Network Flows with Applications

Transport Networks: Edge Form

- Consider a loop-free connected directed graph $G = (V, E)$.
- G is called a network or transport network if:
 - There exists a unique node $a \in V$, called the source, with an in degree of 0.
 - There exists a unique node $z \in V$, called the sink, with an out degree of 0.
 - The weight on each edge e is a nonnegative integer $c(e)$, called the capacity.

Weighted Graphs

- Let $G = (V, E)$ be a directed graph.
- Assign a real number to each edge e.
- This number is called the weight of e.
 - Weights can mean distances, capacities, costs, etc., depending on the applications.
 - Shortest path problem: efficiently solvable.\(^a\)
 - Traveling salesman problem: quintessential example of hard problems (NP-complete).\(^b\)
- The resulting graph is called a weighted graph.

\(^a\) Dijkstra (1959).
\(^b\) Karp (1972).
Flows

- Let $G = (V, E)$ be a transport network.
- A function $f : E \to \mathbb{N}$ is called a **flow** if:
 - $f(e) = 0$ for $e \not\in E$.
 - $f(e) \leq c(e)$ for each edge $e \in E$.
 * The capacities are not exceeded.
 - For each $v \in V - \{a, z\}$,
 $$\sum_{w \in V} f(w, v) = \sum_{w \in V} f(v, w),$$
 * Except the source and the sink, the flows are **conserved**.

Saturation

- Let $G = (V, E)$ be a transport network and f be a flow.
- An edge e is **saturated** if $f(e) = c(e)$.
- When $f(e) < c(e)$, the edge is **unsaturated**.
- If a is the source, then
 $$\text{val}(f) = \sum_{v \in V} f(a, v)$$
 is the **value of the flow**.
- Determining the maximum flow value is our key goal.

Values of Flows

- The value of any flow cannot exceed $1 + 10$.
- Nor can it exceed $4 + 3$.
- These are easy upper bounds.

Cuts

- Consider a transport network $G = (V, E)$.
- Let $P \subseteq V$ contain source node a but not sink node z.
- (P, P) is a **cut** separating a from z, where $P = V - P$.
- Every directed path in G from a to z must pass through some edge from a node in P to a node in P.
- The **capacity of a cut** is given by
 $$c(P, P) = \sum_{v \in P, w \in P, (v, w) \in E} c(v, w).$$
The Max-Flow Min-Cut Theorem

Theorem 47 The value of any flow f cannot exceed the capacity of any cut.

- Theorem 47 says that
 \[
 \max_{f} \text{val}(f) \leq \min_{(P, P')} c(P, P).
 \]
- In fact, they are equal.

Theorem 48 (Ford and Fulkerson (1956)) In a transport network, the maximum flow value equals the minimum capacity over all cuts. Furthermore, the maximum flow can be calculated efficiently.

The Integral Theorem

- The max-flow min-cut theorem holds for nonnegative real capacities as well.
- Because the capacities are assumed to be integers here, an important corollary of the max-flow min-cut theorem results.

Theorem 49 (Integrality theorem) There is a maximum flow with integral entries.

Matching

- Let $G = (V, E) = (X, Y, E)$ be a bipartite graph.
- $E' \subseteq E$ is a matching if no two edges in E' share a common node.
- A complete matching of X into Y is a matching such that every $x \in X$ is the endpoint of an edge.
 - It is necessary that $|X| \leq |Y|$.
 - It defines a one-to-one function from X to Y.
A Complete Matching

Jill Ray
Helen Brendan
Kathy Tristan
Isolde Paris
Regina Ludwig

Now you know why it is called a matching problem.

Existence of Complete Matchings

Theorem 50 (Hall's theorem (1935))
Let $G = (V, E)$ be a bipartite graph with V partitioned as $X \cup Y$. A complete matching from X into Y exists if and only if for every $A \subseteq X$,

$$|A| \leq |R(A)|.$$

Here, $R(A)$ consists of those nodes in Y adjacent to some node in A.

A brute-force implementation of Hall's theorem is inefficient; efficient algorithms exist.\(^{a,b}\)

Illustration of Hall’s Theorem

Proof of Hall’s Theorem

- Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$.
- Add source node s and sink node t to graph G.
- Add edges $(a, x_1), (a, x_2), \ldots, (a, x_m)$ with capacity 1 each.
- Add edges $(y_1, z), (y_2, z), \ldots, (y_n, z)$ with capacity 1 each.
- Add direction to each edge in E from X to Y.
- Assign weight M to each edge in E, where M is any integer greater than $|X|$.

\(^{a}\)Philip Hall (1904-1982).
\(^{b}\)Edmonds (1965).
Proof of Hall’s Theorem (continued)

- A complete matching exists if and only if there is a maximum flow in the transport network that uses all edges out of a.
- Equivalently, if and only if there exists a flow with value equal to $m = |X|$, such a flow results in exactly $|X|$ edges from X to Y having flow 1.
 * Use the integrality theorem (p. 512).
 * This flow defines a complete matching.

Proof of Hall’s Theorem (continued)

Proof (\Rightarrow): If $|A| \leq |R(A)|$ for any $A \subseteq X$, then there is a flow with value equal to $|X|$.

- By the max-flow min-cut theorem (p. 511), it suffices to show that the capacity of every cut is at least $|X|$.
- Pick any cut (P, \bar{P}).
- $a \in P$ and $z \in \bar{P}$.
- Define $A = X \cap P$ and $B = Y \cap P$.
- Without loss of generality, $A = \{x_1, x_2, \ldots, x_i\}$ for some $0 \leq i \leq m$.
Proof of Hall’s Theorem (continued)

- Now,
 \[P = \{a\} \cup A \cup B \]
 \[P = \{z\} \cup (X - A) \cup (Y - B) \]

- If there is an edge from \(A \) to \(Y - B \), then
 \[c(P, P) \geq M > |X|, \]
 and we are done for this part.

- On the other hand suppose no such edges exist.

- Then \(R(A) \subseteq B \); hence
 \[|R(A)| \leq |B|. \]
Proof of Hall’s Theorem (continued)

- Then,

\[
c(P, P) = \sum_{v \in X} c(a, v) + \sum_{y \in R(A)} c(y, z)
\]

\[
= |X - A| + |R(A)|
\]

\[
= |X| - |A| + |R(A)|
\]

\[
= |X| + (|R(A)| - |A|)
\]

< |X|.

- By Theorem 47 (p. 511), every flow must have value less than |X|.

System of Distinct Representatives

- Let \(A_1, A_2, \ldots, A_n \) be a collection of sets.
- Elements \(a_1, a_2, \ldots, a_n \) are called a system of distinct representatives if:
 - \(a_i \in A_i \) for \(1 \leq i \leq n \),
 - \(a_1, a_2, \ldots, a_n \) are distinct.

Conditions for SDR\(^a\)

Theorem 51 Sets \(A_1, A_2, \ldots, A_n \) have a system of distinct representatives if and only if for all \(1 \leq i \leq n \), the union of any \(i \) of the sets contains at least \(i \) elements.

- Construct a bipartite graph from \(X = \{A_1, A_2, \ldots, A_n\} \) to \(Y = \{1, 2, \ldots, n\} \).
- \(A_i \in X \) is connected to \(j \in Y \) if \(A_i \) contains \(j \).
- But \(R(A) \) is a union of \(|A| \) sets for any \(A \subseteq X \).

\(^a\) Leon Mirsky (1918 1983).
The Proof (concluded)

- By Hall's theorem (p. 515), a complete matching exists if and only if \(|A| \leq |R(A)| \) for any \(A \subseteq X \).
- This is exactly what the theorem says.\(^a\)

\(^a\)Did you notice that the SDR theorem is simply Hall's theorem restated?

Menger's Theorem\(^a\) (Edge Form)

Theorem 52 (Menger (1927)) Let \(G \) be a digraph. There are \(k \) edge-disjoint paths from \(x \) to \(y \) if and only if \(G \) is \(k \)-edge-connected between \(x \) and \(y \).

\[\begin{array}{c}
 x \\
 \downarrow
 \begin{array}{c}
 x
 \end{array}
 \downarrow
 \begin{array}{c}
 y
 \end{array}
\end{array} \]

\(^a\)Karl Menger (1902 1985).

Edge Connectivity

- A digraph is \(k \)-edge-connected between \(x \) and \(y \) if there exists a path from \(x \) to \(y \) even after fewer than \(k \) edges are removed.
- A digraph is \(k \)-edge-connected \((k \geq 2)\) if it has at least 2 nodes and is \(k \)-edge-connected between any two nodes.
- There are also node versions of connectivity (p. 535).
- All the above problems are efficiently solvable.

Proof of Menger's Theorem

Proof (\(\Rightarrow \)):
- Suppose \(G \) has \(k \) edge-disjoint paths from \(x \) to \(y \).
- Clearly, the removal of any \(k - 1 \) or fewer edges cannot prevent \(x \) from reaching \(y \).

Proof (\(\Leftarrow \)):
- Suppose \(G \) is \(k \)-edge-connected.
- Make \(x \) the source node and \(y \) the sink node,
 - Remove \(x \)'s incoming edges and \(y \)'s outgoing edges.
Proof of Menger’s Theorem (concluded)

- Assign capacity one to each edge.
- Every cut \((P, \overline{P})\) must contain \(\geq k\) edges from \(P\) to \(P\).
- Hence every cut has capacity \(\geq k\).
- By Theorem 49 (p. 512), there is a flow with integral value \(k\) from \(x\) to \(y\).
- Each flow on an edge is either one or zero because the capacity is one.
- The edges with a flow of one are the \(k\) edge-disjoint paths needed.

Menger’s Theorem (Node Form)

Theorem 53 Let \(G = (V, E)\) be a digraph and \(x, y \in V\) be nonadjacent. There are \(k\) node-disjoint paths from \(x\) to \(y\) if and only if \(G\) is \(k\) connected between \(x\) and \(y\).

Node Connectivity

- A digraph is \(k\)-connected between \(x\) and \(y\) if there exists a path from \(x\) to \(y\) even after fewer than \(k\) nodes are removed.
- A digraph is \(k\)-connected \((k \geq 2)\) if one of the following holds:
 - It is \(K_{k+1}\).
 - It has at least \(k + 2\) nodes and is \(k\)-connected between any two nodes.

The Equivalence Theorem

Theorem 54 The following theorems are equivalent.

1. König’s theorem.
2. The SDR theorem.
3. Hall’s theorem.
4. Dilworth’s theorem.
5. The max-flow min-cut theorem.
Algebra: Groups

A Loose End in Item 47a

- Can a “right” inverse be different from a “left” inverse?
- Suppose \(a \circ b = e \) and \(b' \circ a = e \).
 - \(b \) is a right inverse of \(a \).
 - \(b' \) is a left inverse of \(a \).
- Then \(b' = b' \circ e = b' \circ (a \circ b) = (b' \circ a) \circ b = e \circ b = b \).
- Hence there is no point in distinguishing left and right inverses.
aContributed by Mr. Hao (E0902039) on December 23, 2002.

Group Theorya

- Let \(G \neq \emptyset \) be a set and \(\circ \) be a binary operation on \(G \).
- \((G, \circ)\) is called a group if it satisfies the following.
 1. For all \(a, b \in G \), \(a \circ b \in G \) (closure).
 2. For all \(a, b, c \in G \), \(a \circ (b \circ c) = (a \circ b) \circ c \) (associativity).
 3. There exists \(e \in G \) with \(a \circ e = e \circ a = a \) for all \(a \in G \) (identity).
 4. For each \(a \in G \), there is an element \(b \in G \) such that \(a \circ b = b \circ a = e \) (inverse).
- \(G \) is commutative or abelian if \(a \circ b = b \circ a \) for all \(a, b \in G \).
aNiels Henrik Abel (1802–1829) and Evariste Galois (1811–1832).

Examples of Groups

- Under ordinary +, \((\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)\) are groups.
 - The inverse of \(a \) is simply \(-a\), which exists.
- Under ordinary \(\times \), none of \((\mathbb{Z}, \times), (\mathbb{Q}, \times), (\mathbb{R}, \times), (\mathbb{C}, \times)\) are groups.
 - The number 0 has no inverses.
- Under ordinary \(\times \), \((\mathbb{Q}^*, \times), (\mathbb{R}^*, \times), (\mathbb{C}^*, \times)\) are groups.
 - \(A^* \) denotes the nonzero elements of \(A \).
- Under ordinary –, \((\mathbb{Z}, -), (\mathbb{Q}, -), (\mathbb{R}, -)\) are not groups.
 - The associative axiom fails: \(a - (b - c) \neq (a - b) - c \).
Properties of Groupsa

- The identity of G is unique.
 - If e_1, e_2 are both identities, then $e_1 = e_1 \circ e_2 = e_2$ by the identity condition.
- The inverse of each element of G is unique (it is a^{-1} under \times and $-a$ under $+$, e.g.).
 - Suppose b, c are both inverses of $a \in G$.
 - Then $b = b \circ e = b \circ (a \circ c) = (b \circ a) \circ c = e \circ c = c$.

aProperties must be proved using only the four axioms or their logical corollaries.

\vspace{1cm}

Inverses

- $(a^{-1})^{-1} = a$.
 - Both are inverses of a^{-1} and inverses are unique.
- $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
 - $(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ b = e$.
- (G, \circ) is abelian if and only if $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$.
 - If (G, \circ) is abelian, then $(a \circ b)^{-1} = (b \circ a)^{-1} = a^{-1} \circ b^{-1}$.
 - If $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$, then $a \circ b = ((a \circ b)^{-1})^{-1} = (a^{-1} \circ b^{-1})^{-1} = (b^{-1})^{-1} \circ (a^{-1})^{-1} = b \circ a$.

\vspace{1cm}

The Cancellation Properties

The \textbf{left-cancellation property}: If $a, b, c \in G$ and $a \circ b = a \circ c$, then $b = c$.

- $b = (a^{-1} \circ a) \circ b = a^{-1} \circ (a \circ b) = a^{-1} \circ (a \circ c) = (a^{-1} \circ a) \circ c = c$.

The \textbf{right-cancellation property}: If $a, b, c \in G$ and $b \circ a = c \circ a$, then $b = c$.

\vspace{1cm}

Powers

- The associative property implies that $a_1 \circ a_2 \circ \ldots \circ a_n$ is well-defined.
- For $n > 0$, define $a^n = \underbrace{a \circ a \circ \ldots \circ a}_{n}$.
- For $n < 0$, define $a^n = \underbrace{a^{-1} \circ a^{-1} \circ \ldots \circ a^{-1}}_{n}$.
 - $a^{-n} = (a^{-1})^n$ because $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
 - Define $a^0 = e$.
Operations on Powers

Lemma 55 \(a^n \circ a^m = a^{n+m} \) for \(n, m \in \mathbb{Z} \).

- For \(n, m \geq 0 \),
 \[
 a^n \circ a^m = \underbrace{a \circ \cdots \circ a}_{n} \circ \underbrace{a \circ \cdots \circ a}_{m} = a \circ \cdots \circ a = a^{n+m}.
 \]
- For \(n > 0, m < 0 \),
 \[
 a^n \circ a^m = \underbrace{a \circ \cdots \circ a}_{n} \circ \underbrace{a \circ \cdots \circ a}_{m} = a \circ \cdots \circ a = a^{n+m}.
 \]
- The other two cases are similar.

Criteria for Being a Subgroup

Only two axioms need to be checked.

Theorem 56 Let \(H \) be a nonempty subset of a group \((G, \circ)\). Then \(H \) is a subgroup of \(G \) if and only if (1) for all \(a, b \in H \), \(a \circ b \in H \), and (2) for all \(a \in H \), \(a^{-1} \in H \).

Proof (\(\Rightarrow \)):
- Assume that \(H \) is a subgroup of \(G \).
- Then \(H \) is a group.
- So \(H \) satisfies, among other things, the closure property (1) and the inverse property (2).

Subgroups

- Let \((G, \circ)\) be a group.
- Let \(\emptyset \neq H \subseteq G \).
- If \(H \) is a group under \(\circ \), we call it a subgroup of \(G \).
- For example, the set of even integers is a subgroup of \((\mathbb{Z}, +)\).
- \(H \) “inherits” \(\circ \) from \(G \) in that it is the same operation, producing the same result in both \(G \) and \(H \) wherever applicable.

The Proof (concluded)

Proof (\(\Leftarrow \)):
- Let \(H \neq \emptyset \) satisfy (1) and (2).
- We need to verify the associative property and the existence of identity,
 - **Associativity**: For all \(a, b, c \in H \),
 \[
 (a \circ b) \circ c = a \circ (b \circ c) \in G,
 \]
 hence in \(H \) by (1).
 - **Identity**: For any arbitrary \(a \in H \), \(a^{-1} \circ a \in H \) by (2) and is an identity.