Upper-Bounding \(v(n) \)

Theorem 55 (Erdős and Moser (1964))

\[v(n) \leq \lceil 2 \log_2 n \rceil. \]

- We will show that there exists a tournament on \(n \) players with no transitive subtournaments on \(v \equiv 1 + \lceil 2 \log_2 n \rceil \) players.
- This establishes the theorem because then \(v(n) < v \).
- Note that \((v - 1)/2 \geq \log_2 n \).
- There are \(2^\binom{v}{2} \) possible tournaments on \(n \) players.

The Proof (continued)

- With a subtournament on \(v \) players fixed, there are \(2^\binom{v}{2} - \binom{v}{2} \) possible tournaments on \(n \) players.
- The total number of tournaments on \(n \) players that contain a transitive subtournament on \(v \) players is at most

\[
\binom{n}{v} \cdot \frac{n!}{2^\binom{v}{2} (n-v)!} \cdot 2^\binom{v}{2} \leq \frac{n(n-1) \cdots (n-v+1)}{2^v \log_2 n} 2^\binom{v}{2} < 2^\binom{v}{2}.
\]

The Proof (concluded)

- Recall that \(2^\binom{n}{2} \) is the total number of tournaments on \(n \) players.
- The total number of tournaments on \(n \) players that contain a transitive subtournament on \(v \) players is less than the total number of tournaments on \(n \) players.
- So there exists a tournament on \(n \) players without a transitive subtournament on \(v \) players.

Antisymmetric Relations

- \(R \) is antisymmetric if \((x, y) \in R \land (y, x) \in R \Rightarrow x = y \) for all \(x, y \in A \).
 - “\(\leq \)” is antisymmetric.
 - “\(\leq \)” is antisymmetric.
- Alternatively, \(R \) is antisymmetric if for all \(x, y \in A \).
 \[x \neq y \Rightarrow (x, y) \notin R \lor (y, x) \notin R. \] (29)
 - “\(< \)” is antisymmetric because
 \[x \neq y \Rightarrow x < y \lor y < x. \]
Antisymmetric Relations (concluded)

- Antisymmetry is not synonymous with “symmetric.”
 - “⊆” is antisymmetric but not symmetric.
- Antisymmetry is not synonymous with “not symmetric.”
 - Take \(R \) as the relation that is an empty set.
 - So \((x, y) \notin R \) for any \(x, y \).
 - Then \(R \) is antisymmetric and symmetric.

Number of Antisymmetric Relations

Lemma 56 If \(|A| = m \), then there are
\[
2^m 3^{(m^2 - m)/2}
\]
antisymmetric relations on \(A \).

- The \(m \) decisions on \((x, x) \in R \) are arbitrary.
- For each of the other \(\binom{m}{2} = (m^2 - m)/2 \) unordered pairs
 \(\{x, y\} (x \neq y) \), there are 3 choices suggested by Eq. (29):
 1. \((x, y) \in R \) but \((y, x) \notin R \).
 2. \((x, y) \notin R \) but \((y, x) \in R \).
 3. \((x, y) \notin R \) and \((y, x) \notin R \).

Inverse Relations

- Let \(R \subseteq A \times B \) be a relation.
- The inverse of \(R \), denoted \(R^{-1} \), is this relation from \(B \) to \(A \):
 \[
 R^{-1} = \{(b, a) : (a, b) \in R\}
 \]
 - The inverse of \(“\leq” \) is \(“\geq” \) (not \(“>” \)).
 - The inverse of \(“<” \) is \(“>” \) (not \(“\geq” \)).
- Note that inversehood and complement are not different concepts.

A Property of \(R^{-1} \)

Lemma 57 If \(R \) is reflexive on \(A \), then \(R^{-1} \) is also reflexive.

- Let \(a \in A \).
- Then \((a, a) \in R \).
- Hence \((a, a) \in R^{-1} \).
- So \(R^{-1} \) is reflexive.
Composite Relations

- Let $R_1 \subseteq A \times B$ and $R_2 \subseteq B \times C$ be two relations.
- The composite relation $R_1 \circ R_2$ is a relation from A to C defined by
 \[\{(x, z) : x \in A, z \in C, \exists y \in B \ [(x, y) \in R_1 \land (y, z) \in R_2]\}. \]
- The associative law holds:
 \[R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3. \]
- $R^n = R \circ R \circ \cdots \circ R$ is called the power of R.

Matrices and Zero-One Matrices

- The $m \times n$ matrix $(a_{ij})_{m \times n}$ denotes the entry in the ith row and the jth column is a_{ij}.
- The transpose of $A = (a_{ij})_{m \times n}$, written as A^t, is the matrix $(b_{ij})_{n \times m}$, where $b_{ij} = a_{ji}$.
- I_n is the $n \times n$ identity matrix.
- A zero-one matrix has entries of zeros and ones.
 - $- + \rightarrow \lor$.
 - $- \times \rightarrow \land$.

Matrix Precedence

- Let $E = (e_{ij})$ and $F = (f_{ij})$ be two $m \times n$ zero-one matrices.
- We say E precedes (or is less than) F, written as $E \leq F$, if $e_{ij} \leq f_{ij}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$.
- For example,
 \[
 \begin{bmatrix}
 0 & 1 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 \end{bmatrix}
 \leq
 \begin{bmatrix}
 0 & 1 & 1 \\
 0 & 1 & 1 \\
 0 & 0 & 0 \\
 \end{bmatrix}.
 \]
The Zero-One Matrix Representation of Relations

- Let R be a relation from $A = \{a_1, a_2, \ldots, a_m\}$ to $B = \{b_1, b_2, \ldots, b_n\}$.
- The relation matrix of R, $M(R)$, is the $m \times n$ zero-one matrix $(r_{ij})_{m \times n}$, where
 \[
 r_{ij} = \begin{cases}
 1, & \text{if } (a_i, b_j) \in R \\
 0, & \text{if } (a_i, b_j) \notin R
 \end{cases}
 \]
- It can be shown that
 \[M(R_1 \circ R_2) = M(R_1)M(R_2).\]
 \hspace{1cm} (30)

An Example

- Consider the binary relation $<$ on $\{1, 2, 3, 4\}$.
- Here is the relation matrix:
 \[
 M(<) = \begin{bmatrix}
 1 & 0 & 1 & 1 \\
 2 & 0 & 0 & 1 \\
 3 & 0 & 0 & 0 \\
 4 & 0 & 0 & 0
 \end{bmatrix}.
 \]

An Example (continued)

- Now,
 \[
 M(<)M(<) = \begin{bmatrix}
 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix}.
 \]
- The entry at $(1,4)$ is calculated as follows:
 \[
 [0, 1, 1, 1] \cdot [1, 1, 1, 0] = (0 \land 1) \lor (1 \land 1) \lor (1 \land 1) \lor (1 \land 0) = 1.
 \]

An Example (concluded)

- By Eq. (30) on p. 288, the above denotes the relation \ll where $x \ll y$ if there exists a z with $x < z$ and $z < y$.
- Sensibly, it says $1 \ll 3$, $1 \ll 4$, and $2 \ll 4$.
Relation Matrices and Relations

- Let \mathcal{R} be a relation on A with $|A| = n$ and $M = M(\mathcal{R})$.
- \mathcal{R} is reflexive if and only if $I_n \leq M$.
 - This means that $m_{ii} = 1$ in $M = (m_{ij})_{1 \leq i,j \leq n}$.
- \mathcal{R} is symmetric if and only if $M = M^{tr}$.
- \mathcal{R} is transitive if and only if $M^2 \leq M$.
 - Verify this inequality with the $M(<)M(<)$ on p. 290.
- \mathcal{R} is antisymmetric if and only if $(M \land M^{tr}) \leq I_n$.
 - Verify this inequality with the $M(<)$ on p. 289.

Directed Graphs* and Relations

- A directed graph (or digraph) $G = (V, E)$ is made up of the node set V and the edge set $E \subseteq V \times V$.
- If $(a, b) \in E$, there is an edge from node a to node b.
 - a is adjacent to b, whereas b is adjacent from a.
 - (a, a) is a loop (at a).
- Clearly, a digraph (V, E) corresponds to a relation \mathcal{R} on V, and vice versa.
 - $(x, y) \in \mathcal{R}$ if and only if $(x, y) \in E$.

*Euler (1736).
Adjacency Matrices

- The relation matrix for a digraph is called an adjacency matrix.
- The number of 1s is therefore the number of edges.
- The adjacency matrix for the digraph on p. 295 appeared on p. 289.

Operations on Adjacency Matrices

- M^2 (over normal $+$ and \times) is the number of paths of length 2 between any two nodes.
 - $M^2_{i,j} = M_{i1}M_{1j} + M_{i2}M_{2j} + \cdots + M_{in}M_{nj}$.
- Take the adjacency matrix $M(<)$ on p. 289 for the digraph on p. 295.
- Then
 \[
 M(<)M(<)M(<) = \begin{bmatrix}
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix}.
 \]

Operations on Adjacency Matrices (continued)

- In general, M^k (over normal $+$ and \times) is the number of paths of length k between any two nodes.
- Again, take the adjacency matrix $M(<)$ on p. 289 for the digraph on p. 295.
- Then
 \[
 M(<)M(<)M(<) = \begin{bmatrix}
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix}.
 \]

Operations on Adjacency Matrices (concluded)

- Similarly, M^k (over \lor and \land) represents if there exist paths of length k between any two nodes.
- Therefore the matrix
 \[
 M^0 \lor M^1 \lor M^2 \lor \cdots \lor M^{|V| - 1}
 \]
 (over \lor and \land) represents if there exist paths between any two nodes.
Partial Order

- A relation R on A is called a partial order or partial ordering relation if it is
 1. Reflexive.
 2. Antisymmetric.
 3. Transitive.
- “\leq” is a partial order.
- “$|$” (divisibility) is a partial order on \mathbb{Z}^+.

Total Order

- Let (A, R) be a poset.
- A is totally ordered if for all $x, y \in A$, either $(x, y) \in R$ or $(y, x) \in R$.
- This R is called a total order.
 - (\mathbb{R}, \leq) is a total order.
- Elements in a totally ordered set can be ranked.
- There are $m!$ relations on A that are total orders, where $m = |A|$.

Partially Ordered Sets (Posets)

- Let A be a set.
- R is a relation on A.
- (A, R) is a partially ordered set or poset if R is a partial order.
 - Often R is not mentioned explicitly.
 - $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are all posets with “\leq”.
 - $(\mathbb{Z}^+, |)$ is a poset.

Relation Matrices of Total Orders

- Let R be a total order on A with $m = |A|$.
- Its relation matrix $M(R)$ has $m(m + 1)/2$ 1s.
 - After reordering the rows and columns by ranks, $M(R)(i, j) = 1$ if and only if $i \leq j$.
 - In other words, the matrix is an upper triangular matrix.
Hassea Diagrams

- Let \((A, \mathcal{R})\) be a poset.
- Draw an edge from \(x\) to \(y\) if \((x, y) \in \mathcal{R}\) and there is no other \(z \in A\) such that \((x, z) \in \mathcal{R}\) and \((z, y) \in \mathcal{R}\).
 - Edge \((x, y)\) cannot be inferred from other edges via transitivity considerations.
- The resulting graph is called a Hasse diagram.

aHelmut Hasse (1898–1979).

A Poset

- \((\{1, 2, 3, 4, 5, 6, 7, 8\}, |)\).
- A loop at each node (not shown).
- Delete loops and “unnecessary” transitive edges to form the Hasse diagram.
 - Edge \((1, 6)\) is deleted because it can be inferred from edges \((1, 3)\) and \((3, 6)\).
 - Edge \((2, 6)\), on the other hand, cannot be inferred from other edges via transitivity.

Topological Sort

- Given a partial order \(\mathcal{R}\) represented as a Hasse diagram.
- The topological sorting algorithm produces a total order \(\mathcal{T}\) for which \(\mathcal{R} \subseteq \mathcal{T}\).
 - The total order needs only honor those \((x, y)\) in \(\mathcal{R}\).
 - The total order may not be unique.
 - The partial order on p. 306 gives rise to one total order
 \[1, 2, 4, 3, 8, 7, 6, 5.\] (31)
 - 1, 2, 4, 3, 8, 7, 5, 6 is another total order.
 - Both honor the relations in the Hasse diagram.
The Topological Sorting Algorithm

1: H_1 is the input Hasse diagram; $|A| = n.$
2: {Think of \mathcal{R} as \leq for convenience below.}
3: for $k = 1, 2, \ldots, n$ do
4: Pick $v_k \in H_k$ such that no edge in H_k starts at v_k;
5: if $k = n$ then
6: return $v_n \leq v_{n-1} \leq \cdots \leq v_1$;
7: end if
8: Remove v_k and all edges that terminate at v_k to yield H_{k+1};
9: end for

Maximal and Minimal Elements of Posets

- Let (A, \mathcal{R}) be a poset.
- $x \in A$ is a maximal element of A if $(x, a) \notin \mathcal{R}$ for all $a \in A$ and $a \neq x$.
 - The poset $\{1, 2, 3, 4, 5, 6, 7, 8\}$ has 4 maximal elements: 5, 6, 7, 8 as none of them divides a number in $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
- $y \in A$ is a minimal element of A if $(b, y) \notin \mathcal{R}$ for all $b \in A$ and $b \neq y$.
 - The poset (\mathbb{Z}^+, \leq) has minimal element 1 but no maximal elements.

Maximal and Minimal Elements of Finite Posets

- Let (A, \mathcal{R}) be a finite poset.
- Every $y \in A$ must have a minimal element $x \in A$ such that $(x, y) \in \mathcal{R}$.
 - Suppose for all minimal elements x, $(x, y) \notin \mathcal{R}$.
 - In particular, y is not a minimal element as $(y, y) \in \mathcal{R}$.
 - Thus for some x, $(x, y) \in \mathcal{R}$.
 - A “smallest” x is a minimal element, a contradiction.
- Similarly, every $x \in A$ must have a maximal element $y \in A$ such that $(x, y) \in \mathcal{R}$.

Maximal and Minimal Elements of Finite Posets (concluded)

- We can reexpress our findings as follows.
- Let X be the set of all minimal elements.
- Let Y be the set of all maximal elements.
- Then
 \[
 \{ x \in A : (p, x) \in \mathcal{R} \text{ for some } p \in Y \} = \emptyset, \quad (32)
 \]
 \[
 \{ x \in A : (p, x) \in \mathcal{R} \text{ for some } p \in X \} = A, \quad (33)
 \]
 \[
 \{ x \in A : (x, q) \in \mathcal{R} \text{ for some } q \in X \} = \emptyset, \quad (34)
 \]
 \[
 \{ x \in A : (x, q) \in \mathcal{R} \text{ for some } q \in Y \} = A. \quad (35)
 \]
Existence of Maximal and Minimal Elements

- If A is a finite poset, then A has both a maximal and a minimal element.
 - The topological sorting algorithm returns a maximal element as v_1 and a minimal element as v_n.
 - For the list on p. 307, 5 is returned by the algorithm as a maximal element of $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
- A poset may have more than one maximal elements and/or more than one minimal elements.
 - Recall that the poset $\{1, 2, 3, 4, 5, 6, 7, 8\}$ has 4 maximal elements and 1 minimal element.

Relations between Maximal and Minimal Elements

- If (A, \mathcal{R}) is a finite poset, then A has a minimal element x and a maximal element y such that $(x, y) \in \mathcal{R}$.
 - Start with a minimal element x, which exists (p. 312).
 - Follow the “up edges” of \mathcal{R} until cannot go further.
 - The element y where we stop at will be a maximal element.
 - Furthermore, $(x, y) \in \mathcal{R}$ by transitivity.\(^a\)

Least and Greatest Elements of Posets

- Let (A, \mathcal{R}) be a poset.
- Let $x \in A$ be a least element if $(x, a) \in \mathcal{R}$ for all $a \in A$.
- Let $y \in A$ be a greatest element if $(b, y) \in \mathcal{R}$ for all $b \in A$.
- Least element and greatest element, if they exist, are unique.
 - Suppose x, y are both greatest (least) elements.
 - Then $(x, y) \in \mathcal{R}$ and $(y, x) \in \mathcal{R}$, which imply $x = y$ because of antisymmetry.

Maximal vs. Greatest Elements of Posets\(^a\)

- It is possible for a poset to have maximal elements but no greatest elements (p. 309).
- It is also possible for a poset to have multiple maximal elements (p. 309 again).
- But the greatest element, if it exists, must be a maximal element.
- In fact, the greatest element, if it exists, must be the only maximal element.

\(^a\)It is possible that $x = y$ if x is isolated.

\(^a\)Contributed by Ms. Li-Yin Wu (B91902051) on October 20, 2003.
Lattices

- Let \((A, \mathcal{R})\) be a poset with \(B \subseteq A\).
- \(x \in A\) is a lower bound of \(B\) if \((x, b) \in \mathcal{R}\) for all \(b \in B\).
- \(y \in A\) is an upper bound of \(B\) if \((a, y) \in \mathcal{R}\) for all \(a \in B\).
- \(x' \in A\) is a greatest lower bound (\(\text{glb}\)) of \(B\) if it is a lower bound of \(B\) and if for all lower bounds \(x''\) of \(B\), \((x'', x') \in \mathcal{R}\).
- \(y' \in A\) is a least upper bound (\(\text{lub}\)) of \(B\) if it is an upper bound of \(B\) and if for all upper bounds \(y''\) of \(B\), \((y', y'') \in \mathcal{R}\).
- \((A, \mathcal{R})\) is called a lattice if for all \(x, y \in A\), the elements \(\text{lub}\{x, y\}\) and \(\text{glb}\{x, y\}\) both exist in \(A\).

*Friedrich Schröder (1841–1902).

Examples of Lattices

- \((\mathbb{N}, \leq)\).
 - \(\text{lub}\{x, y\} = \max(x, y)\).
 - \(\text{glb}\{x, y\} = \min(x, y)\).
- \((2^A, \subseteq)\).
 - \(\text{lub}\{S, T\} = S \cup T\).
 - \(\text{glb}\{S, T\} = S \cap T\).

Partitions

- Let \(\emptyset \neq A_i \subseteq A\) for \(i \in I\).
- \(\{A_i\}_{i \in I}\) is a partition of \(A\) if
 - \(A = \bigcup_{i \in I} A_i\), and
 - \(A_i \cap A_j = \emptyset\) for \(i \neq j\).
A Partition

- Let
 \[A_i = \{ x \in \mathbb{Z} : x \equiv i \mod n \} . \]
- Then
 \[\{ A_0, A_1, \ldots, A_{n-1} \} \]
 is a partition of \(\mathbb{Z} \).

Equivalence Relations

- A relation \(R \) on \(A \) is called an equivalence relation if it is reflexive, symmetric, and transitive.
 - “\(= \)” is an equivalence relation.
 - “\(\equiv \mod m \)” is an equivalence relation.
 - “\(< \)” is not an equivalence relation.

Number of Partitions

- The number of ways to partition a set of size \(n \) into \(k \) blocks is \(S(n, k) \), a Stirling number.
 - See p. 215 or Eq. (25) on p. 218 and Eq. (26) on p. 220 for easy-to-use recurrence relations.
- The number of ways to partition a set of size \(n \) is \(P_n \), the \(n \)th Bell number (p. 228).

Equivalence Classes

- Let \(R \) be an equivalence relation on \(A \).
- For each \(x \in A \), the equivalence class of \(x \), denoted by \([x] \), is defined by
 \[[x] = \{ y \in A : (y, x) \in R \} . \]
 - Anything that is related to \(x \) is in \([x] \).
- Consider the equivalence relation \(\equiv \mod n \) on \(\mathbb{Z} \) (same remainder after division by \(n \)).
- Then \([i] = \{ x \in \mathbb{Z} : x \equiv i \mod n \} \).
- \(\{ [i] \}_{i=0,1,\ldots,n-1} \) is a partition of \(\mathbb{Z} \).
Equivalence Classes as Partitions

• Let \mathcal{R} be an equivalence relation on A and $x, y \in A$.
 • $x \in [x]$.
 • $(x, y) \in \mathcal{R}$ if and only if $[x] = [y]$.
 - Suppose $(x, y) \in \mathcal{R}$.
 * Pick any $w \in [x]$.
 * $(w, y) \in \mathcal{R}$ by transitivity and, hence, $w \in [y]$.
 * We conclude $[x] \subseteq [y]$.
 - Similarly, $[y] \subseteq [x]$.
 • $[x] = [y] \Rightarrow x \in [y] \Rightarrow (x, y) \in \mathcal{R}$.

The Proof (continued)

• From $x \in [x]$, we have $\bigcup_{x \in A} [x] = A$.
• Furthermore, distinct equivalence classes are disjoint.
• Therefore, equivalence classes partition A.

Equivalence Relations and Partitions

• Let A be a set.
 • Any equivalence relation \mathcal{R} on A induces a natural partition of A: $\{[a] : a \in A\}$.
 • This partition, written as A/\mathcal{R}, is called the quotient.
• Conversely, any partition of A gives rise to an equivalence relation on A.
 - Define \mathcal{R} by $(x, y) \in \mathcal{R}$ if x and y are in the same block.
 - There is a one-to-one correspondence between the set of equivalence relations on A and the set of partitions of A.

\[
\begin{align*}
 &\exists v \in A \left[v \in [x] \cap [y] \right] \\
 \Rightarrow &\exists v \in A \left[(x, v) \in \mathcal{R} \land (v, y) \in \mathcal{R} \right] \\
 \Rightarrow & (x, y) \in \mathcal{R} \\
 \Rightarrow & [x] = [y],
\end{align*}
\]

a contradiction.