Cyclic Groups

- A group G is called cyclic if there is an element $x \in G$ such that for each $a \in G$, $a = x^n$ for some $n \in \mathbb{Z}$.
- In other words, $G = \{x^k : k \in \mathbb{Z}\}$.
- G is said to be generated by x, denoted by $G = \langle x \rangle$.
- x is called a generator, primitive root, or primitive element.a

aPaolo Ruffini (1765–1822).

Finiteness of Orders of Groups and Group Elementsa

Lemma 57 If G is a finite group, then the order of every element $a \in G$ must be finite.

- Consider the chain a^1, a^2, a^3, \ldots.
- Because G is finite, the chain must eventually repeat itself.
- So there must be distinct $i < j$ such that $a^i = a^j$.
- By the cancellation property, $a^{j-i} = e$.

aContributed by Mr. Bao (990902039) on December 23, 2002.

Ordersa of Groups and Group Elements

- For every group G, the number of elements in G is called the order of G, denoted by $|G|$.
- The order of $a \in G$, written $o(a)$, is the least positive integer n such that $a^n = e$.
- If a finite n does not exist, a has infinite order.
- If n is a’s order and $a^k = e$, then $n | k$.
 - Otherwise, $e = a^k = a^{m+r} = a^r$, where $0 < r < n$.
 - This is a contradiction because a’s order is now at most $r < n$.

aPaolo Ruffini.

Finite Cyclic Groups

Lemma 58 Suppose G is a finite group and $a \in G$. (1) $\langle a \rangle = \{a^k : k \in \mathbb{Z}^+\}$. (2) $|\langle a \rangle| = o(a)$.

- The set $\langle a \rangle = \{a^k : k \in \mathbb{Z}\}$ contains $a, a^2, a^3, \ldots, a^{o(a)} = e$.
- But no two of them are identical.
 - Otherwise, $a^i = a^j$ for $1 \leq i < j \leq o(a)$, and $a^{j-i} = e$, a contradiction because $j-i < o(a)$.
 - The set’s other $o(a)$ elements, $a^1, a^2, \ldots, a^{o(a)} = e$ are not new because $a^{-m} = a^{o(a)-m}$.
 - As $a^m = a^{m \text{ mod } o(a)}$, there are no other elements.
Cyclic Subgroups

Lemma 59 Let \((G, \circ)\) be a group and \(a \in G\). Then \(\left\{a^k : k \in \mathbb{Z}\right\}, \circ\) is a subgroup of \(G\).

- For \(a^i, a^j \in G\), clearly \(a^i \circ a^j = a^{i+j}\) by Lemma 55 (p. 546).
- For \(a^i\), its inverse is \(a^{-i}\).
- Theorem 56 (p. 548) thus implies the lemma.

Cosets

- If \(H\) is a subgroup of \(G\), the set \(aH = \{ah : h \in H\}\) is called a (left) coset of \(H\) in \(G\).
- \(|aH| = |H|\) when \(G\) is finite.
 - \(|aH| \leq |H|\) by definition.
 - If \(|aH| < |H|\), then \(a \circ h_1 = a \circ h_2\) for some distinct \(h_1, h_2 \in H\), which implies \(h_1 = h_2\) by the left-cancellation property, a contradiction.
- Similarly, we can also define a right coset of \(H\) in \(G\), denoted by \(Ha\).

Cyclic Structures Must Form a Group?

- Must a cyclic structure \(\{a^k : k \in \mathbb{Z}\}, \circ\) be a group without restrictions on \(\circ\) and entity \(a\)?
 - Note that Lemma 59 does impose some restrictions.
- Consider algebraic structure \(\{2^k : k \in \mathbb{Z}\}, \times \mod 12\).
- Note that 2 cannot have an inverse modulo 12 because \(\gcd(2, 12) = 2 \neq 1\).
- Hence the cyclic structure is not a group.

Cosets as Partitions

- Let \(G\) be a finite group.
- For \(a, b \in G\), either \(aH = bH\) or \(aH \cap bH = \emptyset\).
 - Assume \(aH \cap bH \neq \emptyset\).
 - Let \(c = a \circ h_1 = b \circ h_2\) for some \(h_1, h_2 \in H\).
 - If \(x \in aH\), then \(x = a \circ h\) for some \(h \in H\) and \(x = (b \circ h_2 \circ h_1^{-1}) \circ h = b \circ (h_2 \circ h_1^{-1} \circ h) \in bH\), which implies \(aH \subseteq bH\).
 - Similarly, we can prove that \(bH \subseteq aH\).
- As \(a \in aH\) for any \(a \in G\), \(G\) can be partitioned by cosets.

Contributed by Mr. Bao (440902239) on December 23, 2002.
Constructing a Coset Partition

1: print H;
2: $G := G - H$;
3: while $G \neq \emptyset$ do
4: Pick $a \in G$;
5: print aH;
6: $G := G - aH$;
7: end while

First Corollary of Lagrange's Theorem\(^a\)

Corollary 61 If G is a finite group and $a \in G$, then $o(a)$ divides $|G|$.

- The set generated by a, \{\(a^k : k \in \mathbb{Z}\), has size $o(a)$ by Lemma 58 (p. 553).
- Set \{\(a^k : k \in \mathbb{Z}\)} is a subgroup of G by Lemma 59 (p. 554).
- Lagrange's theorem thus implies our claim.

\(^a\)See also p. 551

Lagrange's\(^a\) Theorem

Theorem 60 If G is a finite group with subgroup H, then $|H|$ divides $|G|$.

- G can be partitioned by cosets of H
- Each coset of H has the same order, $|H|$.
- Hence $|H|$ divides $|G|$.

\(^a\)Joseph Louis Lagrange (1736-1813).

Second Corollary of Lagrange's Theorem

Corollary 62 Every group of prime order is cyclic.

- Pick any element $a \neq e$ of the group G.
- As $o(a)$ divides $|G|$, a prime number, $o(a) = |G|$.
- This implies that every $b \in G$ must be of the form a^k for some $k \in \mathbb{Z}$.
Number of Generators in Finite Cyclic Groups

Lemma 63 Let G be a finite cyclic group with order m and g be a generator of G. Then the generators are

$$g^i,$$

where $1 \leq i < m$ and $\gcd(i, m) = 1$. Hence the number of generators is $\phi(m)$, Euler’s phi function (p. 131).

- Suppose $1 \leq i < m$ is relatively prime to m.
- Let $j = o(g^i)$.
- So $e = g^{ij} = g^{ij \mod m}$ by Corollary 61 (p. 560).
- As g is a generator, $ij \mod m = 0$.

The Fermat-Euler Theorem

Theorem 64 If G is a finite group, then every $a \in G$ satisfies

$$a^{[G]} = e,$$

- By Corollary 61 (p. 560), $o(a)$ divides $|G|$.
- Let $|G| = o(a) \times k$, where $k \in \mathbb{Z}^+$.
- Now,

$$a^{[G]} = a^{o(a) \times k} = (a^{o(a)})^k = e^k = e.

\(\text{a} \text{Pierre de Fermat (1601-1665)}\)

The Proof (concluded)

- This implies that m divides ij.
- As m cannot divide i by assumption, m divides j.
- As $j > 0$, we must have $j = m$ and g^i is a generator.
- Conversely, assume $1 \leq i < m$ but $\gcd(i, m) = d > 1$.
- Define $j = m/d$.
- But g^i cannot be a generator.
- Indeed, $0 < j < m$ and

$$(g^i)^j = g^{ij} = g^{im/d} = g^{(i/d)m} = (g^m)^{i/d} = e.$$

Permutations\(^a\)

- Let function $f : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be one-to-one and onto.
- f must be a permutation on $\{1, 2, \ldots, n\}$.
- Write f as

$$f = \begin{pmatrix}
1 & 2 & \cdots & n \\
f(1) & f(2) & \cdots & f(n)
\end{pmatrix}$$

- $I = \begin{pmatrix}
1 & 2 & \cdots & n \\
1 & 2 & \cdots & n
\end{pmatrix}$, the identity permutation.

\(\text{a} \text{Lagrange (1770)}\)
Permutation Groups

- Let \(f \) and \(g \) be two permutations on \(\{1, 2, \ldots, n\} \).
- Then \(f \circ g \) is defined as
 \[
 \begin{pmatrix}
 1 & 2 & \cdots & n \\
 g(f(1)) & g(f(2)) & \cdots & g(f(n))
 \end{pmatrix}
 \]
 \hspace{1em} (43)

 - Note that \(f \) is applied first (unlike other books).
- \(\begin{pmatrix}
 1 & 2 & 3 & 4 \\
 2 & 3 & 4 & 1
 \end{pmatrix} \circ \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 3 & 4 & 1 & 2
 \end{pmatrix} = \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 4 & 1 & 2 & 3
 \end{pmatrix} \).
- When a set of permutations forms a group under “\(\circ \),” we have a permutation group.

Cycle Decomposition of Permutations\(^a\)

- A permutation like \(\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 \\
 3 & 4 & 1 & 2 & 5
 \end{pmatrix} \) can be represented as
 \((1 \ 3)(2 \ 4)(5) \).
- There are 3 cycles above.
- 5 is a fixed point; it is invariant under the permutation.
- The cycle decomposition can be calculated efficiently.

\(^a\)Augustin Louis Cauchy and Paolo Ruffini.

Permutation Group as a Multiplication Table

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another Cycle Decomposition

- \(\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 \\
 2 & 3 & 1 & 5 & 4 & 6
 \end{pmatrix} = (1 \ 2 \ 3)(4 \ 5)(6) \).
- There are 3 cycles above.
- Equivalent cycle decompositions:
 \((3 \ 1 \ 2)(5 \ 4)(6) \),
 \((4 \ 5)(1 \ 2 \ 3)(6) \),
 \(\cdots \).
Cycle Length

- Pick a permutation of \(\{1, 2, \ldots, n\} \) at random.
- We claim that the probability that the cycle containing 1 has length \(k \) is \(\frac{1}{n} \).
 - There are \(\binom{n}{k} \) ways to choose the elements of the cycle containing 1.
 - There are \((k-1)! \) ways to order them.
 - There are \((n-k)! \) ways to permute the rest.
 - Hence the desired probability equals
 \[
 \frac{\binom{n}{k}(k-1)!}{n!} = \frac{1}{n}.
 \]

Group Isomorphism

- Let \((G, \circ) \) and \((G', \circ') \) be 2 groups.
- They are isomorphic if there exists a one-to-one correspondence \(f \) between \(G \) and \(G' \) such that
 \[
 f(x \circ y) = f(x) \circ' f(y)
 \]
 for all \(x, y \in G \).
- Isomorphic groups have the same multiplication table (up to relabeling by \(f \)).

Properties of Isomorphic Groups

Lemma 65 If \((G, \circ) \) and \((G', \circ') \) are isomorphic, then their identities correspond under the isomorphism.

- Let \(f \) be an isomorphism.
- Let \(e \) be the identity of \(G \) and \(e' \) be the identity of \(G' \).
- Then
 \[
 e' \circ' f(x) = f(x) = f(e \circ x) = f(e) \circ' f(x).
 \]
 - By the right-cancellation property (p. 543), \(e' = f(e) \).
 - The lemma is proved by recalling that the identities are unique (p. 542).
Properties of Isomorphic Groups (concluded)

Lemma 66 Let \((G, \circ)\) and \((G', \circ')\) be isomorphic under \(f\). Then if \(u\) and \(v\) are inverses in \(G\), then \(f(u)\) and \(f(v)\) are inverses in \(G'\).

- By Lemma 65 (p. 573),
 \[
 e' = f(e) = f(u \circ v) = f(u) \circ' f(v).
 \]

The Proof (continued)

- Consider permutation group \((G', \circ')\), where \(G' = \{ \pi_1, \pi_2, \ldots, \pi_m \}\) and \(\circ'\) denotes multiplication of permutations (p. 566).
- We next show that \((G, \circ)\) is isomorphic to \((G', \circ')\).
- Define a one-to-one correspondence \(f : G \rightarrow G'\) by
 \[
 f(g_i) = \pi_i, \quad i = 1, 2, \ldots, m.
 \]

Cayley's Theorem

Theorem 67 Every finite group is isomorphic to a group of permutations.

- Let \((G, \circ)\) be a finite group of order \(m\), where \(G = \{ g_1, g_2, \ldots, g_m \}\).
- Define \(m\) distinct permutations by
 \[
 \pi_1(g) = g \circ g_1, \pi_2(g) = g \circ g_2, \pi_m(g) = g \circ g_m.
 \]
- Each \(\pi_i\) postmultiplies all the \(g \in G\) by \(g_i\):
 \[
 \pi_i = \begin{pmatrix}
 g_1 & g_2 & \cdots & g_m \\
 g_1 \circ g_i & g_2 \circ g_i & \cdots & g_m \circ g_i
 \end{pmatrix}.
 \]

The Proof (concluded)

- \(f\) is an isomorphism,
 - Suppose \(g \circ g_j = g_k\).
 - For each \(g \in G\),
 \[
 \pi_k(g) = g \circ g_k = g \circ (g_i \circ g_j)
 = (g \circ g_i) \circ g_j = \pi_i(g) \circ g_j
 = \pi_j(\pi_i(g)) = (\pi_i' \pi_j) g.
 \]
- As \(\pi_k = \pi_i' \pi_j\), function \(f\) preserves group multiplication.
Of Orbits, Stabilizers, and Characters

- Let G be a permutation group on a finite set X.
- Let $x \in X$.
- $O_x = \{ g(x) : g \in G \}$ is called the orbit of x with respect to G.
 - Note that $x \in O_x$.
- $G_x = \{ g \in G : g(x) = x \}$ is called the stabilizer of x in G.
- $F(g) = \{ z \in X : g(z) = z \}$ is called the permutation character of g in X.

Orbits as Partitions

Lemma 68 If G be a permutation group on set X, then G’s orbits partition X.

- $\bigcup_x O_x = G$ because $x \in O_x$ for all $x \in X$.
- If $O_x \cap O_y \neq \emptyset$, then $O_x \subseteq O_y$.
 - For any $a \in O_x$, $a = g''(x)$ for some $g'' \in G$.
 - Suppose $z \in O_x \cap O_y$.
 - Then $z = g(x) = g'(y)$ for some $g, g' \in G$.
 - Hence $a = g''(g^{-1}(z)) = g''(g^{-1}(g'(y))) \in O_y$.
- The other direction $O_y \subseteq O_x$ is symmetric.

Orbithood as an Equivalence Relation

Lemma 69 Suppose G be a permutation group on set X. Two $i, j \in X$ are in the same orbit if and only if there is a $g \in G$ such that $g(i) = j$.

- Suppose $i, j \in X$ are in the same orbit O_x.
 - $i = g_1(x)$ and $j = g_2(x)$ for some $g_1, g_2 \in G$.
 - Hence $j = g_2(x) = g_2(g_1^{-1}(i))$.
- Suppose there is a $g \in G$ such that $g(i) = j$.
- Then $j \in O_i$ and $i \in O_i$.
Stabilizers Form a Group

Lemma 70 A stabilizer is a subgroup.
- Let G be a permutation group on set X.
- Consider a stabilizer $G_x = \{ g \in G : g(x) = x \}$ for $x \in X$.
- For all $g_1, g_2 \in G_x$, $g_1 \circ g_2 \in G_x$ because $g_1 \circ g_2$ fixes x.
- For all $g \in G_x$, $g^{-1} \in G_x$ because g^{-1} fixes x.
- The lemma follows by Theorem 56 (p. 548).

The Proof (continued)
- Each right coset of G_x consists of those permutations in G that map x to a given element of O_x.
 - Elements of O_x are mapped only to elements of O_x by G (Lemma 69 on p. 581).
 - Consider the right coset $G_x g$ for $g \in G$.
 - Every permutation in $G_x g$ maps x to the same $g(x) \in O_x$ (see p. 558).
- Hence G_x has o_x right cosets.
- By the coset partition theorem (p. 557),
 $$|G_x| = \frac{|G|}{o_x}.$$

Burnside's Lemma*

Theorem 71 G is a permutation group on $\{1, 2, \ldots, n\}$. The average number of fixed points of permutations in G equals the number of orbits.
- Let O_1, O_2, \ldots, O_k be the distinct orbits with $|O_i| = o_i$.
- They partition $X = \{1, 2, \ldots, n\}$ by Lemma 68 (p. 580).
- Stabilizer G_x is the set of permutations fixing x.
- G_x is a subgroup of G (Lemma 70 on p. 582).
- Consider $x \in X$ (note that $x \in O_x$).

*William Burnside (1852 1927) in 1911. The theorem is due to Cauchy and Ferdinand Frobenius (1849 1917) in 1896!

The Proof (concluded)
- Let $k(\pi)$ denote permutation π's number of fixed points.
- Then the average number of fixed points is
 $$\frac{1}{|G|} \sum_{\pi \in G} k(\pi) = \frac{1}{|G|} \sum_{x \in \{1, 2, \ldots, n\}} |G_x|$$ (44)
 $$= \frac{1}{|G|} \sum_{i=1}^{k} \sum_{x \in O_i} |G_x|$$
 $$= \frac{1}{|G|} \sum_{i=1}^{k} o_i \frac{|G|}{o_i}$$
 $$= k.$$