
1

A Comparison of Methods for Multi-class Support
Vector Machines

Chih-Wei Hsu and Chih-Jen Lin

Department of Computer Science and
Information Engineering

National Taiwan University
Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract

Support vector machines (SVM) were originally designed for binary classification.

How to effectively extend it for multi-class classification is still an on-going research

issue. Several methods have been proposed where typically we construct a multi-class

classifier by combining several binary classifiers. Some authors also proposed methods

that consider all classes at once. As it is computationally more expensive to solve multi-

class problems, comparisons of these methods using large-scale problems have not been

seriously conducted. Especially for methods solving multi-class SVM in one step, a much

larger optimization problem is required so up to now experiments are limited to small data

sets. In this paper we give decomposition implementations for two such “all-together”

methods: [25], [27] and [7]. We then compare their performance with three methods based

on binary classifications: “one-against-all,” “one-against-one,” and DAGSVM [23]. Our

experiments indicate that the “one-against-one” and DAG methods are more suitable for

practical use than the other methods. Results also show that for large problems methods

by considering all data at once in general need fewer support vectors.

Index Terms

Support vector machines, decomposition methods, multi-class classification.

I. INTRODUCTION

Support Vector Machines (SVM) [6] were originally designed for binary classifi-
cation. How to effectively extend it for multi-class classification is still an on-going
research issue. Currently there are two types of approaches for multi-class SVM.
One is by constructing and combining several binary classifiers while the other is by

2

directly considering all data in one optimization formulation. Up to now there are
still no comparisons which cover most of these methods.

The formulation to solve multi-class SVM problems in one step has variables
proportional to the number of classes. Therefore, for multi-class SVM methods, either
several binary classifiers have to be constructed or a larger optimization problem is
needed. Hence in general it is computationally more expensive to solve a multi-
class problem than a binary problem with the same number of data. Up to now
experiments are limited to small data sets. In this paper we will give a decomposition
implementation for two such “all-together” methods: [25], [27] and [7]. We then
compare their performance with three methods based on binary classification: “one-
against-all,” “one-against-one,” and DAGSVM [23].

Note that it was pointed out in [11] that the primal forms proposed in [25], [27]
are also equivalent to those in [3], [11]. Besides methods mentioned above, there
are other implementations for multi-class SVM. For example, [14], [19]. However,
due to the limit of space here we do not conduct experiments on them. An earlier
comparison between one-against-one and one-against-all methods is in [5].

In Section II, we review one-against-all, one-against-one, and DAGSVM methods
which are based on solving several binary classifications. In Section III, we give a
brief introduction to the method in [25], [27] which considers all classes at once and
show that the decomposition method proposed in [12] can be applied. Another method
which also considers all variables together is by Crammer and Singer [7], which will
be discussed in Section IV. Numerical experiments are in Section V where we show
that “one-against-one” and DAG methods are more suitable for practical use than the
other methods. Results also show that for large problems the method proposed in
[25], [27] by considering all variables at once generally needs fewer support vectors.
Finally we have some discussions and conclusions in Section VI.

II. ONE-AGAINST-ALL, ONE-AGAINST-ONE, AND DAGSVM METHODS

The earliest used implementation for SVM multi-class classification is probably
the one-against-all method (for example, [2]). It constructs k SVM models where k
is the number of classes. The mth SVM is trained with all of the examples in the mth
class with positive labels, and all other examples with negative labels. Thus given l

training data (x1, y1), . . . , (xl, yl), where xi ∈ Rn, i = 1, . . . , l and yi ∈ {1, . . . , k} is

3

the class of xi, the mth SVM solves the following problem:

min
wm,bm,ξm

1

2
(wm)Twm + C

l∑
i=1

ξmi

(wm)Tφ(xi) + bm ≥ 1− ξmi , if yi = m, (1)

(wm)Tφ(xi) + bm ≤ −1 + ξmi , if yi 6= m,

ξmi ≥ 0, i = 1, . . . , l,

where the training data xi are mapped to a higher dimensional space by the function
φ and C is the penalty parameter.

Minimizing 1
2
(wm)Twm means that we would like to maximize 2/‖wm‖, the margin

between two groups of data. When data are not linear separable, there is a penalty
term C

∑l
i=1 ξ

m
i which can reduce the number of training errors. The basic concept

behind SVM is to search for a balance between the regularization term 1
2
(wm)Twm

and the training errors.
After solving (1), there are k decision functions:

(w1)Tφ(x) + b1,

...

(wk)Tφ(x) + bk.

We say x is in the class which has the largest value of the decision function:

class of x ≡ argmaxm=1,...,k((w
m)Tφ(x) + bm). (2)

Practically we solve the dual problem of (1) whose number of variables is the same
as the number of data in (1). Hence k l-variable quadratic programming problems
are solved.

Another major method is called the one-against-one method. It was introduced
in [15], and the first use of this strategy on SVM was in [9], [16]. This method
constructs k(k− 1)/2 classifiers where each one is trained on data from two classes.
For training data from the ith and the jth classes, we solve the following binary
classification problem:

min
wij ,bij ,ξij

1

2
(wij)Twij + C

∑
t

ξijt

(wij)Tφ(xt) + bij ≥ 1− ξijt , if yt = i, (3)

(wij)Tφ(xt) + bij ≤ −1 + ξijt , if yt = j,

ξijt ≥ 0.

4

There are different methods for doing the future testing after all k(k−1)/2 classifiers
are constructed. After some tests, we decide to use the following voting strategy
suggested in [9]: if sign((wij)Tφ(x) + bij)) says x is in the ith class, then the vote
for the ith class is added by one. Otherwise, the jth is increased by one. Then we
predict x is in the class with the largest vote. The voting approach described above
is also called the “Max Wins” strategy. In case that two classes have identical votes,
thought it may not be a good strategy, now we simply select the one with the smaller
index.

Practically we solve the dual of (3) whose number of variables is the same as the
number of data in two classes. Hence if in average each class has l/k data points,
we have to solve k(k − 1)/2 quadratic programming problems where each of them
has about 2l/k variables.

The third algorithm discussed here is the Directed Acyclic Graph Support Vector
Machines (DAGSVM) proposed in [23]. Its training phase is the same as the one-
against-one method by solving k(k − 1)/2 binary SVMs. However, in the testing
phase, it uses a rooted binary directed acyclic graph which has k(k − 1)/2 internal
nodes and k leaves. Each node is a binary SVM of ith and jth classes. Given a test
sample x, starting at the root node, the binary decision function is evaluated. Then it
moves to either left or right depending on the output value. Therefore, we go through
a path before reaching a leaf node which indicates the predicted class.

An advantage of using a DAG is that [23] some analysis of generalization can be
established. There are still no similar theoretical results for one-against-all and one-
against-one methods yet. In addition, its testing time is less than the one-against-one
method.

We have implemented all three methods by modifying our SVM software LIBSVM
[4].

III. A METHOD BY CONSIDERING ALL DATA AT ONCE AND A DECOMPOSITION

IMPLEMENTATION

In [25], [27], an approach for multi-class problems by solving one single opti-
mization problem was proposed. The idea is similar to the one-against-all approach.
It constructs k two-class rules where the mth function wTmφ(x) + b separates training
vectors of the class m from the other vectors. Hence there are k decision functions

5

but all are obtained by solving one problem. The formulation is as follows:

min
w,b,ξ

1

2

k∑
m=1

wTmwm + C
l∑

i=1

∑
m6=yi

ξmi

wTyiφ(xi) + byi ≥ wTmφ(xi) + bm + 2− ξmi , (4)

ξmi ≥ 0, i = 1, . . . , l, m ∈ {1, . . . , k}\yi.

Then the decision function is

argmaxm=1,...,k(w
T
mφ(x) + bm),

which is the same as (2) of the one-against-all method. Like binary SVM, it is easier
to solve the dual problem here. Following [27], the dual formulation of (4) is

min
α

∑
i,j

(
1

2
cyij AiAj −

∑
m

αmi α
yi
j +

1

2

∑
m

αmi α
m
j)Ki,j − 2

∑
i,m

αmi

l∑
i=1

αmi =
l∑

i=1

cmi Ai,m = 1, . . . , k, (5a)

0 ≤ αmi ≤ C, αyii = 0, (5b)

Ai =
k∑

m=1

αmi , c
yi
j =

1 if yi = yj,

0 if yi 6= yj,
(5c)

i = 1, . . . , l,m = 1, . . . , k,

where Ki,j = φ(xi)
Tφ(xj). Then

wm =
l∑

i=1

(cmi Ai − αmi)φ(xi),m = 1, . . . , k (6)

and the decision function is

argmaxm=1,...,k(
l∑

i=1

(cmi Ai − αmi)K(xi, x) + bm).

Next we explain that (4) is equivalent to two formulations where one is from [11]:

min
w,b,ξ

1

2

k∑
o<m

‖wm − wo‖2 + C

l∑
i=1

∑
m6=yi

ξmi

wTyiφ(xi) + byi ≥ wTmφ(xi) + bm + 2− ξmi , (7a)
k∑

m=1

wm = 0, (7b)

ξmi ≥ 0, i = 1, . . . , l, m ∈ {1, . . . , k}\yi,

6

and the other is from [3]:

min
1

2

k∑
o<m

‖wm − wo‖2 +
k∑

m=1

wTmwm + C

l∑
i=1

∑
m 6=yi

ξmi (8)

with the same constraints of (4).
For the optimal solution of (4), from (6) and (5c), we have

k∑
m=1

wm =
k∑

m=1

l∑
i=1

(cmi Ai − αmi)φ(xi) =
l∑

i=1

(Ai −
k∑

m=1

αmi)φ(xi) = 0.

Hence adding (7b) to (4) does not affect the optimal solution set. Then (7b) implies∑
o<m

‖wo − wm‖2 = k

k∑
m=1

wTmwm

so (4) and (7) have the same optimal solution set. Similar arguments can prove the
relation between (4) and (8) as well. The equivalence of these formulations was first
discussed in [11].

Note that (5) has kl variables where l of them are always zero. Hence we can
also say it has (k− 1)l variables. Unfortunately (5) was considered as an impractical
formula due to this huge amount of variables. Hence in [27] only small problems are
tested. In the rest of this section we discuss a possible implementation for solving
larger problems.

Remember that when solving binary SVM, a main difficulty is on the density of the
kernel matrix as in general Ki,j is not zero. Thus currently the decomposition method
is the major method to solve binary support vector machines [21], [13], [22], [24]. It
is an iterative process where in each iteration the index set of variables are separated
to two sets B and N , where B is the working set. Then in that iteration variables
corresponding to N are fixed while a sub-problem on variables corresponding to B

is minimized. The size of B and the selection of its contents are both important
issues on designing a decomposition method. For example, the Sequential Minimal
Optimization (SMO) by Platt [22] considers only two variables in each iteration. Then
in each iteration of the decomposition method the sub-problem on two variables can
be analytically solved. Hence no optimization software is needed.

However, such working set selections in the binary case may not work here for
the dual problem (5). Instead of only one linear constraint in the dual of (1), now
in (5a) we have k linear constraints. Thus we can think (5a) as a system of k linear
equations with kl variables. Note that the size of the working set is the number of
variables we would like to change in one iteration. If it is less than k, then (5a)

7

may be an over-determined linear system with more equations than variables so the
solution of the decomposition algorithm cannot be moved. Therefore, in general we
have to select more than k variables in the working set of each iteration. However,
this is still not an easy task as bounded constraints (5b) have to be considered as well
and we would like to have a systematic way which ensures that the selection leads
to the decrease of the objective function. Unfortunately so far we have not found out
effective ways of doing it.

Therefore, instead of working on (4), we consider the following problem by adding∑k
m=1 b

2
m to the objective function:

min
w,b,ξ

1

2

k∑
m=1

[
wTm bm

]wm
bm

+ C

l∑
i=1

∑
m6=yi

ξmi

[
wTyi byi

]φ(xi)

1

 ≥ [wTm bm

]φ(xi)

1

+ 2− ξmi , (9)

ξmi ≥ 0, i = 1, . . . , l,m ∈ {1, . . . , k}\yi.

Then in the dual problem k linear constraints are removed:

min
∑
i,j

(
1

2
cyij AiAj −

∑
m

αmi α
yi
j +

1

2

∑
m

αmi α
m
j)(Ki,j + 1)− 2

∑
i,m

αmi

0 ≤ αmi ≤ C, αyii = 0, (10)

Ai =
k∑

m=1

αmi , c
yi
j =

1 if yi = yj,

0 if yi 6= yj,

i = 1, . . . , l,m = 1, . . . , k.

The decision function becomes

f(x) = argmaxm=1,...,k(
l∑

i=1

(cmi Ai − αmi)(K(xi, x) + 1)).

The idea of using bounded formulations for binary classification was first proposed
in [10], [18]. For two-class problems, a detailed numerical study showing that the
bounded formulation can achieve similar accuracy as the standard SVM is in [12],
where the software BSVM was proposed. Without linear constraints, we hope that the
problem of selecting the working set in the decomposition method becomes easier.
Of course it is not clear yet if the accuracy will be affected as now k b2 terms are
added to the objective function. We will see the results in the experiment section.

8

For (10), the same decomposition method as in [12] can be applied. We rewrite
(10) as the following general form

min
α

f(α) =
1

2
αTQα− 2eTα

0 ≤ αmi ≤ C, αyii = 0, (11)

i = 1, . . . , l,m = 1, . . . , k,

where e is a kl by 1 vector and Q is a kl by kl matrix. Then in each iteration, the
sub-problem is as follows:

min
αB

1

2
αTBQBBαB − (2eB −QBNα

k
N)TαB

0 ≤ (αB)i ≤ C, i = 1, . . . , q, (12)

where
[
QBB QBN
QNB QNN

]
is a permutation of the matrix Q and q is the size of the working

set. Note that as αyii = 0,∀i are fixed variables, we do not select them into the
working set.

Assume that α is the solution of the current iteration and q is the size of the
working set. We use the following working set selection of BSVM:

Let r be the number of free variables at α and calculate

vmi ≡

min (∇f(α)mi , 0) if αmi = 0,

−|∇f(α)mi | if 0 < αmi < C,

−max (∇f(α)mi , 0) if αmi = C.

Select indices of the largest min(q/2, r) elements in v, where αmi is free

(i.e. 0 < αmi < C) into B

Select the (q −min(q/2, r)) smallest elements in v into B.

The main idea of this working set selection is from Zoutendijk’s feasible-direction
method [28]:

min
d

∇f(α)Td

−1 ≤ d ≤ 1, (13)

dmi ≥ 0, if αmi = 0, dmi ≤ 0, if αmi = C.

If d is an optimal solution of (13), then dmi must be +1 or −1. The vector v defined
above actually has vmi = ∇f(α)mi d

m
i . Thus selecting the smallest elements in v is

9

like selecting components with the best steepest descent direction. This has been used
in some early implementations of the decomposition methods (e.g. [13]). However,
it was pointed out in [12] that such a selection of the working set may lead to very
slow convergence on some difficult problems. With some theoretical and experimental
analyses, in [12] the authors proposed to include some of the largest elements of v
whose corresponding αmi are free (i.e. 0 < αmi < C). Therefore, if q is the size of
the working set, we pick q/2 indices from the smallest elements of v and the other
q/2 from the largest of v whose corresponding αmi are free.

The major difficulty for the implementation lies in calculating elements of Q which
are mainly accessed as QBB and QBN in (12). As Q in (5) has a very complicated
form, it is essential to avoid some possible computational overheads.

More importantly, the form in (10) is not symmetric to indices i and j. That is,

(
1

2
cyij AiAj −

∑
m

αmi α
yi
j +

1

2

∑
m

αmi α
m
j)Ki,j

6= (
1

2
c
yj
i AjAi −

∑
m

αmj α
yj
i +

1

2

∑
m

αmj α
m
i)Kj,i.

This increases the difficulty of writing down the explicit form of Q. As any quadratic
formulation can be written as a symmetric form, we must reformulate (10). This will
be explained in (15).

Note that as
1

2
αTQα

=
∑
i,j

(
1

2
cyij AiAj −

∑
m

αmi α
yi
j +

1

2

∑
m

αmi α
m
j)(Ki,j + 1) (14a)

=
1

2

k∑
m=1

(l∑
i=1

(cmi Ai − αmi)
[
φ(xi)

1

])T(l∑
j=1

(cmj Aj − αmj)
[
φ(xj)

1

])
, (14b)

for any nonzero vector v ∈ Rkl ×R1,

vTQv

=
k∑

m=1

(l∑
i=1

(cmi

k∑
o=1

voi − vmi)
[
φ(xi)

1

])T(l∑
j=1

(cmj

k∑
o=1

voj − vmj)
[
φ(xj)

1

])
≥ 0.

Hence Q is positive semi-definite and (10) is a convex optimization problem. Here
(14a) to (14b) is by direct calculation. It is easy to see how the first and third terms
of α in (14a) are obtained from (14b). For the second term, we have∑

m,i

cmi Ai
∑
j

αmj =
∑
i,j

Aiα
yi
j =

∑
i,j

∑
m

αmi α
yi
j .

10

Next we discuss the explicit form of Q. In particular, we will show what a column
of Q is. We consider the vector α as the following form [α1

1, . . . , α
1
l , . . . , α

k
1, . . . , α

k
l]
T .

In addition, for αm1 , . . . , α
m
l , we assume that if yi < yj , αmi is in a position before

αmj .
In (10), the quadratic terms compose of three groups. First we have

cyij AiAj

=

(
∑k

m=1 α
m
i)(
∑k

m=1 α
m
j) if yi = yj,

0 if yi 6= yj.

Clearly this part forms a symmetric matrix as follows

K̄(1),(1) K̄(1),(1)

.
. . .

K̄(k),(k) K̄(k),(k)

...

K̄(1),(1)

. . .

K̄(k),(k)

,

where K̄(m),(m) includes all elements K̄i,j ≡ Ki,j + 1 with yi = yj = m. This implies
that for the ((s− 1)l+ j)th column, row indices corresponding to αr(yj), r = 1, . . . , k

will have K̄(yj),j contributed by this part. We use αr(yj) to represent {αri | yi = yj}
and K̄(yj),j for {K̄i | yi = yj}.

For the third term,
∑

i,j,m α
m
i α

m
j φ(xi)

Tφ(xj), clearly it forms the following sym-
metric matrix

K̄
. . .

K̄

 .
Similarly we say that at the ((s − 1)l + j)th column, row indices corresponding to
αs1, . . . , α

s
l will include K̄1,j, . . . , K̄l,j .

The most complicated one is the second part −2
∑

i,j,m α
m
i α

yi
j K̄i,j as it is not a

symmetric form. To make it symmetric we use the property that any quadratic term

11

xy = 1
2
xy + 1

2
yx:

2
∑
i,j,m

αmi α
yi
j K̄i,j

=
∑
i,j,m

(αmi α
yi
j K̄i,j + αyij α

m
i K̄i,j) (15)

=
∑
i,j,m

αmi α
yi
j K̄i,j +

∑
i,j,m

α
yj
i α

m
j K̄i,j.

Hence for the ((s− 1)l + j)th column, elements corresponding to αr(s), r = 1, . . . , k

and αyji , i = 1, . . . , l will have −K̄(s),j and −K̄i,j, i = 1, . . . , l, respectively.
In summary, the ((s− 1)l + j)th column of Q can be obtained as follows:

1) Obtain the column vector K̄i,j, i = 1, . . . , l. Initialize the ((s−1)l+j)th column
as the a kl by one zero vector.

2) For elements corresponding to αs1, . . . , α
s
l , add K̄1,j, . . . , K̄l,j (from the third

part)
3) For elements corresponding to α

yj
1 , . . . , α

yj
l , minus K̄1,j, . . . , K̄l,j (from the

second part)
4) For elements corresponding to each of α1

(yj), . . . , α
k
(yj), add K̄(yj),j (from the

first part)
5) For elements corresponding to each of α1

(s), . . . , α
k
(s), minus K̄(s),j (from the

second part)

Thus Q in (12) is a dense but not a fully dense matrix. Its number of nonzero
elements is about O(l2k). For practical implementations, we compute and cache Ki,j

instead of elements in Q. The reduction of the cached matrix from kl to l further
improve the training time of this algorithm.

There are different implementations of the above procedure. As the situation may
vary for different computational environment, here we do not get into further details.

We have implemented this method as an extension of BSVM and LIBSVM which
will be used for the experiments in Section V. In addition, the software is available
at http://www.csie.ntu.edu.tw/˜cjlin/bsvm

IV. METHOD BY CRAMMER AND SINGER

In [7], Crammer and Singer proposed an approach for multi-class problems by solv-
ing a single optimization problem. We will also give a decomposition implementation

12

here. Basically [7] solves the following primal problem:

min
wm,ξi

1

2

k∑
m=1

wTmwm + C
l∑

i=1

ξi

wTyiφ(xi)− wTmφ(xi) ≥ emi − ξi, i = 1, . . . , l, (16)

where emi ≡ 1− δyi,m and

δyi,m ≡

1 if yi = m,

0 if yi 6= m.

Then the decision function is

argmaxm=1,...,kw
T
mφ(x).

The main difference from (4) is that (16) uses only l slack variables ξi, i = 1, . . . , l.
That is, instead of using ξmi as the gap between each two decision planes, here the
maximum of k such numbers is considered:

ξi = (max
m

(wTmφ(xi) + emi)− wTyiφ(xi))+,

where (·)+ ≡ max(·, 0). In addition, (16) does not contain coefficients bi, i = 1, . . . , l.
Note that here we do not have to explicitly write down constraints ξi ≥ 0 as when
yi = m, emi = 0 so (16) becomes

0 ≥ 0− ξi,

which is exactly ξi ≥ 0.
The dual problem of (16) is

min
α

f(α) =
1

2

l∑
i=1

l∑
j=1

Ki,jᾱ
T
i ᾱj +

l∑
i=1

ᾱTi ēi

k∑
m=1

αmi = 0, i = 1, . . . , l, (17a)

αmi ≤ 0, if yi 6= m, (17b)

αmi ≤ C, if yi = m,

i = 1, . . . , l,m = 1, . . . , k,

where Ki,j ≡ φ(xi)
Tφ(xj),

ᾱi ≡ [α1
i , . . . , α

k
i]
T , and ēi ≡ [e1

i , . . . , e
k
i]
T .

13

Then

wm =
l∑

i=1

αmi φ(xi).

If we write α ≡ [α1
1, . . . , α

k
1, . . . , α

1
l , . . . , α

k
l]
T and e ≡ [e1

1, . . . , e
k
1, . . . , e

1
l , . . . , e

k
l]
T ,

then the dual objective function can be written as
1

2
αT (K ⊗ I)α + eTα,

where I is an k by k identity matrix and ⊗ is the Kronecker product. Since K

is positive semi-definite, K ⊗ I , the Hessian of the dual objective function is also
positive semi-definite. This is another way to explain that (17) is a convex optimization
problem.

The decision function is

argmaxm=1,...,k

l∑
i=1

αmi K(xi, x).

The main difference between linear constraints (5a) and (17a) is that (5a) has k

equations while (17a) has l. It is interesting that they come from the KKT condition
on different primal variables. (5a) is due to the unconstrained variables b1, . . . , bk in
(4) while (17a) is from the unconstrained variables ξ1, . . . , ξl. In addition, (17a) is
much simpler than (5a) as each of its equations involves exactly k variables. In a sense
we can say that (17a) contains l independent equations. Because of this advantage,
unlike (5a) where we have to remove linear constraints and use (9), here it is easier
to directly conduct working set selections for the decomposition method.

In [7] the authors proposed to choose k variables associated with the same xi in the
working set. That is, α1

i , . . . , α
k
i are elements of the working set where the selection

of the index i will be discussed in (20). Then the sub-problem is

min
1

2
AᾱTi ᾱi +BT ᾱi

k∑
m=1

αmi = 0, (18)

αmi ≤ Cm
yi
,m = 1, . . . , k,

where
A = Ki,i and B = ēi +

∑
j 6=i

Kj,iᾱj,

In addition, C̄m
yi
,m = 1, . . . , k is a k by 1 vector with all elements zero except that

the (yi)th component is C.

14

The main reason of this setting is that (18) is a very simple problem. In [7], an
O(k log k) algorithm was proposed for (18) while in [8], a simple iterative approach
was used. Here we use the first method. In addition, it is easier to systematically
calculate A and B so many complicated derivations in the previous section are
avoided.

Note that the gradient of the dual objective function is

∑l
j=1 K1,jα

1
j + e1

1

...∑l
j=1K1,jα

k
j + ek1∑l

j=1 K2,jα
1
j + e1

2

...∑l
j=1K2,jα

k
j + ek2

...

.

Then B, a k by 1 vector, can be calculated as follows by the information of the
gradient:

Bm =
∂f(α)

∂αmi
−Ki,iα

m
i =

∂f(α)

∂αmi
− Aαmi ,m = 1, . . . , k.

Therefore, during iterations it is essential to always keep the gradient updated. This
is done after new α1

i , . . . , α
k
i are obtained by (18) and O(kl) operations are needed.

Next we discuss the selection of the working set and the stopping condition of
the decomposition method. The KKT condition requires that there are b1, . . . , bl and
λ1

1 ≥ 0, . . . , λkl ≥ 0 such that for all i = 1, . . . , l,m = 1, . . . , k,
l∑

j=1

Ki,jα
m
j + emi − bi = −λmi and λmi (C̄m

yi
− αmi) = 0.

They are equivalent to that for all i = 1, . . . , l,m = 1, . . . , k,
l∑

j=1

Ki,jα
m
j + emi − bi = 0 if αmi < C̄m

yi
,

≤ 0 if αmi = C̄m
yi
.

We can rewrite this as

max
αm
i ≤C̄m

yi

(
l∑

j=1

Ki,jα
m
j + emi) ≤ bi ≤ min

αm
i <C̄

m
yi

(
l∑

j=1

Ki,jα
m
j + emi). (19)

15

Then during iterations, we select the next working set {α1
i , . . . , α

k
i } with i from

argmaxi(max
αm
i ≤C̄m

yi

(
l∑

j=1

Ki,jα
m
j + emi)− min

αm
i <C̄

m
yi

(
l∑

j=1

Ki,jα
m
j + emi)). (20)

In other words, among the l k-component groups of variables, we select the on with
the largest violation of the KKT condition. For binary SVM, choosing indices which
most violate the KKT condition has been a common strategy (e.g. [4]) though here
instead we choose a whole group at once. Then for variables {α1

i , . . . , α
k
i } which are

selected, they do not satisfy the KKT condition of the sub-problem (18) so solving
(18) will guarantee the strict decrease on the objective function of the dual problem.

Following (19) the stopping criterion can be

max
i

(max
αm
i ≤C̄m

yi

(
l∑

j=1

Ki,jα
m
j + emi)− min

αm
i <C̄

m
yi

(
l∑

j=1

Ki,jα
m
j + emi)) < ε, (21)

where ε is the stopping tolerance.
The convergence of the above decomposition method has been proved in [17]. In

addition, [17] shows that the limit of

max
i

(max
αm
i ≤C̄m

yi

(
l∑

j=1

Ki,jα
m
j + emi)− min

αm
i <C̄

m
yi

(
l∑

j=1

Ki,jα
m
j + emi))

goes to zero as the number of iterations goes to infinity. Hence in a finite number of
iterations, the decomposition method stops as (21) is satisfied. The implementation
is now part of BSVM 2.0 which is also publicly available to users.

V. NUMERICAL EXPERIMENTS

A. Data and Implementation

In this section we present experimental results on several problems from the Statlog
collection [20] and the UCI Repository of machine learning databases [1]. From UCI
Repository we choose the following datasets: iris, wine, glass, and vowel. Those
problems had already been tested in [27]. From Statlog collection we choose all
multi-class datasets: vehicle, segment, dna, satimage, letter, and shuttle. Note
that except problem dna we scale all training data to be in [-1, 1]. Then test data
are adjusted using the same linear transformation. For the problem dna, we do not
scale its binary attributes. We give problem statistics in Table V.1. For some of these
problems test sets are available. Note that for problems glass and satimage, there
is one missing class. That is, in the original application there is one more class but

16

in the data set no examples are with this class. In the last column we also give the
best test rate listed in statlog homepage. Note that these best rates were obtained by
four different learning methods.

TABLE V.1

PROBLEM STATISTICS

Problem #training data #testing data #class #attributes statlog rate

iris 150 0 3 4

wine 178 0 3 13

glass 214 0 6 13

vowel 528 0 11 10

vehicle 846 0 4 18

segment 2310 0 7 19

dna 2000 1186 3 180 95.9

satimage 4435 2000 6 36 90.6

letter 15000 5000 26 16 93.6

shuttle 43500 14500 7 9 99.99

The most important criterion for evaluating the performance of these methods
is their accuracy rate. However, it is unfair to use only one parameter set and
then compare these five methods. Practically for any method people find the best
parameters by performing the model selection. This is conducted on the training
data where the test data are assumed unknown. Then the best parameter set is
used for constructing the model for future testing. Note that details of how we
conduct the model selection will be discussed later in this section. To reduce the
search space of parameter sets, here we train all datasets only with the RBF kernel
K(xi, xj) ≡ e−γ‖xi−xj‖

2

. In addition, for methods solving several binary SVMs (one-
against-one, one-against-all, and DAG), for each model we consider that C and γ

of all binary problems are the same. Note that this issue does not arise for two
all-together methods as each model corresponds to only one optimization problem.

We use similar stopping criteria for all methods. For each problem we stop the
optimization algorithm if the KKT violation is less than 10−3. To be more precise,
each dual problem of the one-against-one and one-against-all approaches has the

17

following general form:

min
α

f(α)

yTα = 0,

0 ≤ αi ≤ C,

where yi = ±1. Using a similar derivation of the stopping criterion (21) of the method
by Crammer and Singer, we have

max(max
αi<C,yi=1

−∇f(α)i, max
αi>0,yi=−1

∇f(α)i)

≤ min(min
αi<C,yi=−1

∇f(α)i, min
αi>0,yi=1

−∇f(α)i) + 10−3. (22)

For (10) of the all-together approach, (22) becomes even simpler as there are no
vector y. Unfortunately though these stopping criteria are nearly the same, they are
not fully comparable due to different size of dual problems in these approaches. We
will elaborate more on this issue in Section VI. Note that for problems letter and
shuttle, a relaxed tolerance 0.1 is used for the method by Crammer and Singer. as
otherwise it takes too much training time. More information on the stopping criteria
of the decomposition method can be found in [17].

The computational experiments for this section were done on a Pentium III-500
with 384MB RAM using the gcc compiler. For each optimization problem (either
binary SVMs or the all-together approaches), we allocate 256MB memory as the
cache for storing recently used kernel elements. Each element of Qij stored in the
cache is in double precision. For the same size of the cache, if the single precision is
used, the number of elements which can be stored in the cache is doubled. We have
both implementations but here only the double-precision one is used.

While implementing these approaches using the decomposition method, we can
use a shrinking technique for reducing the training time. To be more precise, if most
variables are finally at bounds, the shrinking technique reduces the size of the working
problem by considering only free variables. We have implemented the shrinking
technique on all five methods. For the three methods based on binary classifiers,
details are in [4, Section 4]. For two all-together methods, the implementation is
more sophisticated. This is a disadvantage of all-together methods. Though they con-
sider only one optimization problem, this problem is more complicated for practical
implementations.

18

B. Results and Discussions

For each problem, we estimate the generalized accuracy using different kernel
parameters γ and cost parameters C: γ = [24, 23, 22, . . . , 2−10] and C = [212, 211, 210,

. . . , 2−2]. Therefore, for each problem we try 15 × 15 = 225 combinations. We use
two criteria to estimate the generalized accuracy. For datasets dna, satimage, letter,
and shuttle where both training and testing sets are available, for each pair of (C, γ),
the validation performance is measured by training 70% of the training set and testing
the other 30% of the training set. Then we train the whole training set using the pair
of (C, γ) that achieves the best validation rate and predict the test set. The resulting
accuracy is presented in the “rate” column of Table V.2. Note that if several (C, γ)

have the same accuracy in the validation stage, we apply all of them to the test data
and report the highest rate. For the other six smaller datasets where test data may
not be available, we simply conduct a 10-fold cross-validation on the whole training
data and report the best cross-validation rate.

TABLE V.2

A COMPARISON USING THE RBF KERNEL (BEST RATES BOLD-FACED)

One-against-one DAG One-against-all [25], [27] C&S

Problem (C, γ) rate (C, γ) rate (C, γ) rate (C, γ) rate (C, γ) rate

iris (212, 2−9) 97.333(212, 2−8) 96.667 (29, 2−3) 96.667(212, 2−8) 97.333(210, 2−7) 97.333

wine (27, 2−10) 99.438 (26, 2−9) 98.876 (27, 2−6) 98.876 (20, 2−2) 98.876 (21, 2−3) 98.876

glass (211, 2−2) 71.495(212, 2−3) 73.832(211, 2−2) 71.963 (29, 2−4) 71.028 (24, 21) 71.963

vowel (24, 20) 99.053 (22, 22) 98.674 (24, 21) 98.485 (23, 20) 98.485 (21, 23) 98.674

vehicle (29, 2−3) 86.643(211, 2−5) 86.052(211, 2−4) 87.470(210, 2−4) 86.998 (29, 2−4) 86.761

segment (26, 20) 97.403(211, 2−3) 97.359 (27, 20) 97.532 (25, 20) 97.576 (20, 23) 97.316

dna (23, 2−6) 95.447 (23, 2−6) 95.447 (22, 2−6) 95.784 (24, 2−6) 95.616 (21, 2−6) 95.869

satimage (24, 20) 91.3 (24, 20) 91.25 (22, 21) 91.7 (23, 20) 91.25 (22, 22) 92.35

letter (24, 22) 97.98 (24, 22) 97.98 (22, 22) 97.88 (21, 22) 97.76 (23, 22) 97.68

shuttle (211, 23) 99.924 (211, 23) 99.924 (29, 24) 99.910 (29, 24) 99.910 (212, 24) 99.938

Table V.2 presents the result of comparing five methods. We present the optimal
parameters (C, γ) and the corresponding accuracy rates. Note that the “C&S” column
means the method by Crammer and Singer. It can be seen that optimal parameters
(C, γ) are in various ranges for different problems so it is essential to test so many
parameter sets. We also observe that their accuracy is very similar. That is, no one is

19

TABLE V.3

TRAINING TIME, TESTING TIME, AND NUMBER OF SUPPORT VECTORS (TIME IN SECONDS; BEST TRAINING

AND TEST TIME BOLD-FACED; LEAST NUMBER OF SVS ITALICIZED)

One-against-one DAG One-against-all [25], [27] C&S

Problem training

testing

#SVs training

testing

#SVs training

testing

#SVs training

testing

#SVs training

testing

#SVs

iris 0.04 16.9 0.04 15.6 0.10 16.0 0.15 16.2 16.84 27.8

wine 0.12 56.3 0.13 56.5 0.20 29.2 0.28 54.5 0.39 41.6

glass 2.42 112.5 2.85 114.2 10.00 129.0 7.94 124.1 7.60 143.3

vowel 2.63 345.3 3.98 365.1 9.28 392.6 14.05 279.4 20.54 391.0

vehicle 19.73 302.4 35.18 293.1 142.50 343.0 88.61 264.2 1141.76 264.9

segment 17.10 442.4 23.25 266.8 68.85 446.3 66.43 358.2 192.47 970.3

dna 10.60

6.91

967 10.74

6.30

967 23.47

8.43

1152 13.5

6.91

951 16.27

6.39

945

satimage 24.85

13.23

1611 25.1

12.67

1611 136.42

19.22

2170 48.21

11.89

1426 89.58

23.61

2670

letter 298.08

126.10

8931 298.62

92.8

8931 1831.80

146.43

10129 8786.20

142.75

7627 1227.12∗

110.39

6374

shuttle 170.45

6.99

301 168.87

5.09

301 202.96

5.99

330 237.80

4.64

202 2205.78∗

4.26

198

∗:

stopping tolerance ε = 0.1 is used.

statistically better than the others. Comparing to earlier results listed in Statlog (see
the last column of Table V.1), the accuracy obtained by SVM is competitive or even
better. For example, among the four problems dna to shuttle, the one-against-one
approach obtains better accuracy on satimage and letter. For the other two problems,
the accuracy is also close to that in Table V.1.

We also report the training time, testing time, and the number of unique support
vectors in Table V.3. Note that they are results when solving the optimal model. For
small problems there are no testing time as we conduct cross validation. Here we say
“unique” support vectors because a training data may correspond to different nonzero
dual variables. For example, for the one-against-one and one-against-all approaches,
one training data may be a support vector in different binary classifiers. For the all-
together methods, there are kl variables so one data may associate with different
nonzero dual variables. Here we report only the number of training data which

20

corresponds to at least one nonzero dual variable. We will explain later that this
is the main factor which affects the testing time. Note that the number of support
vectors of the first six problems are not integers. This is because they are the average
of the 10-fold cross-validation.

TABLE V.4

A COMPARISON USING THE LINEAR KERNEL (BEST RATES BOLD-FACED)

One-against-one DAG One-against-all [25], [27] C&S

Problem C rate C rate C rate C rate C rate

iris 24 97.333 28 97.333 212 96.000 25 97.333 20 87.333

wine 2−2 99.438 2−2 98.315 22 98.876 2−1 98.876 2−1 99.438

glass 28 66.355 24 63.551 25 58.879 29 65.421 26 62.617

vowel 25 82.954 26 81.439 211 50.000 28 67.424 26 63.068

vehicle 25 80.615 25 80.851 212 78.132 210 80.142 24 79.669

segment 212 96.017 211 95.844 212 93.160 28 95.454 2−2 92.165

For the training time, one-against-one and DAG methods are the best. In fact the
two methods have the same training procedure. Though we have to train as many as
k(k − 1)/2 classifiers, as each problem is smaller (only data from two classes), the
total training time is still less. Note that in Table V.3 the training time of one-against-
one and DAG methods may be quite different for the same problem (e.g. vehicle).
This is due to the difference on the optimal parameter sets.

Although we improve the method from [25], [27] with efforts in Section III, its
training speed remains slow. The convergence speed of the method by Crammer and
Singer is also not good. Especially for some problems (iris, vehicle, and shuttle) its
training time is huge. For these problems we note that the optimal parameter of C
is quite large. The experience in [12] shows that if the working set selection is not
good, the convergence of the decomposition method may be slow when using a large
C. Thus the difficulty might be on the working set selection. As in each iteration
only one of the l equalities is involved, there may not be enough interactions among
these l groups of variables.

Regarding the testing time, though the decision function is more complicated than
the binary case, our experimental results indicate that in general the testing time is
still dominated by the kernel evaluations. Note that to save testing time, we always

21

calculate and store all K(xi, x) first, where xi is any “unique” support vector and
x is the test data. Then this K(xi, x) may be used in several places of the decision
function. We observe that if k is small (≤ 10), kernel evaluations take more than
90% of the testing time. Therefore, we can say that in general the testing time is
proportional to the number of “unique” support vectors.

We also observe that between the one-against-one and DAG methods, DAG is really
a little faster on the testing time.

We then discuss the number of support vectors. We can see that for larger problems,
the method from [25], [27] returns fewer support vectors than all three binary-based
approaches. Note that we generally observe that for the same parameter set, it needs
fewer support vectors. This is consistent with the results in [27]. Here we do not
really have such a comparison as the optimal parameters vary for all approaches.
Especially for small problems their optimal parameters are very different. However,
for large problems their optimal parameters are similar so in Table V.2 the “#SVs”
column of the method from [25], [27] really shows smaller numbers. Therefore, if the
testing time is very important, this method can be an option. On the other hand, we
cannot draw any conclusions about the method by Crammer and Singer. Sometimes
it needs very few support vectors but sometimes the number is huge.

We would like to note that for the problem dna, several parameters get the best
result during the validation stage. Then when applying them to the test data, some of
them have the same accuracy again. In Table V.2 we present only the result which
has the smallest number of support vectors.

Overall, except the training time, other factors are very similar for these approaches.
Thus we suggest that one-against-one and DAG approaches are more suitable for
practical use.

To have more complete analyses, we test these methods by using the linear kernel
K(xi, xj) = xTi xj . Results are in Table V.4. Due to the limit of computational time,
we report only small problems. Now the only parameter is C so we test 15 different
C’s and report the best rate. Comparing to Table V.2, the difference on the best
rates is apparent. The one-against-all method returns the worst accuracy for some
problems. Overall one-against-one and DAG still perform well. The comparison on
linear and nonlinear kernels also reveals the necessity of using nonlinear kernels in
some situations. The observation that overall the RBF kernel produces better accuracy
is important as otherwise we do not even need to study the decomposition methods
which is specially designed for the nonlinear case. There are already effective methods

22

to solve very large problems with the linear kernel.
Finally we would like to draw some remarks about the implementation of these

methods. The training time of the one-against-all method can be further improved
as now for each parameter set, k binary problems are treated independently. That is,
kernel elements used when solving one binary problem are not stored and passed to
other binary problems though they have the same kernel matrix. Hence the same kernel
element may be calculated several times. However, we expect that even with such
improvements it still cannot compete with one-against-one and DAG on the training
time. For all other approaches, caches have been implemented so that all problems
involved in one model can share them. On the other hand, for all approaches, now
different models (i.e. different parameter sets) are fully independent. There are no
caches for passing kernel elements from one model to another.

VI. DISCUSSIONS AND CONCLUSIONS

We note that a difference between all-together methods is that the method by
Crammer and Singer does not include bias terms b1, . . . , bm. We are wondering
whether this may affect the training time. Here we give a brief discussion on this
issue. If b1, . . . , bk are added, (16) becomes

min
1

2

k∑
m=1

wTmwm + C
l∑

i=1

ξi

(wTyiφ(xi) + byi)− (wTmφ(xi) + bm) ≥ emi − ξi, i = 1, . . . , l, (23)

Then from the KKT condition the dual has some additional equalities:
l∑

i=1

αmi = 0,m = 1, . . . , k.

Then again the same difficulty on the working set selection for (5) happens again so
we may have to add 1

2

∑k
m=1 b

2
m to the objective function of (23). The dual problem

hence is

min f(α) =
1

2

l∑
i=1

l∑
j=1

(Ki,j + 1)ᾱTi ᾱj +
l∑

i=1

ᾱTi ēi

k∑
m=1

αmi = 0,

αmi ≤ 0, if yi 6= m, (24)

αmi ≤ C, if yi = m,

i = 1, . . . , l,m = 1, . . . , k,

23

which can be solved by the same decomposition method described in Section IV.
Then wm

bm

 =
l∑

i=1

αmi

φ(xi)

1

so the decision function is

argmaxmw
T
mφ(x) + b ≡ argmaxm

l∑
i=1

αmi (K(xi, x) + 1).

We modify the code for (24) and by using the optimal parameters listed in the last
column of Table V.3, a comparison on the number of iterations between solving (17)
and (24) is in Table VI.5. We provide only results of the four large problems. It can
be clearly seen that after adding the bias term, the performance is not better. It is not
clear yet why the number of iterations is nearly doubled but this is not surprising as
in [12] we have demonstrated that for binary SVM, with or without b2 in the objective
function, the performance of the same decomposition method can be quite different.
Overall we realize that the working set selection (20) may not be very good to have
fast convergence for (16).

TABLE VI.5

NUMBER OF ITERATIONS: A COMPARISON ON SOLVING (17) AND (24)

Problem Eq. (17) Eq. (24)

dna 8653 15475

satimage 13109 27751

letter 16341 26424

shuttle 163394 286734

The second issue which will be discussed here is about the stopping criteria. Though
we use stopping criteria from the same derivation, they are affected by the problem
size. That is, the smaller the dual problem is, fewer variables are involved in the
calculation of ∇f(α)i of (22). Therefore, in some sense approaches like one-against-
one which use smaller dual problems take advantages (or say they stop earlier). A
possible remedy is to divide the left-hand-side of (22) by the size of the dual problem.
More investigation are needed for this issue. However, even with such differences,
our conclusion that all-together methods take more training time should remain as

24

from Table V.3 we can see for both approaches on some problems their training time
is much longer. For example, the method by Crammer and Singer solve a kl-variable
problem and for problems letter and shuttle, we relax the stopping tolerance to 0.1.
This is like that we divide the left-hand-side of (21) by 100 which is grater then k,
the number of classes. However, its training time still cannot compete with that of
the one-against-all approach which solves dual problems with l variables.

In conclusion, we have discussed decomposition implementations for two all-
together methods and compared them with three methods based on several binary
classifiers: one-against-one, one-against-all and DAG. Experiments on large problems
show that one-against-one method and DAG may be more suitable for practical use.
A future work is to test data with a very large number of classes. Especially people
have suspected that there may have more differences among these methods if the data
set has few points in many classes [26].

ACKNOWLEDGMENTS

This work was supported in part by the National Science Council of Taiwan via
the grant NSC 89-2213-E-002-106. Part of our implementations benefited from the
work of Chih-Chung Chang. We also thank Jason Weston, Andre Elisseeff, Sathiya
Keerthi, Yann Guermeur, and Yoram Singer for many helpful comments.

REFERENCES

[1] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[2] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. A. Müller, E. Säckinger,

P. Simard, and V. Vapnik. Comparison of classifier methods: a case study in handwriting digit recognition.

In International Conference on Pattern Recognition, pages 77–87, 1994.

[3] E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support vector machines. Computa-

tional Optimizations and Applications, pages 53–79, 1999.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent

Systems and Technology, 2(3):27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.

tw/˜cjlin/libsvm.

[5] K. K. Chin. Support vector machines applied to speech pattern classification. Master’s thesis, University of

Cambridge, 1998.

[6] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297, 1995.

[7] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. In

Computational Learning Theory, pages 35–46, 2000.

[8] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Technical report,

School of Computer Science and Engineering, Hebrew University, 2001.

25

[9] J. H. Friedman. Another approach to polychotomous classification. Technical report, Department of Statistics,

Stanford University, 1996.

[10] T.-T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a fast and simple learning

procedure for support vector machines. In Proceedings of 15th Intl. Conf. Machine Learning. Morgan

Kaufman Publishers, 1998.

[11] Y. Guermeur. Combining discriminant models with new multiclass svms. Neuro COLT Technical Report

NC-TR-00-086, LORIA Campus Scientifique, 2000.

[12] C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vector machines. Machine Learning,

46:291–314, 2002.

[13] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola,

editors, Advances in Kernel Methods – Support Vector Learning, pages 169–184, Cambridge, MA, 1998.

MIT Press.

[14] J. Kindermann, E. Leopold, and G. Paass. Multi-class classification with error correcting codes. In E. Leopold

and M. Kirsten, editors, Treffen der GI-Fachgruppe 1.1.3, Maschinelles Lernen, 2000. GMD Report 114.

[15] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise procedure for building

and training a neural network. In J. Fogelman, editor, Neurocomputing: Algorithms, Architectures and

Applications. Springer-Verlag, 1990.

[16] U. H.-G. Kressel. Pairwise classification and support vector machines. In B. Schölkopf, C. J. C. Burges, and

A. J. Smola, editors, Advances in Kernel Methods – Support Vector Learning, pages 255–268, Cambridge,

MA, 1998. MIT Press.

[17] C.-J. Lin. A formal analysis of stopping criteria of decomposition methods for support vector machines.

IEEE Transactions on Neural Networks, 13(5):1045–1052, 2002.

[18] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support vector machines. IEEE

Transactions on Neural Networks, 10(5):1032–1037, 1999.

[19] E. Mayoraz and E. Alpaydin. Support vector machines for multi-class classification. In IWANN (2), pages

833–842, 1999.

[20] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, editors. Machine learning, neural and

statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994. Data available at http:

//archive.ics.uci.edu/ml/machine-learning-databases/statlog/.

[21] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

pages 130–136, 1997.

[22] J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf,

C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge,

MA, 1998. MIT Press.

[23] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classification. In Advances

in Neural Information Processing Systems, volume 12, pages 547–553. MIT Press, 2000.

[24] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola. Support vector machine

reference manual. Technical Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK,

1998.

26

[25] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

[26] J. Weston, 2001. Private communication.

[27] J. Weston and C. Watkins. Multi-class support vector machines. In M. Verleysen, editor, Proceedings of

ESANN99, pages 219–224, Brussels, 1999. D. Facto Press.

[28] G. Zoutendijk. Methods of feasible directions. Elsevier, 1960.

