Theorem 30 If $G = G_1 \times G_2$, then $d(G) = d(G_1) + d(G_2)$.

- Consider two nodes of G, (x_1, y_1) and (x_2, y_2).
- Take the shortest path of length at most $d(G_2)$ from (x_1, y_1) to (x_1, y_2) over nodes of G_2.
- Take the shortest path of length at most $d(G_1)$ from (x_1, y_2) to (x_2, y_2) over nodes of G_1.
- Since the two nodes are arbitrary, we have proved

$$d(G) \leq d(G_1) + d(G_2).$$

Cartesian Products and Diameters (continued)

- We proceed to prove that

$$d(G) \geq d(G_1) + d(G_2).$$

- Let $x_1, x_2 \in V_1$ be two nodes of G_1 with distance $d(G_1)$.
- Let $y_1, y_2 \in V_2$ be two nodes of G_2 with distance $d(G_2)$.
- Let d be the distance between nodes

$$(x_1, y_1), (x_2, y_2) \in G.$$

Euler Circuits and Trails

- Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes,
 - Isolated nodes are nodes without incident edges.
- G is said to have an Euler circuit if there is a circuit in G that traverses every edge of the graph exactly once.
- If there is an open trail from x to y in G and this trail traverses every edge of the graph exactly once, the trail is called an Euler trail.
Characterization of Having Euler Circuits

Theorem 31 Let \(G = (V, E) \) be an undirected graph or multigraph with no isolated nodes. Then \(G \) has an Euler circuit if and only if \(G \) is connected and every node in \(G \) has an even degree.

- Testing if a graph is Eulerian hence is trivial.
- The proof will be constructive.
- Testing for a graph-theoretical property and constructing a solution that satisfies it may have different complexities.
- Let \(n = |E| \).

\[
\text{The Proof } (\Rightarrow)
\]

- Clearly \(G \) is connected.
- Each time the Euler circuit enters a non-starting node \(v \), it must exit it before coming back again, if ever.
- This adds a count of 2 to \(\text{deg}(v) \).
- Because every edge is traversed, \(\text{deg}(v) \) must be even.
- The Euler circuit must start from the starting node \(s \) and end at the starting node.
- This adds 2 to \(\text{deg}(s) \).
- The other visits have the same property as visits to \(v \) and add an even number to \(\text{deg}(s) \).

\[
\text{The Proof } (\Leftarrow)
\]

- The \(n = 1 \) case is easy, by inspection.
- Assume the result is true when there are \(< n \) edges.
- If \(G \) has \(n \) edges, select a node \(s \in G \) as the starting and ending node.
- Construct a circuit \(C \) from \(s \).
 - Start from \(s \).
 - Traverse any hitherto untraversed edge, and so on.
 - We must eventually return to \(s \) because every node has an even degree.

\[
\text{The Proof } (\Leftarrow) \text{ (concluded)}
\]

- If \(C \) traverses every edge, we are done.
- Otherwise, remove the edges of \(C \) and isolated nodes as a result to yield a new graph \(K \).
- The degree of each node in \(K \) remains even.
The Proof (⇐) (continued)

- Suppose K is connected.
- Construct an Euler circuit c of K (doable by the induction hypothesis).
- Node s is on this Euler circuit because K is connected.
- The desired Euler circuit: Start from s and travel on C until we end at s and then traverse c until we end at s again.

The Proof (⇐) (concluded)

- Suppose K is disconnected or s is isolated.
- Construct an Euler circuit in each component of K (doable by the induction hypothesis).
- Each Euler circuit c_i must have a node s_i on C because originally G is connected.
- The desired Euler circuit: Start from s and travel on C until we reach s_1, traverse c_1, return to s_1, continue on C until we reach s_2, and so on.

Constructing an Euler Circuit

![Euler Circuit Diagram](image)

Characterization of Having Euler Trails

Corollary 32 Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes. Then G has an Euler trail if and only if G is connected and has exactly two nodes of odd degree.

- Let x, y be the two nodes of odd degree.
- Add edge (x, y) to G.
- Construct an Euler circuit, which exists by Theorem 31.
- Remove the edge (x, y) from the circuit to arrive at an Euler trail.
In and Out Degrees

- Let G be a directed graph.
- The **in degree** of $v \in V$ is the number of edges in G that are incident into v.
- The **out degree** of $v \in V$ is the number of edges in G that are incident from v.

Planar Graphs

- A graph or multigraph G is called **planar** if it can be drawn in the plane with the edges intersecting only at nodes of G.
- Planarity can be tested efficiently.\(^a\)
- Such a drawing of G is called an **embedding** of G in the plane.

Euler’s Theorem

- Let $G = (V, E)$ be a connected planar graph or multigraph with $|V| = v$ and $|E| = e$.
- Let r be the number of regions in the plane determined by a planar embedding of G.
- One of these regions has infinite area and is called the infinite region.
- Then

$$v - e + r = 2. \quad (40)$$

\(^a\)Hopcroft and Tarjan (1974).
The Proof When \(H \) is Connected

- \(H \) has \(v \) nodes, \(k \) edges, and \(r - 1 \) regions.
- A dotted edge is added to obtain a planar \(G \) (see p. 445 for illustration).
- The induction hypothesis applied to \(H \) says
 \[v - k + (r - 1) = 2. \]
- Hence
 \[v - (k + 1) + r = 2. \]
- The theorem is proved because \(G \) has \(v \) nodes, \(e = k + 1 \) edges, and \(r \) regions.

The Proof\(^a\)

- The theorem holds if \(e = 0, 1 \) (p. 511 of the textbook (4th ed.)).
- Assume the theorem holds for any connected planar graph with \(e \) edges, where \(0 \leq e \leq k \).
- Let \(G = (V, E) \) be a graph with \(v \) nodes, \(r \) regions, and \(e = k + 1 \) edges.
- Let \(\{x, y\} \in E \).
- Delete \(\{x, y\} \) to obtain graph \(H: G = H + \{x, y\} \).

\(^a\)See Imre Lakatos (1976), Proofs and Refutations: The Logic of Mathematical Discovery (1989), for a most penetrating presentation.
The Proof When H Is Not Connected

- H has v nodes, $k = e - 1$ edges, and r regions.
- A dotted edge is added to obtain a planar G (see p. 447 for illustration).
- H has two components H_1 and H_2.\footnote{Thanks to a lively class discussion on December 1, 2003.}
- Let H_i have v_i nodes, e_i edges, and r_i regions.
- The induction hypothesis applied to H_i says
 \[v_i - e_i + r_i = 2. \]
- Therefore,
 \[(v_1 + v_2) - (e_1 + e_2) + (r_1 + r_2) = 4. \] (41)

The Proof When H Is Not Connected (concluded)

- Now,
 \[v_1 + v_2 = v, \]
 \[e_1 + e_2 = k = e - 1, \]
 \[r_1 + r_2 = r + 1. \]
- Hence Eq. (41) on p. 446 becomes
 \[v - (e - 1) + (r + 1) = 4. \]
- Hence again $v - e + r = 2$.

A Useful Corollary

Corollary 33 Let $G = (V, E)$ be a loop-free connected planar graph with $|V| = v$, $|E| = e > 2$, and r regions. Then
\[e \leq 3v - 6. \]

- Each edge is shared by ≤ 2 regions.
- The boundary of each region (including the infinite region) contains at least 3 edges (G is not a multigraph).
- Hence $2e \geq \sum_{region R} |R's \ boundary| \geq 3r$.
- Euler’s theorem implies
 \[2 = v - e + r \leq v - e + (2/3)e = v - (1/3)e. \]
K_5 is Not Planar

- K_5 has $v = 5$ nodes and $e = 10$ edges.
- Suppose it is planar.
- By Corollary 33,

 $10 = e \leq 3v - 6 = 9,$

 a contradiction.

Bipartite Graphs

- A graph $G = (V, E)$ is called bipartite if:
 - $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$, and
 - Every edge is of the form $\{x, y\}$ with $x \in V_1$ and $y \in V_2$.
- If each node in V_1 is joined with every node in V_2, we have a complete bipartite graph.
 - If $|V_1| = m$ and $|V_2| = n$, the complete bipartite graph is denoted by $K_{m,n}$.

$K_{3,3}$ is Not Planar

- $K_{3,3}$ has $v = 6$ nodes and $e = 9$ edges.
- Suppose it is planar.
- By Euler's formula (40) on p. 441, the number of regions is $r = 2 + e - v = 5$.
- But $K_{3,3}$ has no 3 nodes forming a complete subgraph.
- So the border of a region must contain at least 4 edges.
- The sum of those edges is at least $4r = 20$.
- By Eq. (39) on p. 420, $2e \geq 20$, a contradiction.
Kuratowski's Theorem

Theorem 34 A graph is nonplanar if and only if it contains a subgraph that is "homeomorphic" to either K_5 or $K_{3,3}$.

*Kazimierz Kuratowski (1896-1980).

Application: Tournaments
- Let K_n^* be a directed graph with n nodes.
- If for each distinct pair x, y of nodes, either $(x, y) \in K_n^*$ or $(y, x) \in K_n^*$ but not both, then K_n^* is called a tournament (recall p. 209).
- A tournament is not necessarily transitive.
- But the next theorem says that players can be ranked in at least one way.

Hamiltonian Paths and Cycles
- Let $G = (V, E)$ be a graph with $|V| \geq 3$.
- A Hamiltonian cycle is a cycle in G that contains every node in V.
- A Hamiltonian path is a path in G that contains every node in V.
- Testing if G has a Hamiltonian path or cycle is computationally hard; it is NP-complete.

*William Rowan Hamilton (1805-1865).

Tournaments Are Hamiltonian

Theorem 35 (Redei 1934) A tournament always contains a directed Hamiltonian path.
- Let $p_m = (v_1, v_2, \ldots, v_m)$ be a path of maximum length.
- Assume $m < n$ and proceed to derive a contradiction.
- Let v be a node not on p_m.
- $(v, v_1) \notin K_n^*$ for otherwise p_m can be lengthened.
- Hence $(v_1, v) \in K_n^*$.
The Proof (continued)

- If there exists a $1 < j < m$ such that $\langle v_{j-1}, v \rangle \in K_n^*$ and $(v, v_j) \in K_n^*$, then the path $\langle v_1, \ldots, v_{j-1}, v, v_j, \ldots, v_m \rangle$ is longer than p_m, a contradiction.

- As $\langle v_1, v \rangle \in K_n^*$, we conclude that for each $1 < j < m$, $\langle v_{j-1}, v \rangle \in K_n^*$ and $(v, v_j) \notin K_n^*$ by induction.

\[\begin{array}{c}
 \text{v}_1 \\
 \text{v}_2 \\
 \vdots \\
 \text{v}_n \\
 \text{v}_m
\end{array} \]

The Proof (concluded)

- In particular, $\langle v, v_m \rangle \notin K_n^*$.

- So $\langle v_m, v \rangle \in K_n^*$.

- We can add $\langle v_m, v \rangle$ to p_m, a contradiction.

- Remark: Now that K_n^* is Hamiltonian, how to find a Hamiltonian path efficiently?