
Journal of Machine Learning Research 9 (2008) 1369-1398 Submitted 1/08; Revised 4/08; Published 7/08

Coordinate Descent Method for Large-scale L2-loss Linear
Support Vector Machines

Kai-Wei Chang b92084@csie.ntu.edu.tw

Cho-Jui Hsieh b92085@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science
National Taiwan University
Taipei 106, Taiwan

Editor: Leon Bottou

Abstract

Linear support vector machines (SVM) are useful for classifying large-scale sparse data.
Problems with sparse features are common in applications such as document classification
and natural language processing. In this paper, we propose a novel coordinate descent algo-
rithm for training linear SVM with the L2-loss function. At each step, the proposed method
minimizes a one-variable sub-problem while fixing other variables. The sub-problem is
solved by Newton steps with the line search technique. The procedure globally converges
at the linear rate. As each sub-problem involves only values of a corresponding feature, the
proposed approach is suitable when accessing a feature is more convenient than accessing
an instance. Experiments show that our method is more efficient and stable than state of
the art methods such as Pegasos and TRON.
Keywords: linear support vector machines, document classification, coordinate descent

1. Introduction

Support vector machines (SVM) (Boser et al., 1992) are a popular data classification tool.
Given a set of instance-label pairs (xj , yj), j = 1, . . . , l, xj ∈ Rn, yj ∈ {−1,+1}, SVM
solves the following unconstrained optimization problem:

min
w

f(w) =
1
2
wTw + C

l∑
j=1

ξ(w; xj , yj), (1)

where ξ(w; xj , yj) is a loss function, and C ∈ R is a penalty parameter. There are two com-
mon loss functions. L1-SVM uses the sum of losses and minimizes the following optimization
problem:

f(w) =
1
2
wTw + C

l∑
j=1

max(1− yjwTxj , 0), (2)

while L2-SVM uses the sum of squared losses, and minimizes

f(w) =
1
2
wTw + C

l∑
j=1

max(1− yjwTxj , 0)2. (3)

c©2008 Kai-Wei Chang, Cho-Jui Hsieh and Chih-Jen Lin.

Chang, Hsieh and Lin

SVM is related to regularized logistic regression (LR), which solves the following problem:

min
w

f(w) =
1
2
wTw + C

l∑
j=1

log(1 + e−yjw
Txj). (4)

In some applications, we include a bias term b in SVM problems. For convenience, one may
extend each instance with an additional dimension to eliminate this term:

xTj ← [xTj , 1] wT ← [wT , b].

SVM usually maps training vectors into a high-dimensional (and possibly infinite di-
mensional) space, and solves the dual problem of (1) with a nonlinear kernel. In some
applications, data appear in a rich dimensional feature space, so that with/without nonlin-
ear mapping obtain similar performances. If data are not mapped, we call such cases linear
SVM, which are often encountered in applications such as document classification. While
one can still solve the dual problem for linear SVM, directly solving (2) or (3) is possible.
The objective function of L1-SVM (2) is nondifferentiable, so typical optimization methods
cannot be directly applied. In contrast, L2-SVM (3) is a piecewise quadratic and strongly
convex function, which is differentiable but not twice differentiable (Mangasarian, 2002).
We focus on studying L2-SVM in this paper because of its differentiability.

In recent years, several optimization methods are applied to solve linear SVM in large-
scale scenarios. For example, Keerthi and DeCoste (2005); Mangasarian (2002) propose
modified Newton methods to train L2-SVM. As (3) is not twice differentiable, to obtain the
Newton direction, they use the generalized Hessian matrix (i.e., generalized second deriva-
tive). A trust region Newton method (TRON) (Lin et al., 2008) is proposed to solve logistic
regression and L2-SVM. For large-scale L1-SVM, SVMperf (Joachims, 2006) uses a cutting
plane technique to obtain the solution of (2). Smola et al. (2008) apply bundle methods, and
view SVMperf as a special case. Zhang (2004) proposes a stochastic gradient method; Pe-
gasos (Shalev-Shwartz et al., 2007) extends Zhang’s work and develops an algorithm which
alternates between stochastic gradient descent steps and projection steps. The performance
is reported to be better than SVMperf . Another stochastic gradient implementation similar
to Pegasos is by Bottou (2007). All the above algorithms are iterative procedures, which
update w at each iteration and generate a sequence {wk}∞k=0. To distinguish these ap-
proaches, we consider the two extremes of optimization methods mentioned in the paper
(Lin et al., 2008):

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

Among methods discussed above, Pegasos randomly subsamples a few instances at a time,
so the cost per iteration is low, but the number of iterations is high. In contrast, Newton
methods such as TRON take significant efforts at each iteration, but converge at fast rates.
In large-scale scenarios, usually an approximate solution of the optimization problem is
enough to produce a good model. Thus, methods with a low-cost iteration may be preferred
as they can quickly generate a reasonable model. However, if one specifies an unsuitable
stopping condition, such methods may fall into the situation of lengthy iterations. A recent

1370

Coordinate Descent Method for Large-scale L2-loss Linear SVM

overview on the tradeoff between learning accuracy and optimization cost is by Bottou and
Bousquet (2008).

Coordinate descent is a common unconstrained optimization technique, but its use for
large linear SVM has not been exploited much.1 In this paper, we aim at applying it to
L2-SVM. A coordinate descent method updates one component of w at a time by solving
a one-variable sub-problem. It is competitive if one can exploit efficient ways to solve
the sub-problem. For L2-SVM, the sub-problem is to minimize a single-variable piecewise
quadratic function, which is differentiable but not twice differentiable. An earlier paper
using coordinate descents for L2-SVM is by Zhang and Oles (2001). The algorithm, called
CMLS, applies a modified Newton method to approximately solve the one-variable sub-
problem. Here, we propose another modified Newton method, which obtains an approximate
solution by line searches. Two key properties differentiate our method and CMLS:

1. Our proposed method attempts to use the full Newton step if possible, while CMLS
takes a more conservative step. Our setting thus leads to faster convergence.

2. CMLS maintains the strict decrease of the function value, but does not prove the
convergence. We prove that our method globally converges to the unique minimum.

We say ŵ is an ε-accurate solution if

f(ŵ) ≤ min
w

f(w) + ε.

We prove that our process obtains an ε-accurate solution in O
(
nC3P 6(#nz)3 log(1/ε)

)
iterations, where the definitions of #nz and P can be found in the end of this section.
Experiments show that our proposed method is more efficient and stable than existing
algorithms.

Subsequent to this work, we and some collaborators propose a dual coordinate descent
method for linear SVM (Hsieh et al., 2008). The method performs very well on document
data (generally better than the primal-based method here). However, the dual method is
not stable for some non-document data with a small number of features. Clearly, if the
number of features is much smaller than the number of instances, one should solve the
primal form, which has less variables. In addition, the primal method uses the column
format to store data (see Section 3.1). It is thus suitable for data stored as some form of
inverted index in a very large database.

The organization of this paper is as follows. In Section 2, we describe and analyze our
algorithm. Several implementation issues are discussed in Section 3. In Sections 4 and 5,
we describe existing methods such as Pegasos, TRON and CMLS, and compare them with
our approach. Results show that the proposed method is efficient and stable. Finally, we
give discussions and conclusions in Section 6.

All sources used in this paper are available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

Notation The following notations are used in this paper. The input vectors are
{xj}j=1,...,l, and xji is the ith feature of xj . For the problem size, l is the number of

1. For SVM with kernels, decomposition methods are popular, and they are related to coordinate descent
methods. Since we focus on linear SVM, we do not discuss decomposition methods in this paper.

1371

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

Chang, Hsieh and Lin

Algorithm 1 Coordinate descent algorithm for L2-SVM

1. Start with any initial w0.

2. For k = 0, 1, . . . (outer iterations)

(a) For i = 1, 2, . . . , n (inter iterations)

i. Fix wk+1
1 , . . . , wk+1

i−1 , w
k
i+1, . . . , w

k
n and approximately solve the sub-problem

(7) to obtain wk+1
i .

instances, n is number of features, and #nz is total number of nonzero values of training
data.

m =
#nz
n

(5)

is the average number of nonzero values per feature, and

P = max
ji
|xji| (6)

represents the upper bound of xji. We use ‖ · ‖ to represent the 2-norm of a vector.

2. Solving Linear SVM via Coordinate Descent

In this section, we describe our coordinate descent method for solving L2-SVM given in
(3). The algorithm starts from an initial point w0, and produces a sequence {wk}∞k=0. At
each iteration, wk+1 is constructed by sequentially updating each component of wk. This
process generates vectors wk,i ∈ Rn, i = 1, . . . , n, such that wk,1 = wk, wk,n+1 = wk+1,
and

wk,i = [wk+1
1 , . . . , wk+1

i−1 , w
k
i , . . . , w

k
n]T for i = 2, . . . , n.

For updating wk,i to wk,i+1, we solve the following one-variable sub-problem:

min
z
f(wk+1

1 , . . . , wk+1
i−1 , w

k
i + z, wki+1, . . . , w

k
n)

≡min
z
f(wk,i + zei),

(7)

where ei = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T . A description of the coordinate descent algorithm is in

Algorithm 1. The function in (7) can be rewritten as

Di(z) = f(wk,i + zei)

=
1
2

(wk,i + zei)T (wk,i + zei) + C
∑

j∈I(wk,i+zei)

(bj(wk,i + zei))2, (8)

where
bj(w) = 1− yjwTxj and I(w) = {j | bj(w) > 0}.

1372

Coordinate Descent Method for Large-scale L2-loss Linear SVM

In any interval of z where the set I(wk,i + zei) does not change, Di(z) is quadratic. There-
fore, Di(z), z ∈ R, is a piecewise quadratic function. As Newton method is suitable for
quadratic optimization, here we apply it for minimizing Di(z). If Di(z) is twice differen-
tiable, then the Newton direction at a given z̄ would be

−D′i(z̄)
D′′i (z̄)

.

The first derivative of Di(z) is:

D′i(z) = wk,ii + z − 2C
∑

j∈I(wk,i+zei)

yjxji(bj(wk,i + zei)). (9)

Unfortunately, Di(z) is not twice differentiable as the last term of D′i(z) is not differen-
tiable at {z | bj(wk,i + zei) = 0 for some j}. We follow Mangasarian (2002) to define the
generalized second derivative:

D′′i (z) = 1 + 2C
∑

j∈I(wk,i+zei)

y2
jx

2
ji

= 1 + 2C
∑

j∈I(wk,i+zei)

x2
ji.

(10)

A simple Newton method to solve (7) begins with z0 = 0 and iteratively updates z by the
following way until D′i(z) = 0:

zt+1 = zt −D′i(zt)/D′′i (zt) for t = 0, 1, (11)

Mangasarian (2002) proved that under an assumption, this procedure terminates in finite
steps and solves (7). Coordinate descent methods are known to converge if at each inner
iteration we uniquely attain the minimum of the sub-problem (Bertsekas, 1999, Proposition
2.7.1). Unfortunately, the assumption by Mangasarian (2002) may not hold in real cases, so
taking the full Newton step (11) may not decrease the function Di(z). Furthermore, solving
the sub-problem exactly is too expensive.

An earlier approach of using coordinate descents for L2-SVM without exactly solving
the sub-problem is by Zhang and Oles (2001). In their algorithm CMLS, the approximate
solution is restricted within a region. By evaluating the upper bound of generalized second-
order derivatives in this region, one replaces the denominator of the Newton step (11) with
that upper bound. This setting guarantees the decrease of Di(z). However, there are two
problems. First, function decreasing does not imply that {wk} converges to the global
optimum. Secondly, the step size generated by evaluating the upper bound of generalized
second derivatives may be too conservative. We describe details of CMLS in Section 4.3.

While coordinate descent methods have been well studied in optimization, most con-
vergence analyses assume that the one-variable sub-problem is exactly solved. We consider
the result by Grippo and Sciandrone (1999), which establishes the convergence by requiring
only the following sufficient decrease condition:

Di(z)−Di(0) ≤ −σz2, (12)

1373

Chang, Hsieh and Lin

where z is the step taken and σ is any constant in (0, 1/2). Since we intend to take the
Newton direction

d =
−D′i(0)
D′′i (0)

, (13)

it is important to check if z = d satisfies (12). The discussion below shows that in general
the condition hold. If the function Di(z) is quadratic around 0, then

Di(z)−Di(0) = D′i(0)z +
1
2
D′′i (0)z2.

Using D′′i (0) > 1 in (10), z = d = −D′i(0)/D′′i (0) leads to

−D
′
i(0)2

2D′′i (0)
≤ −σ D

′
i(0)2

D′′i (0)2
,

so (12) holds. As Di(z) is only piecewise quadratic, (12) may not hold using z = d. However,
we can conduct a simple line search. The following theorem shows that there is a λ ∈ (0, 1)
such that z = λd satisfies the sufficient decrease condition:

Theorem 1 Given the Newton direction d as in (13). Then z = λd satisfies (12) for all
0 ≤ λ ≤ λ̄, where

λ̄ =
D′′i (0)

Hi/2 + σ
and Hi = 1 + 2C

l∑
j=1

x2
ji. (14)

The proof is in Appendix A.1. Therefore, at each inner iteration of Algorithm 1, we take the
Newton direction d as in (13), and then sequentially check λ = 1, β, β2, . . . , where β ∈ (0, 1),
until λd satisfies (12). Algorithm 2 lists the details of a line search procedure. We did not
specify how to approximately solve sub-problems in Algorithm 1. From now on, we assume
that it uses Algorithm 2.

Calculating Di(λd) is the main cost of checking (12). We can use a trick to reduce the
number of Di(λd) calculations. Theorem 1 indicates that if

0 ≤ λ ≤ λ̄ =
D′′i (0)

Hi/2 + σ
, (15)

then z = λd satisfies the sufficient decrease condition (12). Hi is independent of w, so it
can be precomputed before training. Furthermore, we already evaluate D′′i (0) in computing
the Newton step, so it takes only constant time to check (15). At Step 3 of Algorithm 2, we
sequentially use λ = 1, β, β2, . . . , etc. Before calculating (12) using a smaller λ, we check if
λ satisfies (15). If it does, then there is no need to evaluate the new Di(λd). If λ = 1 already
satisfies (15), the line search procedure is essentially waived. Thus the computational time
is effectively reduced.

We discuss parameters in our algorithm. First, as λ = 1 is often successful, our algorithm
is insensitive to β. We choose β as 0.5. Secondly, there is a parameter σ in (12). The
smaller value of σ leads to a looser sufficient decrease condition, which reduces the time of
line search, but increases the number of outer iterations. A common choice of σ is 0.01 in
unconstrained optimization algorithms.

1374

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Algorithm 2 Solving the sub-problem using Newton direction with the line search.

1. Given wk,i. Choose β ∈ (0, 1) (e.g., β = 0.5).

2. Calculate the Newton direction d = −D′i(0)/D′′i (0).

3. Compute λ = max{1, β, β2, . . .} such that z = λd satisfies (12).

It is important to study the convergence properties of Algorithm 1. An excellent study
on the convergence rate of coordinate descent methods is by Luo and Tseng (1992). They
assume that each sub-problem is exactly solved, so we cannot apply their results here. The
following theorem proves the convergence results of Algorithm 1.

Theorem 2 The sequence {wk} generated by Algorithm 1 linearly converges. That is, there
is a constant µ ∈ (0, 1) such that

f(wk+1)− f(w∗) ≤ (1− µ)(f(wk)− f(w∗)), ∀k.

Moreover, the sequence {wk} globally converges to w∗. The algorithm obtains an ε-accurate
solution in

O
(
nC3P 6(#nz)3 log(1/ε)

)
(16)

iterations.

The proof is in Appendix A.2. Note that as data are usually scaled before training, P ≤ 1
in most practical cases.

Next, we investigate the computational complexity per outer iteration of Algorithm
1. The main cost comes from solving the sub-problem by Algorithm 2. At Step 2 of
Algorithm 2, to evaluate D′i(0) and D′′i (0), we need bj(wk,i) for all j. Here we consider
sparse data instances. Calculating bj(w), j = 1, . . . , l takes O(#nz) operations, which are
large. However, one can use the following trick to save the time:

bj(w + zei) = bj(w)− zyjxji, (17)

If bj(w), j = 1, . . . , l are available, then obtaining bj(w + zei) involves only nonzero xji’s
of the ith feature. Using (17), obtaining all bj(w + zei) costs O(m), where m, the average
number of nonzero values per feature, is defined in (5). To have bj(w0), we can start with
w0 = 0, so bj(w0) = 1, ∀j. With bj(wk,i) available, the cost of evaluating D′i(0) and D′′i (0)
is O(m). At Step 3 of Algorithm 2, we need several line search steps using λ = 1, β, β2, . . . ,
etc. For each λ, the main cost is on calculating

Di(λd)−Di(0) =
1
2

(wk,ii + λd)2 − 1
2

(wk,ii)2

+ C
(∑
j∈I(wk,i+λdei)

(bj(wk,i + λdei))2 −
∑

j∈I(wk,i)

(bj(wk,i))2
)
.

(18)

Note that from (17), if xji = 0,

bj(wk,i + λdei) = bj(wk,i).

1375

Chang, Hsieh and Lin

Hence, (18) involves no more than O(m) operations. In summary, Algorithm 2 costs

O(m) for evaluating D′i(0) and D′′i (0)
+ O(m) × # line search steps.

From the explanation earlier and our experiments, in general the sufficient decrease condi-
tion holds when λ = 1. Then the cost of Algorithm 2 is about O(m). Therefore, in general
the complexity per outer iteration is:

O(nm) = O(#nz). (19)

3. Implementation Issues

In this section, we discuss some techniques for a fast implementation of Algorithm 1. First,
we aim at suitable data representations. Secondly, we show that the order of sub-problems
at each iteration can be any permutation of {1, . . . , n}. Experiments in Section 5 indicate
that the performance of using a random permutation is superior to that of using the fixed
order 1, . . . , n. Finally, we present an online version of our algorithm.

3.1 Data Representation

For sparse data, we use a sparse matrix

X =

x
T
1
...

xTl

 (20)

to store the training instances. There are several ways to implement a sparse matrix.
Two common ones are “row format” and “column format” (Duff et al., 1989). For data
classification, using column (row) format allows us to easily access any particular feature
(instance). In our case, as we decompose the problem (3) into sub-problems over features,
the column format is more suitable.

3.2 Random Permutation of Sub-problems

In Section 2, we propose a coordinate descent algorithm which solves the one-variable
sub-problems in the order of w1, . . . , wn. As the features may be correlated, the order
of features may affect the training speed. One can even use an arbitrary order of sub-
problems. To prove the convergence, we require that each sub-problem is solved once at
one outer iteration. Therefore, at the kth iteration, we construct a random permutation
πk of {1, . . . , n}, and sequentially minimize with respect to variables wπ(1), wπ(2), . . . , wπ(n).

Similar to Algorithm 1, the algorithm generates a sequence {wk,i} such that wk,1 = wk,
wk,n+1 = wk+1,1 and

wk,it =

{
wk+1
t if π−1

k (t) < i,

wkt if π−1
k (t) ≥ i.

The update from wk,i to wk,i+1 is by

wk,i+1
t = wk,it + arg min

z
f(wk,i + zeπk(i)) if π−1

k (t) = i.

1376

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Algorithm 3 An online coordinate descent algorithm

1. Start with any initial w0.

2. For k = 0, 1, . . .

(a) Randomly choose ik ∈ {1, 2, . . . , n}.
(b) Fix wk1 , . . . , w

k
ik−1, w

k
ik+1, . . . , w

k
n and approximately solve the sub-problem (7) to

obtain wk+1
ik

.

We can prove the same convergence result:

Theorem 3 Results in Theorem 2 hold for Algorithm 1 with random permutations πk.

The proof is in Appendix A.3. Experiments in Section 5 show that a random permutation
of sub-problems leads to faster training.

3.3 An Online Algorithm

If the number of features is very large, we may not need to go through all {w1, . . . , wn}
at each iteration. Instead, one can have an online setting by arbitrarily choosing a feature
at a time. That is, from wk to wk+1 we only modify one component. A description is in
Algorithm 3. The following theorem indicates the convergence rate in expectation:

Theorem 4 Let δ ∈ (0, 1). Algorithm 3 requires O
(
nl2C3P 6(#nz) log(1

δε)
)

iterations to
obtain an ε-accurate solution with confidence 1− δ.

The proof is in Appendix A.4.

4. Related Methods

In this section, we discuss three existing schemes for large-scale linear SVM. They will
be compared in Section 5. The first one is Pegasos (Shalev-Shwartz et al., 2007), which is
notable for its efficiency in training linear L1-SVM. The second one is a trust region Newton
method (Lin et al., 2008). It is one of the fastest implementations for L2-SVM. The last
one is CMLS, which is a coordinate descent method proposed by Zhang and Oles (2001).

Coordinate descent methods have been used in other machine learning problems. For
example, Rätsch et al. (2002) discuss the connection between boosting/logistic regression
and coordinate descent methods. Their strategies for selecting coordinates at each outer
iteration are different from ours. We do not discuss details here.

1377

Chang, Hsieh and Lin

4.1 Pegasos for L1-SVM

We briefly introduce the Pegasos algorithm (Shalev-Shwartz et al., 2007). It is an efficient
method to solve the following L1-SVM problem:

min
w

g(w) =
λ

2
wTw +

1
l

l∑
j=1

max(1− yjwTxj , 0). (21)

By setting λ = 1
Cl , we have

g(w) = f(w)/Cl, (22)

where f(w) is the objective function of (2). Thus (21) and (2) are equivalent. Pegasos has
two parameters. One is the subsample size K, and the other is the penalty parameter λ.
It begins with an initial w0 whose norm is at most 1/

√
λ. At each iteration k, it randomly

selects a set Ak ⊂ {xj , yj}j=1,...,l of size K as the subsamples of training instances and sets
a learning rate

ηk =
1
λk
. (23)

Then it updates wk with the following rules:

wk+1 = min

(
1,

1/
√
λ

‖wk+ 1
2 ‖

)
wk+ 1

2 ,

wk+ 1
2 = wk − ηk∇k,

∇k = λwk − 1
K

∑
j∈A+

k (wk)

yjxj ,

A+
k (w) = {j ∈ Ak | 1− yjwTxj > 0},

(24)

where ∇k is considered as a sub-gradient of the approximate objective function:

λ

2
wTw +

1
K

∑
j∈Ak

max(1− yjwTxj , 0).

Here wk+1/2 is a vector obtained by the stochastic gradient descent step, and wk+1 is the
projection of wk+1/2 to the set {w | ‖w‖ ≤ 1/

√
λ}. Algorithm 4 lists the detail of Pegasos.

The parameter K decides the number of training instances involved at an iteration. If K = l,
Pegasos considers all examples at each iteration, and becomes a subgradient projection
method. In this case the cost per iteration is O(#nz). If K < l, Pegasos is a randomized
algorithm. For the extreme case of K = 1, Pegasos chooses only one training instance for
updating. Thus the average cost per iteration is O(#nz/l). In subsequent experiments, we
set the subsample size K to one as Shalev-Shwartz et al. (2007) suggested.

Regarding the complexity of Pegasos, we first compare Algorithm 1 with Pegasos (K =
l). Both algorithms are deterministic and cost O(#nz) per iteration. Shalev-Shwartz et al.
(2007) prove that Pegasos with K = l needs Õ(R2/(εgλ)) iterations to achieve an εg-accurate
solution, where R = maxj ‖xj‖, and Õ(h(n)) is shorthand for O(h(n) logk h(n)), for some
k ≥ 0. We use εg as Pegasos considers g(w) in (22), a scaled form of f(w). From (1), an

1378

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Algorithm 4 Pegasos algorithm for solving L1-SVM.

1. Given λ,K, and w0 with ‖w0‖ ≤ 1/
√
λ.

2. For k = 0, 1, . . .

(a) Select a set Ak ∈ {xj , yj | j = 1 . . . l}, and the learning rate η by (23).

(b) Obtain wk+1 by (24).

εg-accurate solution for g(w) is equivalent to an (ε/Cl)-accurate solution for f(w). With
λ = 1/Cl and R2 = O(P 2(#nz)/l), where P is defined in (6), Pegasos takes

Õ

(
C2P 2l(#nz)

ε

)
iterations to achieve an ε-accurate solution. One can compare this value with (16), the
number of iterations by Algorithm 1.

Next, we compare two random algorithms: Pegasos with K = 1 and our Algorithm
3. Shalev-Shwartz et al. (2007) prove that Pegasos takes Õ(R2

λδεg
) iterations to obtain an

εg-accurate solution with confidence 1− δ. Using a similar derivation in the last paragraph,
we can show that this is equivalent to Õ(C2P 2l(#nz)/δε). As the cost per iteration is
O(#nz/l), the overall complexity is

Õ

(
C2P 2(#nz)2

δε

)
.

For our Algorithm 3, each iteration costs O(m), so following Theorem 4 the overall com-
plexity is O

(
l2C3P 6(#nz)2 log(1

δε)
)
.

Based on the above analysis, the number of iterations required for our algorithm is
proportional toO(log(1/ε)), while that for Pegasos isO(1/ε). Therefore, our algorithm tends
to have better final convergence than Pegasos for both deterministic and random settings.
However, for the dependence on the size of data (number of instances and features), our
algorithm is worse.

Regarding the stopping condition, as at each iteration Pegasos only takes one sample
for updating w, neither function nor gradient information is available. This keeps Pegasos
from designing a suitable stopping condition. Shalev-Shwartz et al. (2007) suggest to set a
maximal number of iterations. However, deciding a suitable value may be difficult. We will
discuss stopping conditions of Pegasos and other methods in Section 5.3.

4.2 Trust Region Newton Method (TRON) for L2-SVM

Recently, Lin et al. (2008) introduced a trust region Newton method for logistic regression.
Their proposed method can be extended to L2-SVM. In this section, we briefly discuss
their approach. For convenience, in subsequent sections, we use TRON to indicate the trust
region Newton method for L2-SVM, and TRON-LR for logistic regression

1379

Chang, Hsieh and Lin

Algorithm 5 Trust region Newton method for L2-SVM.

1. Given w0.

2. For k = 0, 1, . . .

(a) Find an approximate solution sk of the trust region sub-problem (25).

(b) Update wk and ∆k according to (26).

The optimization procedure of TRON has two layers of iterations. At each outer iteration
k, TRON sets a size ∆k of the trust region, and builds a quadratic model

qk(s) = ∇f(wk)T s +
1
2
sT∇2f(wk)s

as the approximation of the value f(wk + s)− f(wk), where f(w) is the objective function
in (3) and ∇2f(w) is the generalized Hessian (Mangasarian, 2002) of f(w). Then an inner
conjugate gradient procedure approximately finds the Newton direction by minimizing the
following optimization problem:

min
s

qk(s) (25)

subject to ‖s‖ ≤ ∆k.

TRON updates wk and ∆k by the following rules:

wk+1 =

{
wk + sk if ρk > η0,

wk if ρk ≤ η0,

∆k+1 ∈

[σ1 min{‖sk‖,∆k}, σ2∆k] if ρk ≤ η1,

[σ1∆k, σ3∆k] if ρk ∈ (η1, η2),
[∆k, σ3∆k] if ρk ≥ η2,

ρk =
f(wk + sk)− f(wk)

qk(sk)
,

(26)

where ρk is the ratio of the actual reduction in the objective function to the approximation
model qk(s). Users pre-specify parameters η0 > 0, 1 > η2 > η1 > 0, and σ3 > 1 > σ2 >
σ1 > 0. We use

η0 =10−4, η1 = 0.25, η2 = 0.75,
σ1 =0.25, σ2 = 0.5, σ3 = 4,

as suggested by Lin et al. (2008). The procedure is listed in Algorithm 5.
For the computational complexity, the main cost per TRON iteration is

O(#nz)× (# conjugate gradient iterations). (27)

Compared to our approach or Pegasos, the cost per TRON iteration is high. It keeps TRON
from quickly obtaining a usable model. However, when w gets close to the minimum,
TRON takes the Newton step to achieve fast convergence. We give more observations in
the experiment section.

1380

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Algorithm 6 CMLS algorithm for solving L2-SVM.

1. Given w0 and set initial ∆0,i = 10,∀i.

2. For k = 0, 1, . . .

(a) Set ck by (30). Let wk,1 = wk.

(b) For i = 1, 2, . . . , n

i. Evaluate z by (28).
ii. wk,i+1 = wk,i + zei.
iii. Update ∆ by (29).

(c) Let wk+1 = wk,n+1.

4.3 CMLS: A Coordinate Descent Method for L2-SVM

In Sections 2 and 3, we introduced our coordinate descent method for solving L2-SVM. Here,
we discuss the previous work (Zhang and Oles, 2001), which also applies the coordinate
descent technique. Zhang and Oles refer to their method as CMLS. At each outer iteration
k, it sequentially minimizes sub-problems (8) by updating one variable of (3) at a time. In
solving the sub-problem, Zhang and Oles (2001) mention that using line searches may result
in small step sizes. Hence, CMLS applies a technique similar to the trust region method. It
sets a size ∆k,i of the trust region, evaluates the first derivative (9) of (8), and calculates
the upper bound of the generalized second derivative subject to |z| ≤ ∆k,i:

Ui(z) = 1 +
l∑

j=1

βj(wk,i + zei),

βj(w) =

{
2C if yjwTxj ≤ 1 + |∆k,ixij |,
0 otherwise.

Then we obtain the step z as:

z = min(max(−D
′
i(0)

Ui(0)
,−∆k,i),∆k,i). (28)

The updating rule of ∆ is:
∆k+1,i = 2|z|+ ε, (29)

where ε is a small constant.
In order to speed up the process, Zhang and Oles (2001) smooth the objective function

of sub-problems with a parameter ck ∈ [0, 1]:

Di(z) =
1
2

(wk,i + zei)T (wk,i + zei) + C
l∑

j=1

(bj(wk,i + zei))2,

1381

Chang, Hsieh and Lin

Problem l n #nz
astro-physic 62,369 99,757 4,834,550
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
yahoo-japan 176,203 832,026 23,506,415
rcv1 677,399 47,236 49,556,258
yahoo-korea 460,554 3,052,939 156,436,656

Table 1: Data set statistics: l is the number of instances and n is the number of features.

where

bj(w) =

{
1− yjwTxj if 1− yjwTxj > 0,
ck(1− yjwTxj) otherwise.

Following the setting by (Zhang and Oles, 2001), we choose

ck = max(0, 1− k/50), (30)

and set the initial w = 0 and ∆0,i = 10, ∀i. We find that the result is insensitive to these
parameters. The detail of CMLS algorithm is listed in Algorithm 6.

Zhang and Oles (2001) prove that if ck = 0,∀k, then the objective function of (3)
is decreasing after each inner iteration. However, such a property may not imply that
Algorithm 6 converges to the minimum. In addition, CMLS updates w by (28), which is
more conservative than Newton steps. In Section 5, we show that CMLS takes more time
and iterations than ours to obtain a solution.

5. Experiments and Analysis

In this section, we conduct two experiments to investigate the performance of our pro-
posed coordinate descent algorithm. The first experiment compares our method with other
L2-SVM solvers in terms of the speed to reduce function/gradient values. The second exper-
iment evaluates various state of the art linear classifiers for L1-SVM, L2-SVM, and logistic
regression. We also discuss the stopping condition of these methods.

5.1 Data Sets

Table 1 lists the number of instances (l), features (n), and non-zero elements (#nz) of six
data sets. All sets are from document classification. Past studies show that linear SVM
performs as good as kernelized ones for such data. Details of astro-physic are mentioned
in Joachims (2006), while others are in Lin et al. (2008). Three data sets real-sim, news20
and rcv1 are publicly available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets. A brief reminder for each data set can be found below.

• astro-physic: This set is a classification problem of scientific papers from Physics
ArXiv.

• real-sim: This set includes some Usenet articles.

1382

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Data set CDPER CD TRON CMLS

astro-physic 0.5 1.2 1.2 2.6
real-sim 0.2 0.3 0.9 2.0
news20 2.4 1.0 5.2 5.3
yahoo-japan 2.9 9.3 38.2 13.5
rcv1 5.1 10.8 18.6 54.8
yahoo-korea 18.4 58.1 286.1 146.3

Table 2: The training time for an L2-SVM solver to reduce the objective value to within
1% of the optimal value. Time is in seconds. We use C = 1. The approach with
the shortest running time is boldfaced.

• news20: This is a collection of news documents, and was preprocessed by Keerthi and
DeCoste (2005).

• yahoo-japan: We use binary term frequencies and normalize each instance to unit
length.

• rcv1: This set (Lewis et al., 2004) is an archive of manually categorized newswire
stories from Reuters Ltd. Each vector is a cosine normalization of a log transformed
TF-IDF (term frequency, inverse document frequency) feature vector.

• yahoo-korea: Similar to yahoo-japan, we use binary term frequencies and normalize
each instance to unit length.

To examine the testing accuracy, we use a stratified selection to split each set to 4/5
training and 1/5 testing.

5.2 Comparisons

We compare the following six implementations. TRON-LR is for logistic regression, Pegasos
is for L1-SVM, and all others are for L2-SVM.

1. CD: the coordinate descent method described in Section 2. We choose σ in (12) as
0.01.

2. CDPER: the method modified from CD by permuting sub-problems at each outer step.
See the discussion in Section 3.2.

3. CMLS: a coordinate descent method for L2-SVM (Zhang and Oles, 2001, Algorithm
3). It is discussed in Section 4.3.

4. TRON: the trust region Newton method (Lin et al., 2008) for L2-SVM. See the dis-
cussion in Section 4.2. We use the L2-loss linear SVM implementation in the software
LIBLINEAR (version 1.21 with option -s 2; http://www.csie.ntu.edu.tw/~cjlin/
liblinear).

1383

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear

Chang, Hsieh and Lin

Data set
L2-SVM L1-SVM LR

C Accuracy C Accuracy C Accuracy
astro-physic 0.5 97.14 1.0 97.09 8.0 97.03
real-sim 1.0 97.59 1.0 97.52 8.0 97.57
news20 4.0 96.85 2.0 96.70 64.0 96.17
yahoo-japan 0.5 92.91 1.0 92.97 4.0 92.76
rcv1 0.5 97.77 1.0 97.77 8.0 97.76
yahoo-korea 2.0 87.51 4.0 87.42 64.0 87.31

Table 3: The best parameter C and the corresponding testing accuracy of L1-SVM, L2-
SVM and logistic regression (LR). We conduct five-fold cross validation to select
C.

5. TRON-LR: the trust region Newton method for logistic regression introduced by Lin
et al. (2008). Similar to TRON, we use the implementation in the software LIBLINEAR
with option -s 0.

6. Pegasos: the primal estimated sub-gradient solver for L1-SVM (Shalev-Shwartz et al.,
2007). See the discussion in Section 4.1. The source code is available online at
http://ttic.uchicago.edu/~shai/code.

We do not include the bias term in all the solvers. All the above algorithms are imple-
mented in C++ with double-precision floating-point numbers. Using single precision (e.g.,
Bottou, 2007) may reduce the computational time in some situations, but this setting may
cause numerical inaccuracy. We conduct experiments on an Intel 2.66GHz processor with
8GB of main memory under Linux.

In our first experiment, we compare L2-SVM solvers (with C = 1) in term of the speed
to reduce function/gradient values. In Table 2, we check their CPU time of reducing the
relative difference of the function value to the optimum,

f(wk)− f(w∗)
|f(w∗)|

, (31)

to within 0.01. We run TRON with the stopping condition ‖∇f(wk)‖ ≤ 0.01 to obtain the
reference solutions. Since objective values are stable under such strict stopping conditions,
these solutions are seen to be very close to the optima. Overall, our proposed algorithms
CDPER and CD perform well on all the data sets. For the large data sets (rcv1, yahoo-japan,
yahoo-korea), CD is significantly better than TRON and CMLS. With the permutation of
sub-problems, CDPER is even better than CD. To show more detailed comparisons, Figure
1 presents time versus relative difference (31). As a reference, we draw a horizontal dotted
line to indicate the relative difference 0.01. Consistent with the observation in Table 2,
CDPER is more efficient and stable than others.

In addition, we are interested in how fast these methods decrease the norm of gradients.
Figure 2 shows the result. Overall, CDPER converges faster in the beginning, while TRON
is the best for final convergence.

1384

http://ttic.uchicago.edu/~shai/code

Coordinate Descent Method for Large-scale L2-loss Linear SVM

(a) astro-physic (b) real-sim

(c) news20 (d) rcv1

(e) yahoo-japan (f) yahoo-korea

Figure 1: Time versus the relative difference of the objective value to the minimum. The
dotted line indicates the relative difference 0.01. We show the training time for
each solver to reach this ratio in Table 2. Time is in seconds. C = 1 is used.

1385

Chang, Hsieh and Lin

(a) astro-physic (b) real-sim

(c) news20 (d) rcv1

(e) yahoo-japan (f) yahoo-korea

Figure 2: The two-norm of gradient versus the training time. Time is in seconds. C = 1 is
used.

1386

Coordinate Descent Method for Large-scale L2-loss Linear SVM

(a) astro-physic (b) real-sim

(c) news20 (d) rcv1

(e) yahoo-japan (f) yahoo-korea

Figure 3: Testing accuracy versus the training time. Time is in seconds. We train each
data set using the best C from cross validation. (see Table 3 for details.)

1387

Chang, Hsieh and Lin

The second experiment is to check the relationship between training time and testing
accuracy using our implementation and other solvers: CMLS, TRON (L2-SVM and logistic
regression), and Pegasos. That is, we investigate which method achieves reasonable testing
accuracy more quickly. To have a fair evaluation, we conduct five-fold cross validation to se-
lect the best parameter C for each learning method. Using the selected C, we then train the
whole training set and predict the testing set. Table 3 presents the testing accuracy. Notice
that some solvers scale the SVM formulation, so we adjust their regularization parameter
C accordingly.2 With the best parameter setting, SVM (L1 and L2) and logistic regression
give comparable generalization performances. In Figure 3, we present the testing accuracy
along the training time. As an accurate solution of the SVM optimization problem does
not imply the best testing accuracy, some implementations achieve higher accuracy before
reaching the minimal function value. Below we give some observations of the experiments.

We do not include CD in Figure 3, because CDPER is better than it in almost all
situations. One may ask if simply shuffling features once in the beginning can give similar
performances to CDPER. Moreover, we can apply permutation schemes to CMLS as well.
In Section 6.1, we give a detailed discussion on the issue of feature permutations.

Regarding the online setting of randomly selecting only one feature at each step (Algo-
rithm 3), we find that results are similar to those of CDPER.

From the experimental results, CDPER converges faster than CMLS. Both are coordinate
descent methods, and the cost per iteration is similar. However, CMLS suffers from lengthy
iterations because its modified Newton method takes a conservative step size. In Figure 3(d),
the testing accuracy even does not reach a reasonable value after 30 seconds. Conversely,
CDPER usually uses full Newton steps, so it converges faster. For example, CDPER takes the
full Newton step in 99.997% inner iterations for solving rcv1 (we check up to 5.96 seconds).

Though Pegasos is efficient for several data sets, the testing accuracy is sometimes
unstable (see Figure 3(c)). As Pegasos only subsamples one training data to update wk, it
is influenced more by noisy data. We also observe slow final convergence on the function
value. This slow convergence may make the selection of stopping conditions (maximal
number of iterations for Pegasos) more difficult.

Finally, compared to TRON and TRON-LR, CDPER is more efficient to yield good testing
accuracy (See Table 2 and Figure 3); however, if we check the value ||∇f(wk)||, Figure 2
shows that TRON converges faster in the end. This result is consistent with what we
discussed in Section 1 on distinguishing various optimization methods. We indicated that
a Newton method (where TRON is) has fast final convergence. Unfortunately, since the
cost per TRON iteration is high, and the Newton direction is not effective in the beginning,
TRON is less efficient in the early stage of the optimization procedure.

5.3 Stopping Conditions

In this section, we discuss stopping conditions of our algorithm and other existing methods.
In solving a strictly convex optimization problem, the norm of gradients is often considered
in the stopping condition. The reason is that

‖∇f(w)‖ = 0 ⇐⇒ w is the global minimum.

2. The objective function of Pegasos and (2) are equivalent by setting λ = 1/(C × number of instances),
where λ is the penalty parameter used by Shalev-Shwartz et al. (2007).

1388

Coordinate Descent Method for Large-scale L2-loss Linear SVM

(a) news20 (b) yahoo-japan

(c) rcv1 (d) yahoo-korea

Figure 4: Results of different orders of sub-problems at each outer iteration. We present
time versus the relative difference of the objective value to the minimum. Time
is in second.

For example, TRON checks whether the norm of gradient is small enough for stopping.
However, as our coordinate descent method updates one component of w at each inner
iteration, we have only D′i(0) = ∇f(wk,i)i, i = 1, . . . , n. Theorem 2 shows that wk,i → w∗,
so we have

D′i(0) = ∇f(wk,i)i → 0, ∀i.

Therefore, by storing Di(0), ∀i, at the end of the kth iteration, one can check if
∑n

i=1D
′
i(0)2

or maxi |D′i(0)| is small enough. For Pegasos, we mentioned in Section 4.1 that one may
need a maximal number of iterations as the stopping condition due to the lack of func-
tion/gradient information. Another possible condition is to check the validation accuracy.
That is, the training procedure terminates after reaching a stable validation accuracy value.

1389

Chang, Hsieh and Lin

6. Discussion and Conclusions

In this section, we discuss some related issues and give conclusions.

6.1 Order of Sub-problems at Each Outer Iteration

In Section 5.2, we show that a random order of the sub-problems helps our coordinate
descent method to converge faster in most cases. In this section, we give detailed experi-
ments. Following the same setting in Figure 1, we compare our coordinate descent method
with/without permutation of sub-problems (CDPER and CD), with permutation only once
before training (CDPERONE), and CMLS with/without permuting sub-problems (CMLS and
CMLSPER). Figure 4 shows the relative difference of the objective value to the minimum
along time. Overall, CDPER converges faster than CDPERONE and CD, but CMLSPER does
not improve over CMLS much.

With the permutation of features at each iteration, the cost per CDPER iteration is
slightly higher than CD, but CDPER requires much fewer iterations to achieve a similar
accuracy value. This result seems to indicate that if the sub-problem order is fixed, the
update of variables becomes slower. However, as CD sequentially accesses features, it has
better data locality in the computer memory hierarchy. An example is news20 in Figure
4(a). As the number of features is much larger than the number of instances, two adjacent
sub-problems of CDPER may access two very far away features. Then the cost per CD
iteration is only 1/5 of CDPER, so CD is better in the beginning. CDPER catches up in the
end due to its faster convergence.

For CMLS and CMLSPER, the latter is only faster in the final stage (see the right end of
Figures 4(b) and 4(d)). Since the function reduction of CMLS (or CMLSPER) is slow, the
advantage of doing permutations appears after long training time.

The main difference between CDPERONE and CDPER is that the former only permutes
features once in the beginning. Figure 4 clearly shows that CDPER is better than CDPER-
ONE, so permuting features only once is not enough. If we compare CD and CDPERONE,
there is no definitive winner. This result seems to indicate that feature ordering affects the
performance of the coordinate descent method. By using various feature orders, CDPER
avoids taking a bad one throughout all iterations.

6.2 Coordinate Descents for Logistic Regression

We can apply the proposed coordinate descent method to solve logistic regression, which
is twice differentiable. An earlier study of using coordinate decent methods for logistic
regression/maximum entropy is by Dud́ık et al. (2004). We compare an implementation
with TRON-LR. Surprisingly, our method is not better in most cases. Experiments show
that for training rcv1, our coordinate descent method takes 93.1 seconds to reduce the
objective value to within 1% of the optimal value, while TRON-LR takes 27.9 seconds. Only
for yahoo-japan and yahoo-korea, where TRON-LR is slow (see Figure 3), the coordinate
descent method is competitive. This result is contrast to earlier experiments for L2-SVM,
where the coordinate descent method more quickly obtains a useful model than TRON. We
give some explanations below.

1390

Coordinate Descent Method for Large-scale L2-loss Linear SVM

With the logistic loss, the objective function is (4). The single-variable function Di(z) is
nonlinear, so we use Algorithm 2 to obtain an approximate minimum. To use the Newton
direction, similar to D′i(z) and D′′i (z) in (9) and (10), we need

D′i(0) = ∇if(w) = wi + C
∑

j:xji 6=0

−yjxjie−yjw
Txj

1 + e−yjw
Txj

,

D′′i (0) = ∇2
iif(w) = 1 + C

∑
j:xji 6=0

x2
jie
−yjwTxj

(1 + e−yjw
Txj)2

,

where we abbreviate wk,i to w, and use yj = ±1. Then |{j | xji 6= 0}| exponential operations
are conducted. If we assume that λ = 1 satisfies the sufficient decrease condition (12), then
the cost per outer iteration is

O(#nz) + (#nz exponential operations). (32)

This complexity is the same as (19) for L2-SVM. However, since each exponential operation
is expensive (equivalent to tens of multiplications/divisions), in practice (32) is much more
time consuming. For TRON-LR, a trust region Newton method, it calculates ∇f(w) and
∇2f(w) at the beginning of each iteration. Hence l exponential operations are needed for
exp(−yjwTxj), j = 1, . . . , l. From (27), the cost per iteration is

O(#nz)× (# conjugate gradient iterations) + (l exponential operations). (33)

Since l � #nz, exponential operations are not significant in (33). Therefore, the cost per
iteration of applying trust region Newton methods to L2-SVM and logistic regression does
not differ much. In contrast, (32) shows that coordinate descent methods are less suitable for
logistic regression than L2-SVM. However, we may avoid expensive exponential operations
if all the elements of xj are either 0 or the same constant. By storing exp(−yjwTxj), j =
1, . . . , l, one updates exp(−yj(wk,i)Txj) by multiplying it by exp(−zyjxji). Using yj = ±1,
exp(−zyjxji) = (exp(−zxji))yj . As xji is zero or a constant for all j, the number of
exponential operations per inner iteration is reduced to one. In addition, applying fast
approximations of exponential operations such as Schraudolph (1999) may speed up the
coordinate descent method for logistic regression.

6.3 Conclusions

In summary, we propose and analyze a coordinate descent method for large-scale linear L2-
SVM. The new method possesses sound optimization properties. The method is suitable
for data with an easy access of any feature. Experiments indicate that our method is more
stable and efficient than most existing algorithms. We plan to extend our work to other
challenging problems such as training large data which can not fit into memory.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan grant 95-2221-
E-002-205-MY3. The authors thank Associate Editor and reviewers for helpful comments.

1391

Chang, Hsieh and Lin

Appendix A. Proofs

In this section, we prove theorems appeared in the paper. First, we discuss some properties
of our objective function f(w). Consider the following piecewise quadratic strongly convex
function:

g(s) =
1
2
sT s + C‖(As− h)+‖2, (34)

where (·)+ is the operator that replaces negative components of a vector with zeros. Man-
gasarian (2002) proves the following inequalities for all s,v ∈ Rn:

(∇g(s)−∇g(v))T (s− v) ≥ ‖s− v‖2, (35)

|g(v)− g(s)−∇g(s)T (v − s)| ≤ K

2
‖v − s‖2, (36)

where
K = 1 + 2C‖A‖22.

Our objective function f(w) is a special case of (34) with A = −Y X (X is defined in (20))
and h = −1, where Y is a diagonal matrix with Yjj = yj , j = 1, . . . , l and 1 is the vector
of all ones. With yi = ±1, f(w) satisfies (35) and (36) with

K = 1 + 2C‖X‖22. (37)

To derive properties of the subproblem Di(z) (defined in (8)), we set

A = −

y1x1i
...

ylxli

 and h =

y1wTx1 − y1wix1i − 1
...

ylwTxl − ylwixli − 1

 ,
where we abbreviate wk,i to w. Since

Di(z) =
1
2
wTw − 1

2
w2
i +

(
1
2

(z + wi)2 + ‖(A(z + wi)− h)+‖2
)
,

the first and second terms of the above form are constants. Hence, Di(z) satisfies (35) and
(36) with

K = 1 + 2C
l∑

j=1

x2
ji.

We use Hi to denote Di(z)’s corresponding K. This definition of Hi is the same as the one
in (14). We then derive several lemmas.

Lemma 5 For any i ∈ {1, . . . , n}, and any z ∈ R,

D′i(0)z +
1
2
Hiz

2 ≥ Di(z)−Di(0) ≥ D′i(0)z +
1
2
z2. (38)

1392

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Proof There are two inequalities in (38). The first inequality directly comes from (36)
using Di(z) as g(s) and Hi as K. To derive the second inequality, if z < 0, using Di(z) as
g(s) in (35) yields

D′i(z) ≤ D′i(0) + z.

Then,

Di(z)−Di(0) = −
∫ 0

t=z
D′i(t)dt ≥ D′i(0)z +

1
2
z2.

The situation for z ≥ 0 is similar.

Lemma 6 There exists a unique optimum solution for (3).

Proof From Weierstrass’ Theorem, any continuous function on a compact set attains its
minimum. We consider the level set A = {w | f(w) ≤ f(0)}. If A is not bounded, there is
a sub-sequence {wk} ⊂ A such that ‖wk‖ → ∞. Then

f(wk) ≥ 1
2
‖wk‖2 →∞.

This contradicts f(wk) ≤ f(0), so A is bounded. Thus there is at least one optimal so-
lution for (3). Combining with the strict convexity of (3), a unique global optimum exists.

A.1 Proof of Theorem 1

Proof By Lemma 5, we let z = λd and have

Di(λd)−Di(0) + σλ2d2

≤ D′i(0)λd+
1
2
Hiλ

2d2 + σλ2d2

= −λD
′
i(0)2

D′′i (0)
+

1
2
Hiλ

2 D
′
i(0)2

D′′i (0)2
+ σλ2 D

′
i(0)2

D′′i (0)2

= λ
D′i(0)2

D′′i (0)

(
λ(
Hi/2 + σ

D′′i (0)
)− 1

)
. (39)

If we choose λ̄ = D′′i (0)
Hi/2+σ , then for λ ≤ λ̄, (39) is non-positive. Therefore, (12) is satisfied

for all 0 ≤ λ ≤ λ̄.

A.2 Proof of Theorem 2 (convergence of Algorithm 1)

Proof By setting πk(i) = i, this theorem is a special case of Theorem 3.

1393

Chang, Hsieh and Lin

A.3 Proof of Theorem 3 (Convergence of Generalized Algorithm 1)

Proof To begin, we define 1-norm and 2-norm of a vector w ∈ Rn:

‖w‖1 =
n∑
i=1

|wi|, ‖w‖2 =

√√√√ n∑
i=1

w2
i .

The following inequality is useful:

‖w‖2 ≤ ‖w‖1 ≤
√
n‖w‖2, ∀w ∈ Rn. (40)

By Theorem 1, any λ ∈ [βλ̄, λ̄] satisfies the sufficient decrease condition (12), where
β ∈ (0, 1) and λ̄ is defined in (14). Since Algorithm 2 selects λ by trying {1, β, β2, . . . }, the
value λ selected by Algorithm 2 satisfies

λ ≥ βλ̄ =
β

Hi/2 + σ
D′′πk(i)(0).

This and (13) suggest that the step size z = λd in Algorithm 2 satisfies

|z| = λ

∣∣∣∣∣−D
′
πk(i)

(0)

D′′πk(i)(0)

∣∣∣∣∣ ≥ β

Hi/2 + σ
|D′πk(i)(0)|. (41)

Assume
H = max(H1, . . . ,Hn) and γ =

β

H/2 + σ
. (42)

We use w and f(w) to rewrite (41):

|wk,i+1
πk(i)

− wk,iπk(i)| ≥ γ|∇f(wk,i)πk(i)|, (43)

where we use the fact
D′πk(i)(0) = ∇f(wk,i)πk(i).

Taking the summation of (43) from i = 1 to n, we have

‖wk+1 −wk‖1 ≥ γ
n∑
i=1

|∇f(wk,i)πk(i)|

≥ γ
n∑
i=1

(|∇f(wk,1)πk(i)| − |∇f(wk,i)πk(i) −∇f(wk,1)πk(i)|)

= γ

(
‖∇f(wk,1)‖1 −

n∑
i=1

|∇f(wk,i)πk(i) −∇f(wk,1)πk(i)|

)
.

(44)

By the definition of f(w) in (3),

∇f(w) = w − 2C
l∑

j=1

yjxj max(1− yjwTxj , 0).

1394

Coordinate Descent Method for Large-scale L2-loss Linear SVM

With yj = ±1,

n∑
i=1

|∇f(wk,i)πk(i) −∇f(wk,1)πk(i)|

≤
n∑
i=1

|wk,iπk(i) − wk,1πk(i)|+ 2C
l∑

j=1

|xjπk(i)| |(w
k,i)Txj − (wk,1)Txj |

≤

n∑
i=1

|wk+1
πk(i)

− wkπk(i)|+ 2C
l∑

j=1

|xjπk(i)|
n∑
q=1

|xjq| |wk,iq − wk,1q |

=‖wk+1 −wk‖1 + 2C

n∑
i=1

l∑
j=1

n∑
q=1

|xjπk(i)| |xjq| |w
k,i
q − wk,1q |

≤‖wk+1 −wk‖1 + 2C
n∑
q=1

|wk+1
q − wkq |

∑
i,j:xjπk(i) 6=0

P 2

=(1 + 2CP 2(#nz))‖wk+1 −wk‖1,

(45)

where P is defined in (6). From (44) and (45), we have

‖wk+1 −wk‖1 ≥
γ

1 + γ + 2γCP 2(#nz)
‖∇f(wk,1)‖1.

With (40),

‖wk+1 −wk‖2 ≥
1√
n
‖wk+1 −wk‖1

≥ γ√
n(1 + γ + 2γCP 2(#nz))

‖∇f(wk)‖1 ≥
γ√

n(1 + γ + 2γCP 2(#nz))
‖∇f(wk)‖2.

(46)

From Lemma 6, there is a unique global optimum w∗ for (3). The optimality condition
shows that

∇f(w∗) = 0. (47)

From (35) and (47),

‖wk −w∗‖2 ≤ ‖∇f(wk)−∇f(w∗)‖2 = ‖∇f(wk)‖2. (48)

With (46),

‖wk+1 −wk‖2 ≥ τ‖wk −w∗‖2, where τ =
γ√

n(1 + γ + 2γCP 2(#nz))
. (49)

From (12) and (49),

f(wk)− f(wk+1) =
n∑
i=1

(f(wk,i)− f(wk,i+1))

≥
n∑
i=1

σ(wk,i+1
πk(i)

− wk,iπk(i))
2 = σ‖wk+1 −wk‖22 ≥ στ2‖wk −w∗‖22.

1395

Chang, Hsieh and Lin

By (36) and (47),

f(wk)− f(w∗) ≤ K

2
‖wk −w∗‖22, (50)

where K is defined in (37). Therefore, we have

f(wk)− f(wk+1) ≥ 2στ2

K
(f(wk)− f(w∗)).

This is equivalent to

(f(wk)− f(w∗)) + (f(w∗)− f(wk+1)) ≥ 2στ2

K
(f(wk)− f(w∗)).

Finally, we have

f(wk+1)− f(w∗) ≤ (1− 2στ2

K
)(f(wk)− f(w∗)). (51)

With τ ≤ 1 from (49), K ≥ 1 from (37) and σ < 1/2, we have 2στ2/K < 1. Hence, (51)
ensures that f(wk) approaches f(w∗).

From (51), {f(wk)} converges to f(w∗). We can then prove that {wk} globally converges
to w∗. If this result does not hold, there is a sub-sequence {wk}M converging to a point
w̄ 6= w∗. However, Lemma 6 shows that f(w̄) > f(w∗), so limk∈M f(wk) > f(w∗), a
contradiction.

Let µ = 2στ2/K, (51) implies

f(wk)− f(w∗) ≤ (1− µ)k(f(w0)− f(w∗)), ∀k.

To achieve an ε-accurate solution, we need the right-hand side to be smaller than ε. Thus,

k ≥ log(f(w0)− f(w∗)) + log(1/ε)
− log(1− µ)

.

From the inequality
log(1− x) ≤ −x if x < 1,

we have

k ≥ log(f(w0)− f(w∗)) + log(1/ε)
µ

. (52)

In following we discuss the order of µ−1 = K
2στ2 . From (37),

K = 2C‖X‖22 + 1 ≤ 2C‖X‖2F + 1 ≤ 2CP 2(#nz) + 1, (53)

where ‖ · ‖F is the Frobenious norm. From (49),

τ−1 =
√
n

(
1
γ

+ 2CP 2(#nz) + 1
)
.

Since γ = β
σ+H/2 , from (14) and (42) we have

γ−1 = O(lCP 2 + 1) ≤ O(CP 2(#nz) + 1). (54)

1396

Coordinate Descent Method for Large-scale L2-loss Linear SVM

As #nz is usually large, we omit the constant term O(1) in the following discussion. Then
τ−1 = O(

√
nCP 2(#nz)). Thus,

µ−1 =
K

2στ2
= O(nC3P 6(#nz)3). (55)

From (52) and (55), Algorithm 1 obtains an ε-accurate solution in

O
(
nC3P 6(#nz)3 log(1/ε)

)
iterations.

A.4 Proof of Theorem 4 (Linear Convergence of the Online Setting)

Proof To begin, we denote the expectation value of a function g of a random variable y
to be

Ey(g(y)) =
∑
y

P (y)g(y).

Then for any vector s ∈ Rn and a random variable I where

P (I = i) =
1
n
, ∀i ∈ {1, . . . , n},

we have

EI(s2I) =
n∑
i=1

s2i
n

=
1
n
‖s‖22. (56)

At each iteration k (k = 0, 1, . . .) of Algorithm 3, we randomly choose one index ik and
update wk to wk+1. The expected function value after iteration k can be represented as

Ei0,...,ik−1,ik(f(wk+1)).

From (12), (43), (56), (48), and (50), we have

Ei0,...,ik−1
Eik(f(wk)− f(wk+1))

≥ σEi0,...,ik−1
Eik(|wk+1

ik
− wkik |

2)

≥ σγ2Ei0,...,ik−1
Eik(|∇f(wk)ik |

2)

=
σγ2

n
Ei0,...,ik−1

(‖∇f(wk)‖22)

≥ σγ2

n
Ei0,...,ik−1

(‖wk −w∗‖22)

≥ 2σγ2

nK
Ei0,...,ik−1

(f(wk)− f(w∗)).

This is equivalent to

Ei0,...,ik(f(wk+1))− f(w∗) ≤
(

1− 2σγ2

nK

)(
Ei0,...,ik−1

(f(wk))− f(w∗)
)
.

1397

Chang, Hsieh and Lin

From Markov inequality P (|Z| ≥ a) ≤ E(|Z|)/a for any random variable Z and the fact
f(wk+1) ≥ f(w∗), we have

P
(
f(wk)− f(w∗) ≥ ε

)
≤ E

(
f(wk)− f(w∗)

)
/ε. (57)

To achieve an ε-accurate solution with confidence 1− δ, we need the right-hand side of (57)
to be less than δ. This indicates the iteration number k must satisfy

Ei0,...,ik−1
(f(wk))− f(w∗) ≤ (f(w0)− f(w∗))

(
1− 2σγ2

nK

)k
≤ εδ.

By a derivation similar to Theorem 3, we can show that after O(nK
σγ2 log(1

δε)) iterations, with
confidence 1− δ, we obtain an ε-accurate solution. From (53) and (54), we have

K ≤ 2CP 2(#nz) + 1 and γ−1 = O(lCP 2 + 1).

Therefore,

O

(
nK

σγ2
log(

1
δε

)
)

= O

(
nl2C3P 6(#nz) log(

1
δε

)
)
.

References

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-9998,
second edition, 1999.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for opti-
mal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152. ACM Press, 1992.

Leon Bottou. Stochastic gradient descent examples, 2007. http://leon.bottou.org/
projects/sgd.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20. MIT Press, Cambridge, MA, 2008.

Miroslav Dud́ık, Steven J. Phillips, and Robert E. Schapire. Performance guarantees for
regularized maximum entropy density estimation. In Proceedings of the 17th Annual
Conference on Computational Learning Theory, pages 655–662, New York, 2004. ACM
press.

Iain S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15:1–14, 1989.

Luigi Grippo and Marco Sciandrone. Globally convergent block-coordinate techniques for
unconstrained optimization. Optimization Methods and Software, 10:587–637, 1999.

1398

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd

Coordinate Descent Method for Large-scale L2-loss Linear SVM

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceed-
ings of the Twenty Fifth International Conference on Machine Learning (ICML), 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf. Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD). ACM, 2006.

S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution
of large scale linear SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark
collection for text categorization research. Journal of Machine Learning Research, 5:
361–397, 2004.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

Zhi-Quan Luo and Paul Tseng. On the convergence of coordinate descent method for
convex differentiable minimization. Journal of Optimization Theory and Applications, 72
(1):7–35, 1992.

Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and
Software, 17(5):913–929, 2002.

Gunnar Rätsch, Sebastian Mika, and Manfred K. Warmuth. On the convergence of lever-
aging. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, pages 487–494. MIT Press, Cambridge, MA, 2002.

Nicol N. Schraudolph. A fast, compact approximation of the exponential function. Neural
Computation, 11:853–862, 1999.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: primal estimated sub-
gradient solver for SVM. In Proceedings of the 24th International Conference on Machine
Learning (ICML), 2007.

Alex J. Smola, S V N Vishwanathan, and Quoc Le. Bundle methods for machine learning. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20. MIT Press, Cambridge, MA, 2008.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21th International Conference on Machine Learning
(ICML), 2004.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classification
methods. Information Retrieval, 4(1):5–31, 2001.

1399

http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

	Introduction
	Solving Linear SVM via Coordinate Descent
	Implementation Issues
	Data Representation
	Random Permutation of Sub-problems
	An Online Algorithm

	Related Methods
	Pegasos for L1-SVM
	Trust Region Newton Method (TRON) for L2-SVM
	CMLS: A Coordinate Descent Method for L2-SVM

	Experiments and Analysis
	Data Sets
	Comparisons
	Stopping Conditions

	Discussion and Conclusions
	Order of Sub-problems at Each Outer Iteration
	Coordinate Descents for Logistic Regression
	Conclusions

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2 (convergence of Algorithm 1)
	Proof of Theorem 3 (Convergence of Generalized Algorithm 1)
	Proof of Theorem 4 (Linear Convergence of the Online Setting)

