi · w̄) + b̄)− 1 ≥ 0,

ᾱi · [yi((xi · w̄) + b̄)− 1] = 0, i = 1, . . . , m, (30)

which is usually called the complementarity condition.
To simplify the dual, asL(w, b,α) is convex whenα is fixed, for any givenα,

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b, α) = 0, (31)

leads to
m∑

i=1

αiyi = 0 (32)

and

w =
m∑

i=1

αiyixi. (33)

As α is now given, we may wonder what (32) means. From the definition of the La-
grangian, if

∑m
i=1 αiyi 6= 0, we can decrease−b

∑m
i=1 αiyi in L(w, b, α) as much as

we want. Therefore, by substituting (33) into (24), the dual problem can be written as

max
α≥0

{∑m
i=1 αi − 1

2

∑m
i,j=1 αiαjyiyj(xi · xj) if

∑m
i=1 αiyi = 0,

−∞ if
∑m

i=1 αiyi 6= 0.
(34)



As −∞ is definitely not the maximal objective value of the dual, the dual optimal so-
lution does not happen when

∑m
i=1 αiyi 6= 0. Therefore, the dual problem is simplified

to finding multipliersαi which

maximize
α∈Rm

m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyj(xi · xj) (35)

subject to αi ≥ 0, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (36)

This is the dual SVM problem that we usually refer to. Note that (30), (32),αi ≥ 0∀i,
and (33), are called the Karush-Kuhn-Tucker (KKT) optimality conditions of the primal
problem. Except an abnormal situation where all optimalαi are zero,b can be computed
using (30).

The discussion from (31) to (33) implies that we can consider a different form of
dual problem:

maximize
w,b,α≥0

L(w, b,α)

subject to
∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α) = 0.

(37)

This is the so calledWolfedual for convex optimization, which is a very early work in
duality [45]. For convex anddifferentiableproblems, it is equivalent to the Lagrangian
dual though the derivation of the Lagrangian dual more easily shows the strong duality
results. Some notes about the two duals are in, for example, [3, Section 5.4].

Following the above discussion, the hyperplane decision function can be written as

f(x) = sgn

(
m∑

i=1

yiαi · (x · xi) + b

)
. (38)

The solution vectorw thus has an expansion in terms of a subset of the training pat-
terns, namely those patterns whoseαi is non-zero, calledSupport Vectors. By (30), the
Support Vectors lie on the margin (cf. Figure 2). All remaining examples of the training
set are irrelevant: their constraint (23) does not play a role in the optimization, and they
do not appear in the expansion (33). This nicely captures our intuition of the problem:
as the hyperplane (cf. Figure 2) is completely determined by the patterns closest to it,
the solution should not depend on the other examples.

The structure of the optimization problem closely resembles those that typically
arise in Lagrange’s formulation of mechanics. Also there, often only a subset of the
constraints become active. For instance, if we keep a ball in a box, then it will typically
roll into one of the corners. The constraints corresponding to the walls which are not
touched by the ball are irrelevant, the walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical in-
terpretation of optimal margin hyperplanes ([9]): If we assume that each support vector
xi exerts a perpendicular force of sizeαi and signyi on a solid plane sheet lying along
the hyperplane, then the solution satisfies the requirements of mechanical stability. The



constraint (32) states that the forces on the sheet sum to zero; and (33) implies that the
torques also sum to zero, via

∑
i xi × yiαi · w/‖w‖ = w× w/‖w‖ = 0.

There are theoretical arguments supporting the good generalization performance of
the optimal hyperplane ([41], [37], [4], [33], [44]). In addition, it is computationally
attractive, since it can be constructed by solving a quadratic programming problem.

4 Optimal Margin Support Vector Classifiers

We now have all the tools to describe support vector machines ([38], [31]). Everything
in the last section was formulated in a dot product space. We think of this space as the
feature spaceH described in Section 1. To express the formulas in terms of the input
patterns living inX , we thus need to employ (5), which expresses the dot product of
bold face feature vectorsx,x′ in terms of the kernelk evaluated on input patternsx, x′,

k(x, x′) = (x · x′). (39)

This can be done since all feature vectors only occurred in dot products. The weight
vector (cf. (33)) then becomes an expansion in feature space,1 and will thus typically
no longer correspond to the image of a single vector from input space. We thus obtain
decision functions of the more general form (cf. (38))

f(x) = sgn

(
m∑

i=1

yiαi · (Φ(x) · Φ(xi)) + b

)

= sgn

(
m∑

i=1

yiαi · k(x, xi) + b

)
, (40)

and the following quadratic program (cf. (35)):

maximize
α∈Rm

W (α) =
m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyjk(xi, xj) (41)

subject to αi ≥ 0, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (42)

Working in the feature space somewhat forces us to solve the dual problem instead
of the primal. The dual problem has the same number of variables as the number of
training data. However, the primal problem may have a lot more (even infinite) variables
depending on the dimensionality of the feature space (i.e. the length ofΦ(x)). Though
our derivation of the dual problem in Section 3 considers problems in finite-dimensional
spaces, it can be directly extended to problems in Hilbert spaces [20].

1 This constitutes a special case of the so-called representer theorem, which states that under
fairly general conditions, the minimizers of objective functions which contain a penalizer in
terms of a norm in feature space will have kernel expansions ([43], [31]).



Fig. 3. Example of a Support Vector classifier found by using a radial basis function kernel
k(x, x′) = exp(−‖x − x′‖2). Both coordinate axes range from -1 to +1. Circles and disks
are two classes of training examples; the middle line is the decision surface; the outer lines pre-
cisely meet the constraint (23). Note that the Support Vectors found by the algorithm (marked by
extra circles) are not centers of clusters, but examples which are critical for the given classifica-
tion task. Grey values code the modulus of the argument

Pm
i=1 yiαi ·k(x, xi)+ b of the decision

function (40) (from [29]).)

5 Kernels

We now take a closer look at the issue of the similarity measure, or kernel,k. In this
section, we think ofX as a subset of the vector spaceRN , (N ∈ N), endowed with the
canonical dot product (3).

5.1 Product Features

Suppose we are given patternsx ∈ RN where most information is contained in thedth
order products (monomials) of entries[x]j of x,

[x]j1 · · · · · [x]jd
, (43)

wherej1, . . . , jd ∈ {1, . . . , N}. In that case, we might prefer toextractthese product
features, and work in the feature spaceH of all products ofd entries. In visual recog-
nition problems, where images are often represented as vectors, this would amount to
extracting features which are products of individual pixels.



For instance, inR2, we can collect all monomial feature extractors of degree2 in
the nonlinear map

Φ : R2 → H = R3 (44)

([x]1, [x]2) 7→ ([x]21, [x]22, [x]1[x]2). (45)

This approach works fine for small toy examples, but it fails for realistically sized prob-
lems: forN -dimensional input patterns, there exist

NH =
(N + d− 1)!
d!(N − 1)!

(46)

different monomials (43), comprising a feature spaceH of dimensionalityNH. For
instance, already16 × 16 pixel input images and a monomial degreed = 5 yield a
dimensionality of1010.

In certain cases described below, there exists, however, a way ofcomputing dot
productsin these high-dimensional feature spaces without explicitly mapping into them:
by means of kernels nonlinear in the input spaceRN . Thus, if the subsequent process-
ing can be carried out using dot products exclusively, we are able to deal with the high
dimensionality.

5.2 Polynomial Feature Spaces Induced by Kernels

In order to compute dot products of the form(Φ(x) · Φ(x′)), we employ kernel repre-
sentations of the form

k(x, x′) = (Φ(x) · Φ(x′)), (47)

which allow us to compute the value of the dot product inH without having to carry
out the mapΦ. This method was used by Boser et al. to extend theGeneralized Por-
trait hyperplane classifier [41] to nonlinear Support Vector machines [8]. Aizerman et
al. calledH the linearization space, and used in the context of the potential function
classification method to express the dot product between elements ofH in terms of
elements of the input space [1].

What doesk look like for the case of polynomial features? We start by giving an
example ([38]) forN = d = 2. For the map

Φ2 : ([x]1, [x]2) 7→ ([x]21, [x]22, [x]1[x]2, [x]2[x]1), (48)

dot products inH take the form

(Φ2(x) · Φ2(x′)) = [x]21[x
′]21 + [x]22[x

′]22 + 2[x]1[x]2[x′]1[x′]2 = (x · x′)2, (49)

i.e., the desired kernelk is simply the square of the dot product in input space. Note that
it is possible to modify(x · x′)d such that it maps into the space of all monomialsup to
degreed, defining ([38])

k(x, x′) = ((x · x′) + 1)d. (50)



5.3 Examples of Kernels

When considering feature maps, it is also possible to look at things the other way
around, and start with the kernel. Given a kernel function satisfying a mathematical
condition termedpositive definiteness, it is possible to construct a feature space such
that the kernel computes the dot product in that feature space. This has been brought
to the attention of the machine learning community by [1], [8], and [38]. In functional
analysis, the issue has been studied under the heading ofReproducing kernel Hilbert
space (RKHS).

Besides (50), a popular choice of kernel is the Gaussian radial basis function ([1])

k(x, x′) = exp
(−γ‖x− x′‖2) . (51)

An illustration is in Figure 3. For an overview of other kernels, see [31].

6 ν-Soft Margin Support Vector Classifiers

In practice, a separating hyperplane may not exist, e.g. if a high noise level causes a
large overlap of the classes. To allow for the possibility of examples violating (23), one
introduces slack variables ([15], [38], [32])

ξi ≥ 0, i = 1, . . . , m (52)

in order to relax the constraints to

yi · ((w · xi) + b) ≥ 1− ξi, i = 1, . . . ,m. (53)

A classifier which generalizes well is then found by controlling both the classifier ca-
pacity (via‖w‖) and the sum of the slacks

∑
i ξi. The latter is done as it can be shown

to provide an upper bound on the number of training errors which leads to a convex
optimization problem.

One possible realization,calledC-SVC, of asoft marginclassifier is minimizing the
objective function

τ(w, ξ) =
1
2
‖w‖2 + C

m∑

i=1

ξi (54)

subject to the constraints (52) and (53), for some value of the constantC > 0 deter-
mining the trade-off. Here and below, we use boldface Greek letters as a shorthand
for corresponding vectorsξ = (ξ1, . . . , ξm). Incorporating kernels, and rewriting it
in terms of Lagrange multipliers, this again leads to the problem of maximizing (41),
subject to the constraints

0 ≤ αi ≤ C, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (55)

The only difference from the separable case is the upper boundC on the Lagrange mul-
tipliers αi. This way, the influence of the individual patterns (which could be outliers)
gets limited. As above, the solution takes the form (40).



Another possible realization,calledν-SVC of a soft margin variant of the optimal
hyperplane uses theν-parameterization ([32]). In it, the parameterC is replaced by a
parameterν ∈ [0, 1] which is the lower and upper bound on the number of examples
that are support vectors and that lie on the wrong side of the hyperplane, respectively.

As a primal problem for this approach, termed theν-SV classifier, we consider

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
m

m∑

i=1

ξi (56)

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi, i = 1, . . . , m (57)

and ξi ≥ 0, ρ ≥ 0. (58)

Note that no constantC appears in this formulation; instead, there is a parameterν, and
also an additional variableρ to be optimized. To understand the role ofρ, note that for
ξ = 0, the constraint (57) simply states that the two classes are separated by themargin
2ρ/‖w‖.

To explain the significance ofν, let us first introduce the termmargin error: by this,
we denote training points withξi > 0. These are points which either are errors, or lie
within the margin. Formally, the fraction of margin errors is

Rρ
emp[g] :=

1
m
|{i|yig(xi) < ρ}| . (59)

Here,g is used to denote the argument of the sign in the decision function (40):f =
sgn ◦g. We are now in a position to state a result that explains the significance ofν.

Proposition 1 ([32]).Suppose we runν-SVC with kernel functionk on some data with
the result thatρ > 0. Then

(i) ν is an upper bound on the fraction of margin errors (and hence also on the fraction
of training errors).

(ii) ν is a lower bound on the fraction of SVs.
(iii) Suppose the data(x1, y1), . . . , (xm, ym) were generated iid from a distribution

Pr(x, y) = Pr(x) Pr(y|x), such that neitherPr(x, y = 1) nor Pr(x, y = −1) con-
tains any discrete component. Suppose, moreover, that the kernel used is analytic
and non-constant. With probability1, asymptotically,ν equals both the fraction of
SVs and the fraction of margin errors.

Before we get into the technical details of the dual derivation, let us take a look at
a toy example illustrating the influence ofν (Figure 4). The corresponding fractions of
SVs and margin errors are listed in table 1.

Let us next derive the dual of theν-SV classification algorithm. We consider the
Lagrangian

L(w, ξ, b, ρ, α, β, δ) =
1
2
‖w‖2 − νρ +

1
m

m∑

i=1

ξi

−
m∑

i=1

(αi(yi(〈xi, w〉+ b)− ρ + ξi) + βiξi − δρ), (60)



Fig. 4. Toy problem (task: to separate circles from disks) solved usingν-SV classification, with
parameter values ranging fromν = 0.1 (top left) toν = 0.8 (bottom right). The larger we make
ν, the more points are allowed to lie inside the margin (depicted by dotted lines). Results are
shown for a Gaussian kernel,k(x, x′) = exp(−‖x− x′‖2) (from [31]).

Table 1. Fractions of errors and SVs, along with the margins of class separation, for the toy
example in Figure 4.
Note thatν upper bounds the fraction of errors and lower bounds the fraction of SVs, and that
increasingν, i.e., allowing more errors, increases the margin.

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of errors0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
marginρ/‖w‖ 0.0050.0180.1150.1560.3640.4190.4610.546

using multipliersαi, βi, δ ≥ 0. This function has to be minimized with respect to the
primal variablesw, ξ, b, ρ, and maximized with respect to the dual variablesα, β, δ.
Following the same derivation in (31)–(33), we compute the corresponding partial
derivatives and set them to0, obtaining the following conditions:

w =
m∑

i=1

αiyixi, (61)

αi + βi = 1/m, (62)

m∑

i=1

αiyi = 0, (63)

m∑

i=1

αi − δ = ν. (64)



Again, in theSV expansion(61), theαi that are non-zero correspond to a constraint (57)
which is precisely met.

Substituting (61) and (62) intoL, usingαi, βi, δ ≥ 0, and incorporating kernels
for dot products, leaves us with the following quadratic optimization problem forν-SV
classification:

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj) (65)

subject to 0 ≤ αi ≤ 1
m

, (66)

m∑

i=1

αiyi = 0, (67)

m∑

i=1

αi ≥ ν. (68)

As above, the resulting decision function can be shown to take the form

f(x) = sgn

(
m∑

i=1

αiyik(x, xi) + b

)
. (69)

Compared with theC-SVC dual ((41), (55)), there are two differences. First, there is
an additional constraint (68). Second, the linear term

∑m
i=1 αi no longer appears in the

objective function (65). This has an interesting consequence: (65) is now quadratically
homogeneous inα. It is straightforward to verify that the same decision function is
obtained if we start with the primal function

τ(w, ξ, ρ) =
1
2
‖w‖2 + C

(
−νρ +

1
m

m∑

i=1

ξi

)
, (70)

i.e., if one does useC [31].
The computation of the thresholdb and the margin parameterρ will be discussed in

Section 7.4.
A connection to standard SV classification, and a somewhat surprising interpreta-

tion of the regularization parameterC, is described by the following result:

Proposition 2 (Connectionν-SVC — C-SVC [32]). If ν-SV classification leads to
ρ > 0, thenC-SV classification, withC set a priori to1/mρ, leads to the same decision
function.

For further details on the connection betweenν-SVMs andC-SVMs, see [16, 6]. By
considering the optimalα as a function of parameters, a complete account is as follows:

Proposition 3 (Detailed connectionν-SVC — C-SVC [11]).
∑m

i=1 αi/(Cm) by the
C-SVM is a well defined decreasing function ofC. We can define

lim
C→∞

∑m
i=1 αi

Cm
= νmin ≥ 0 and lim

C→0

∑m
i=1 αi

Cm
= νmax ≤ 1. (71)

Then,



1. νmax = 2min(m+,m−)/m.

2. For anyν > νmax, the dualν-SVM is infeasible. That is, the set of feasible points is
empty. For anyν ∈ (νmin, νmax], the optimal solution set of dualν-SVM is the same
as that of either one or someC-SVM where theseC form an interval. In addition,
the optimal objective value ofν-SVM is strictly positive. For any0 ≤ ν ≤ νmin,
dualν-SVM is feasible with zero optimal objective value.

3. If the kernel matrix is positive definite, thenνmin = 0.

Therefore, for a given problem and kernel, there is an interval[νmin, νmax] of admissible
values forν, with 0 ≤ νmin ≤ νmax ≤ 1. An illustration of the relation betweenν and
C is in Figure 5.
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log10 C

Fig. 5. The relation betweenν andC (using the RBF kernel on the problemaustralian from the
Statlog collection [25])

It has been noted thatν-SVMs have an interesting interpretation in terms ofreduced
convex hulls[16, 6]. One can show that for separable problems, one can obtain the opti-
mal margin separating hyperplane by forming the convex hulls of both classes, finding
the shortest connection between the two convex hulls (since the problem is separable,
they are disjoint), and putting the hyperplane halfway along that connection, orthogonal
to it. If a problem is non-separable, however, the convex hulls of the two classes will
no longer be disjoint. Therefore, it no longer makes sense to search for the shortest line
connecting them. In this situation, it seems natural to reduce the convex hulls in size,
by limiting the size of the coefficientsci in the convex sets

C± :=

{ ∑
yi=±1

cixi

∣∣∣∣∣
∑

yi=±1

ci = 1, ci ≥ 0

}
. (72)



to some valueν ∈ (0, 1). Intuitively, this amounts to limiting the influence of individual
points. It is possible to show that theν-SVM formulation solves the problem of finding
the hyperplane orthogonal to the closest line connecting thereducedconvex hulls [16].

We now move on to another aspect of soft margin classification. When we intro-
duced the slack variables, we did not attempt to justify the fact that in the objective
function, we used a penalizer

∑m
i=1 ξi. Why not use another penalizer, such as

∑m
i=1 ξp

i ,
for somep ≥ 0 [15]? For instance,p = 0 would yield a penalizer that exactlycounts
the number of margin errors. Unfortunately, however, it is also a penalizer that leads to
a combinatorial optimization problem. Penalizers yielding optimization problems that
are particularly convenient, on the other hand, are obtained forp = 1 andp = 2. By
default, we use the former, as it possesses an additional property which is statistically
attractive. As the following proposition shows, linearity of the target function in the
slack variablesξi leads to a certain “outlier” resistance of the estimator. As above, we
use the shorthandxi for Φ(xi).

Proposition 4 (Resistance of SV classification [32]).Supposew can be expressed in
terms of the SVs which are not at bound,

w =
m∑

i=1

γixi (73)

with γi 6= 0 only if αi ∈ (0, 1/m) (where theαi are the coefficients of the dual solu-
tion). Then local movements of any margin errorxj parallel to w do not change the
hyperplane.2

This result is about the stability of classifiers. Results have also shown that in general
p = 1 leads to fewer support vectors. Further results in support of thep = 1 case can
be seen in [34, 36].

Although proposition 1 shows thatν possesses an intuitive meaning, it is still un-
clear how to chooseν for a learning task. [35] proves that given̄R, a close upper bound
on the expected optimal Bayes risk, an asymptotically good estimate of the optimal
value ofν is 2R̄:

Proposition 5. If R[f ] is the expected risk defined in(17),

Rp := inf
f

R[f ], (74)

and the kernel used byν-SVM is universal, then for allν > 2Rp and all ε > 0, there
exists a constantc > 0 such that

P (T = {(x1, y1), . . . , (xm, ym)} | R[fν
T ] ≤ ν −Rp + ε) ≥ 1− e−cm. (75)

Quite a few popular kernels such as the Gaussian are universal. The definition of a
universal kernel can be seen in [35]. Here,fν

T is the decision function obtained by
training ν-SVM on the data setT .

2 Note that the perturbation of the point is carried out in feature space. What it precisely corre-
sponds to in input space therefore depends on the specific kernel chosen.



Therefore, given an upper bound̄R onRp, the decision function with respect toν = 2R̄
almost surely achieves a risk not larger thanRp + 2(R̄−Rp).

The selection ofν and kernel parameters can be done by estimating the performance
of support vector binary classifiers on data not yet observed. One such performance esti-
mate is the leave-one-out error, which is an almost unbiased estimate of the generaliza-
tion performance [22]. To compute this performance metric, a single point is excluded
from the training set, and the classifier is trained using the remaining points. It is then
determined whether this new classifier correctly labels the point that was excluded. The
process is repeated over the entire training set. Although theoretically attractive, this
estimate obviously entails a large computational cost.

Three estimates of the leave-one-out error for theν-SV learning algorithm are pre-
sented in [17]. Of these three estimates, thegeneralν-SV boundis an upper bound on
the leave-one-out error, therestrictedν-SV estimateis an approximation that assumes
the sets of margin errors and support vectors on the margin to be constant, and themax-
imized target estimateis an approximation that assumes the sets of margin errors and
non-support vectors not to decrease. The derivation of the generalν-SV bound takes
a form similar to an upper bound described in [40] for theC-SV classifier, while the
restrictedν-SV estimate is based on a similarC-SV estimate proposed in [40, 26]: both
these estimates are based on the geometrical concept of thespan, which is (roughly
speaking) a measure of how easily a particular point in the training sample can be
replaced by the other points used to define the classification function. No analogous
method exists in theC-SV case for the maximized target estimate.

7 Implementation of ν-SV Classifiers

We change the dual form ofν-SV classifiers to be a minimization problem:

minimize
α∈Rm

W (α) =
1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
m

, (76)

m∑

i=1

αiyi = 0,

m∑

i=1

αi = ν. (77)

[11] proves that for any givenν, there is at least an optimal solution which satisfies
eT α = ν. Therefore, it is sufficient to solve a simpler problem with the equality con-
straint (77).

Similar to C-SVC, the difficulty of solving (76) is thatyiyjk(xi, xj) are in gen-
eral not zero. Thus, for large data sets, the Hessian (second derivative) matrix of the
objective function cannot be stored in the computer memory, so traditional optimiza-
tion methods such as Newton or quasi Newton cannot be directly used. Currently, the
decomposition method is the most used approach to conquer this difficulty. Here, we
present the implementation in [11], which modifies the procedure forC-SVC.



7.1 The Decomposition Method

The decomposition method is an iterative process. In each step, the index set of variables
is partitioned to two setsB andN , whereB is the working set. Then, in that iteration
variables corresponding toN are fixed while a sub-problem on variables corresponding
to B is minimized. The procedure is as follows:

Algorithm 1 (Decomposition method)
1. Given a numberq ≤ l as the size of the working set. Findα1 as an initial feasible

solution of (76). Setk = 1.
2. If αk is an optimal solution of (76), stop. Otherwise, find a working setB ⊂
{1, . . . , l} whose size isq. DefineN ≡ {1, . . . , l}\B andαk

B andαk
N to be sub-

vectors ofαk corresponding toB andN , respectively.
3. Solve the following sub-problem with the variableαB :

minimize
αB∈Rq

1
2

∑

i∈B,j∈B

αiαjyiyjk(xi, xj) +
∑

i∈B,j∈N

αiα
k
j yiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
m

, i ∈ B, (78)
∑

i∈B

αiyi = −
∑

i∈N

αk
i yi, (79)

∑

i∈B

αi = ν −
∑

i∈N

αk
i . (80)

4. Setαk+1
B to be the optimal solution of (78) andαk+1

N ≡ αk
N . Setk ← k + 1 and

goto Step 2.

Note thatB is updated in each iteration. To simplify the notation, we simply useB
instead ofBk.

7.2 Working Set Selection

An important issue of the decomposition method is the selection of the working setB.
Here, we consider an approach based on the violation of the KKT condition. Similar to
(30), by putting (61) into (57), one of the KKT conditions is

αi · [yi(
m∑

j=1

αjK(xi, xj) + b)− ρ + ξi] = 0, i = 1, . . . ,m. (81)

Using0 ≤ αi ≤ 1
m , (81) can be rewritten as:

m∑

j=1

αjyiyjk(xi, xj) + byi − ρ ≥ 0, if αi <
1
m

,

m∑

j=1

αjyiyjk(xi, xj) + byi − ρ ≤ 0, if αi > 0.

(82)



That is, anα is optimal for the dual problem (76) if and only ifα is feasible and satisfies
(81). Using the property thatyi = ±1 and representing∇W (α)i =

∑m
j=1 αjyiyjK(xi, xj),

(82) can be further written as

max
i∈I1

up(α)
∇W (α)i ≤ ρ− b ≤ min

i∈I1
low(α)

∇W (α)i and

max
i∈I−1

up (α)
∇W (α)i ≤ ρ + b ≤ min

i∈I−1
low(α)

∇W (α)i,
(83)

where

I1
up(α) := {i | αi > 0, yi = 1}, I1

low(α) := {i | αi <
1
m

, yi = 1}, (84)

and

I−1
up (α) := {i | αi <

1
m

, yi = −1}, I−1
low(α) := {i | αi > 0, yi = −1}. (85)

We call any(i, j) ∈ I1
up(α)× I1

low(α) or I−1
up (α)× I−1

low(α) satisfying

yi∇W (α)i > yj∇W (α)j (86)

a violating pair as (83) is not satisfied. Whenα is not optimal yet, if any such a violating
pair is included inB, the optimal objective value of (78) is small than that atαk.
Therefore, the decomposition procedure has its objective value strictly decreasing from
one iteration to the next.

Therefore, a natural choice ofB is to select all pairs which violate (83) the most.
To be more precise, we can setq to be an even integer and sequentially selectq/2 pairs
{(i1, j1), . . . , (iq/2, jq/2)} from∈ I1

up(α)× I1
low(α) or I−1

up (α)× I−1
low(α) such that

yi1∇W (α)i1 − yj1∇W (α)j1 ≥ · · · ≥ yiq/2∇W (α)iq/2 − yjq/2∇W (α)jq/2 . (87)

This working set selection is merely an extension of that forC-SVC. The main
difference is that forC-SVM, (83) becomes only one inequality withb. Due to this
similarity, we believe that the convergence analysis ofC-SVC [21] can be adapted here
though detailed proofs have not been written and published.

[11] considers the same working set selection. However, following the derivation
for C-SVC in [19], it is obtained using the concept of feasible directions in constrained
optimization. We feel that a derivation from the violation of the KKT condition is more
intuitive.

7.3 SMO-type Implementation

The Sequential Minimal Optimization (SMO) algorithm [28] is an extreme of the de-
composition method where, forC-SVC, the working set is restricted to only two el-
ements. The main advantage is that each two-variable sub-problem can be analyti-
cally solved, so numerical optimization software are not needed. For this method, at
least two elements are required for the working set. Otherwise, the equality constraint



∑
i∈B αiyi = −∑

j∈N αk
j yj leads to a fixed optimal objective value of the sub-problem.

Then, the decomposition procedure stays at the same point.
Now the dual ofν-SVC possesses two inequalities, so we may think that more

elements are needed for the working set. Indeed, two elements are still enough for the
case ofν-SVC. Note that (79) and (80) can be rewritten as

∑

i∈B,yi=1

αiyi =
ν

2
−

∑

i∈N,yi=1

αk
i yi and

∑

i∈B,yi=−1

αiyi =
ν

2
−

∑

i∈N,yi=−1

αk
i yi. (88)

Thus, if (i1, j1) are selected as the working set selection using (87),yi1 = yj1 , so
(88) reduces to only one equality with two variables. Then, the sub-problem is still
guaranteed to be smaller than that atαk.

The comparison in [11] shows that usingC andν with the connection in proposition
3 and equivalent stopping condition, the performance of the SMO-type implementation
described here for C-SVM andν-SVM are comparable.

7.4 The Calculation ofb and ρ and Stopping Criteria

If at an optimal solution,0 < αi < 1/m andyi = 1, theni ∈ I1
up(α) andI1

low(α).
Thus,ρ − b = ∇W (α)i. Similarly, if there is another0 < αj < 1/m andyj = −1,
thenρ + b = ∇W (α)j . Thus, solving two equalities givesb andρ. In practice, we
averageW (α)i to avoid numerical errors:

ρ− b =

∑
0<αi<

1
m ,yi=1∇W (α)i∑

0<αi<
1
m ,yi=1 1

, (89)

If there are no components such that0 < αi < 1/m, ρ − b (andρ + b) can be any
number in the interval formed by (83). A common way is to select the middle point and
then still solves two linear equations

The stopping condition of the decomposition method can easily follow the new form
of the optimality condition (83):

max
(− min

i∈I1
low(α)

∇W (α)i + max
i∈I1

up(α)
∇W (α)i,

− min
i∈I−1

low(α)
∇W (α)i + max

i∈I−1
up (α)

∇W (α)i

)
< ε,

(90)

whereε > 0 is a chosen stopping tolerance.

8 Multi-Class ν-SV Classifiers

Though SVM was originally designed for two-class problems, several approaches have
been developed to extend SVM for multi-class data sets. In this section, we discuss the
extension of the “one-against-one” approach for multi-classν-SVM.

Most approaches for multi-class SVM decompose the data set to several binary
problems. For example, the “one-against-one” approach trains a binary SVM for any



two classes of data and obtains a decision function. Thus, for ak-class problem, there
arek(k−1)/2 decision functions. In the prediction stage, a voting strategy is used where
the testing point is designated to be in a class with the maximum number of votes. In
[18], it was experimentally shown that for general problems, usingC-SV classifier,
various multi-class approaches give similar accuracy. However, the “one-against-one”
method is more efficient for training. Here, we will focus on extending it forν-SVM.

Multi-class methods must be considered together with parameter-selection strate-
gies. That is, we search for appropriateC and kernel parameters for constructing a
better model. In the following, we restrict the discussion on only the Gaussian (radius
basis function) kernelk(xi, xj) = e−γ‖xi−xj‖2 , so the kernel parameter isγ. With
the parameter selection considered, there are two ways to implement the “one-against-
one” method: First, for any two classes of data, the parameter selection is conducted
to have the best(C, γ). Thus, for the best model selected, each decision function has
its own (C, γ). For experiments here, the parameter selection of each binary SVM is
by a five-fold cross-validation. The second way is that for each(C, γ), an evaluation
criterion (e.g. cross-validation) combining with the “one-against-one” method is used
for estimating the performance of the model. A sequence of pre-selected(C, γ) is tried
to select the best model. Therefore, for each model,k(k−1)/2 decision functions share
the sameC andγ.

It is not very clear which one of the two implementations is better. On one hand, a
single parameter set may not be uniformly good for allk(k − 1)/2 decision functions.
On the other hand, as the overall accuracy is the final consideration, one parameter set
for one decision function may lead to over-fitting. [14] is the first to compare the two
approaches usingC-SVM, where the preliminary results show that both give similar
accuracy.

For ν-SVM, each binary SVM using data from theith and thejth classes has an
admissible interval[νij

min, νij
max], whereνij

max = 2min(mi,mj)/(mi + mj) according
to proposition 3. Heremi and mj are the number of data points in theith andjth
classes, respectively. Thus, if allk(k − 1)/2 decision functions share the sameν, the
admissible interval is

[max
i 6=j

νij
min,min

i 6=j
νij
max]. (91)

This set is non-empty if the kernel matrix is positive definite. The reason is that proposi-
tion 3 impliesνij

min = 0,∀i 6= j, somini 6=j νij
max = 0. Therefore, unlikeC of C-SVM,

which has a large valid range[0,∞), for ν-SVM, we worry that the admissible interval
may be too small. For example, if the data set is highly unbalanced,mini 6=j νij

min is very
small.

We redo the same comparison as that in [14] forν-SVM. Results are in Table 2. We
consider multi-class problems tested in [18], where most of them are from the statlog
collection [25]. Except data sets dna, shuttle, letter, satimage, and usps, where test sets
are available, we separate each problem to 80% training and 20% testing. Then, cross
validation are conducted only on the training data. All other settings such as data scaling
are the same as those in [18]. Experiments are conducted using LIBSVM [10], which
solves bothC-SVM andν-SVM.

Results in Table 2 show no significant difference among the four implementations.
Note that some problems (e.g. shuttle) are highly unbalanced so the admissible interval



(91) is very small. Surprisingly, from such intervals, we can still find a suitableν which
leads to a good model. This preliminary experiment indicates that in general the use of
“one-against-one” approach for multi-classν-SVM is viable.

Table 2. Test accuracy (in percentage) of multi-class data sets byC-SVM and ν-SVM. The
columns “CommonC”, “Different C”, “Commonν”, “Different ν” are testing accuracy of using
the same and different (C,γ), (or (ν,γ)) for all k(k − 1)/2 decision functions. The validation is
conducted on the following points of (C,γ): [2−5, 2−3, . . . , 215] × [2−15, 2−13, . . . , 23]. Forν-
SVM, the range ofγ is the same but we validate a 10-point discretization ofν in the interval (91)
or [νij

min, νij
max], depending on whetherk(k− 1)/2 decision functions share the same parameters

or not. For small problems (number of training data≤ 1000), we do cross validation five times,
and then average the testing accuracy.

Data set Class No.# training# testingCommonC DifferentC Commonν Differentν
vehicle 4 677 169 86.5 87.1 85.9 87.8
glass 6 171 43 72.2 70.7 73.0 69.3
iris 3 120 30 96.0 93.3 94.0 94.6
dna 3 2000 1186 95.6 95.1 95.0 94.8
segment7 1848 462 98.3 97.2 96.7 97.6
shuttle 7 43500 14500 99.9 99.9 99.7 99.8
letter 26 15000 5000 97.9 97.7 97.9 96.8
vowel 11 423 105 98.1 97.7 98.3 96.0
satimage6 4435 2000 91.9 92.2 92.1 91.9
wine 3 143 35 97.1 97.1 97.1 96.6
usps 10 7291 2007 95.3 95.2 95.3 94.8

We also present the contours ofC-SVM andν-SVM in Figure 8 using the approach
that all decision functions share the same(C, γ). In the contour ofC-SVM, the x-
axis andy-axis arelog2 C andlog2 γ, respectively. Forν-SVM, thex-axis isν in the
interval (91). Clearly, the good region of usingν-SVM is smaller. This confirms our
concern earlier, which motivated us to conduct experiments in this section. Fortunately,
points in this smaller good region still lead to models that are competitive with those by
C-SVM.

There are some ways to enlarge the admissible interval ofν. A work to extend
algorithm to the case of very small values ofν by allowing negativemargins is [27].
For the upper bound, according to the above proposition 3, if the classes are balanced,
then the upper bound is 1. This leads to the idea to modify the algorithm by adjusting
the cost function such that the classes are balanced in terms of the cost, even if they are
not in terms of the merenumbersof training examples. An earlier discussion on such
formulations is at [12]. For example, we can consider the following formulation:

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
2m+

∑

i:yi=1

ξi +
1

2m−

∑

i:yi=−1

ξi

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi,

and ξi ≥ 0, ρ ≥ 0.
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Fig. 6. 5-fold cross-validation accuracy of the data set satimage. Left:C-SVM, Right:ν-SVM

The dual is

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
2m+

, if yi = 1,

0 ≤ αi ≤ 1
2m−

, if yi = −1,

m∑

i=1

αiyi = 0,

m∑

i=1

αi ≥ ν.

Clearly, when allαi equals its corresponding upper bound,α is a feasible solution with∑m
i=1 αi = 1 .

Another possibility is

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
2 min(m+, m−)

m∑

i=1

ξi

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi,

and ξi ≥ 0, ρ ≥ 0.



The dual is

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
2min(m+,m−)

,

m∑

i=1

αiyi = 0,

m∑

i=1

αi ≥ ν.

Then, the largest admissibleν is 1.
A slight modification of the implementation in Section 7 for the above formulations

is in [13].

9 Applications of ν-SV Classifiers

Researchers have appliedν-SVM on different applications. Some of them feel that it
is easier and more intuitive to deal withν ∈ [0, 1] thanC ∈ [0,∞). Here, we briefly
summarize some work which useLIBSVM to solveν-SVM.

In [7], researchers from HP Labs discuss the topics of personal email agent. Data
classification is an important component for which the authors useν-SVM because they
think “theν parameter is more intuitive than theC parameter.”

[23] applies machine learning methods to detect and localize boundaries of natural
images. Several classifiers are tested where, for SVM, the authors consideredν-SVM.

10 Conclusion

One of the most appealing features of kernel algorithms is the solid foundation pro-
vided by both statistical learning theory and functional analysis. Kernel methods let
us interpret (and design) learning algorithms geometrically in feature spaces nonlin-
early related to the input space, and combine statistics and geometry in a promising
way. Kernels provide an elegant framework for studying three fundamental issues of
machine learning:

– Similarity measures— the kernel can be viewed as a (nonlinear) similarity measure,
and should ideally incorporate prior knowledge about the problem at hand

– Data representation— as described above, kernels induce representations of the
data in a linear space

– Function class— due to the representer theorem, the kernel implicitly also deter-
mines the function class which is used for learning.

Support vector machines have been one of the major kernel methods for data classi-
fication. Its original form requires a parameterC ∈ [0,∞), which controls the trade-off
between the classifier capacity and the training errors. Using theν-parameterization,
the parameterC is replaced by a parameterν ∈ [0, 1]. In this tutorial, we have given its
derivation and present possible advantages of using theν-support vector classifier.
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