Integer Solutions of a Linear Equation Revisited

There are \((n + r - 1)\) integer solutions to
\[x_1 + x_2 + \cdots + x_n = r, \]
where \(x_i \geq 0\) (p. 38).

- The desired number is the coefficient of \(x^r\) in
 \[f(x) = (1 + x + x^2 + \cdots + x^r)^n \]
 because
 \[f(x) = \sum_{0 \leq x_1, x_2, \ldots, x_n \leq r} x_1 x_2 \cdots x_n. \]

- By Eq. (28) on p. 330,
 \[f(x) = (1 - x^{r+1})(1 - x)^n \]
 \[= \sum_{i=0}^{r} \binom{n+i-1}{i} x^i + x^{r+1}(\cdots). \]

A Simplified Proof

- For each variable \(x_i\), the series \(1 + x + x^2 + \cdots\)
 represents the possible value for that variable: 0, 1, 2, \ldots.

- The desired number is the coefficient of \(x^r\) in
 \[(1 + x + x^2 + \cdots)^n. \]

- Now,
 \[(1 + x + x^2 + \cdots)^n = (1 - x)^n \]
 \[= \sum_{i=0}^{\infty} \binom{n+i-1}{i} x^i \]
 by Eq. (28) on p. 330.

Partition of Integers

- We ask for the number of partitions of \(n \in \mathbb{Z}^+\) into
 positive integers where the order of summands is irrelevant.
 - The number of partitions of \(n = 3\) is 3: 3, 2 + 1,
 \[1 + 1 + 1. \]
 - Contrast it with composition on p. 47.
Partition of Integers (continued)

- The number n can be a sum of a few 1s, a few 2s, a few 3s, \ldots, and a few n's.
- The desired number is the coefficient of x^n in
 \[
 \frac{1}{1-x} \left(\frac{1}{1-x^2} \right) \left(\frac{1}{1-x^4} \right) \left(\frac{1}{1-x^5} \right)
 = \frac{1}{1-x} + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \ldots.
 \]
 So there are 7 ways to partition 5.
- Indeed, the partitions are: 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.
- No known closed-form formula.

Comments on Calculation

- We were asked to calculate the coefficient of x^n in
 \[
 \frac{1}{1-x} \frac{1}{1-x^2} \frac{1}{1-x^3} \cdots \frac{1}{1-x^n}
 \]
 in Eq. (29) on p. 335.
- But it is a product of infinite power series!
- The trick is to calculate only
 \[
 [1 - x^2 + \ldots + (-1)^n x^n][1 - x^3 + x^6 - \ldots + (-1)^n x^{3n}]
 \]
 \[
 \cdots [1 - x^n + x^{2n} - \ldots + (-1)^n x^{n^2}].
 \]
- We can even cut those terms beyond x^n.

No Summands Appear More Than Twice

- What is the number of partitions of $m \in \mathbb{Z}^+$ into positive integers where the order of summands is irrelevant and no summands appear more than twice?
- The desired number is the coefficient of x^m in
 \[
 \frac{1}{1-x} \frac{1}{1-x^2} \frac{1}{1-x^3} \cdots \frac{1}{1-x^{m^2}} = \prod_{i=1}^{\infty} \frac{1}{1-x^{3i}}
 \]
 \[
 = \prod_{i=1}^{\infty} \frac{1}{1-x} \frac{1}{1-x^2} \frac{1}{1-x^3} \frac{1}{1-x^4} \frac{1}{1-x^5} \frac{1}{1-x^6} \cdots.
 \]
- Same as partitions into summands not divisible by 3.
Weighted Integer Solutions of a Linear Equation

- What is the number of integer solutions to
 \[x_1 + 2x_2 + 3x_3 + \cdots + nx_n = n, \]
 where \(x_i \geq 0 \)?
- For example, the number of solutions for \(n = 5 \) is 7:
 \[(x_1, x_2, x_3, x_4, x_5) \in \{(5, 0, 0, 0, 0), (3, 1, 0, 0, 0), (2, 0, 1, 0, 0), (1, 2, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 0, 0, 0, 1)\}.\]

Partition of Integers into Distinct Summands

- We ask for the number of partitions of \(m \in \mathbb{Z}^+ \) into distinct positive integers where the order of summands is irrelevant.
 - The number of partitions of \(m = 3 \) is 2: 3, 2 + 1.
- The desired number is the coefficient of \(x^m \) in
 \[(1 + x)(1 + x^2)(1 + x^3) \cdots (1 + x^m). \tag{29}\]
- No known closed-form formula.

Weighted Integer Solutions of a Linear Equation (concluded)

- This problem is the partition-of-integers problem in disguise.
 - Every solution \((x_1, x_2, \ldots, x_n)\) implies a partition of \(n \) in which there are \(x_i \)'s, and vice versa.
- The desired number is therefore the coefficient of \(x^n \) in
 \[
 \frac{1}{1 - x} \frac{1}{1 - x^2} \frac{1}{1 - x^3} \cdots \frac{1}{1 - x^n}.
 \]

Partition of Integers into Distinct Summands (concluded)

- Note that
 \[
 (1 + x)(1 + x^2)(1 + x^3)(1 + x^4)(1 + x^5)(1 + x^6) \\
 = 1 + x + x^2 + 2x^3 + 2x^4 + 3x^5 + 4x^6 + \cdots.
 \]
- So there are 4 ways to partition 6.
- Indeed, the partitions are: 6, 5 + 1, 4 + 2, 3 + 2 + 1.
Partition of Integers into Distinct Summands with Upper Bounds

- We ask for the number of partitions of \(m \in \mathbb{Z}^+ \) into distinct positive integers at most \(n \) where the order of summands is irrelevant.
- The desired number is the coefficient of \(x^m \) in
 \[
 (1 + x)(1 + x^2)(1 + x^3) \cdots (1 + x^n).
 \]
- No known closed-form formula, Applications in computational finance\(^a\).
- Can we compute all \(n(n+1)/2 \) coefficients in time \(o(n^3) \)?

\(^a\)Lynn (2002).

Partition of Integers into Odd Summands

- What is the number of partitions of \(m \in \mathbb{Z}^+ \) into odd positive integers where the order of summands is irrelevant?
 - The number of partitions of \(m = 3 \) is 2: 3, \(1+1+1 \).
 - The desired number is the coefficient of \(x^m \) in
 \[

 \frac{1}{1-x} \frac{1}{1-x^3} \frac{1}{1-x^5} \cdots \frac{1}{1-x^m} =
 \frac{1 - x^2 - x^4 - x^6 \cdots}{1 - x} \frac{1 - x^6 - x^{10} \cdots}{1 - x^3} \frac{1 - x^{10} - x^{12} \cdots}{1 - x^5} \cdots

 = (1+x)(1+x^3)(1+x^5)(1+x^7) \cdots (1+x^m) \ldots

 \]
 - This is the same as partitions into distinct summands (recall Eq. (29) on p. 341); Euler (1748).

Partition of Integers into Distinct Summands with Upper Bounds (concluded)

- Note that
 \[
 (1 + x)(1 + x^2)(1 + x^3)(1 + x^4)(1 + x^5)
 = 1 + x + x^2 + 2x^3 + 2x^4 + 3x^5 + 4x^6 + 4x^7 + \cdots + x^{21}.
 \]
- So there are 4 ways to partition 7 into distinct positive integers at most 6.
 - Indeed, the partitions are: \(6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1 \).
- In fact, we solved 21 problems: The coefficient of \(x^i \), where \(1 \leq i \leq 21 \), represents the number of ways to partition \(i \) into distinct positive integers at most 6.

Partition of Integers into Even Summands

- We ask for the number of partitions of \(m \in \mathbb{Z}^+ \) into positive even integers where the order of summands is irrelevant.
- The desired number is the coefficient of \(x^m \) in
 \[
 (1 + x^2 + x^4 + \cdots)(1 + x^4 + x^8 + \cdots)

 (1 + x^6 + x^{12} + \cdots)(1 + x^{|m/2|} + x^{|m/2|} + \cdots).
 \]
- We are more economical than in “partition of integers into odd summands” by removing higher-order terms.
Partition of Integers into Even Numbers of Each Summand

- We ask for the number of partitions of \(m \in \mathbb{Z}^+ \) into positive integer summands where each summand appears an even number of times and the order of summands is irrelevant.
- The desired number remains the coefficient of \(x^m \) in
 \[
 (1 + x^2 + x^4 + \cdots)(1 + x^4 + x^8 + \cdots) \\
 (1 + x^6 + x^{12} + \cdots)(1 + x^{2m/2} + x^{4m/2} + \cdots).
 \]
 - 1 appears an even number of times, 2 appears an even number of times, etc.

Partitions of Integers and Integer Solutions of Linear Equations

- These two issues are often related in subtle ways.
- To wit, what is the number of partitions of \(m \in \mathbb{N} \) into \(n \) nonnegative integers where the order of summands is relevant?
- Each nonnegative integer solution of
 \[
 x_1 + x_2 + \cdots + x_n = m
 \]
 corresponds to a valid partition.
- The answer is thus \(\binom{n+m-1}{m-1} \) from p. 331.

Partitions of Integers and Integer Solutions of Linear Equations (continued)

- What is the number of integer solutions of
 \[
 x_1 + x_2 + \cdots + x_n = n,
 \]
 where \(0 \leq x_1 \leq x_2 \leq \cdots \leq x_n? \)
- A solution corresponds to a partition of \(n \) into \emph{positive} integers where the order of summands is irrelevant.
 \(- (0, 0, 0, 1, 2, 3) \iff 6 = 1 + 2 + 3.\)
- From p. 335, the number equals the coefficient of \(x^n \) in
 \[
 \frac{1}{(1-x)(1-x^2)\cdots(1-x^n)}.
 \]

Partitions of Integers and Integer Solutions of Linear Equations (continued)

- In general, what is the number of integer solutions of
 \[
 x_1 + x_2 + \cdots + x_n = m,
 \]
 where \(0 \leq x_1 \leq x_2 \leq \cdots \leq x_n? \)
- Each solution corresponds to a partition of integer \(m \) into \(n \) nonnegative integers where the order of summands is irrelevant\(^a\)
 \(- (0, 0, 0, 1, 2, 3) \iff 6 = 0 + 0 + 0 + 1 + 2 + 3.\)

\(^a\)Professor Andrews, private communication, October 2001.
Partitions of Integers and Integer Solutions of Linear Equations (continued)

- Alternatively, each solution corresponds to a partition of m into nonnegative integers at most n where the order of summands is irrelevant.
 - See the Ferrers graph on the next slide.
- The desired number hence equals the coefficient of x^m in
 \[
 \frac{1}{(1-x)(1-x^2)(1-x^3)\cdots(1-x^n)}.
 \]

Partitions of Integers and Integer Solutions of a Linear Equation (concluded)

- For instance,
 \[
 \frac{1}{(1-x)(1-x^2)(1-x^3)} = 1 + x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + 7x^6 + 8x^7 + 10x^8 + 12x^9 + 14x^{10} + 16x^{11} + 19x^{12} + \cdots.
 \]
- There are 7 ways to partition 6 into 3 nonnegative integers:
 \[
 0 + 0 + 6, 0 + 1 + 5, \\
 0 + 2 + 4, 0 + 3 + 3, \\
 1 + 1 + 4, 1 + 2 + 3, 2 + 2 + 2.
 \]
Recurrence Relations Arise Naturally

- When a problem has a recursive nature, recurrence relations often arise.
 - A problem can be solved by solving 2 subproblems of the same nature.
- When an algorithm is of the divide-and-conquer type, a recurrence relation describes its running time.
 - Sorting, fast Fourier transform, etc.
- Certain combinatorial objects are constructed recursively such as hypercubes (p. 424).

First-Order Linear Homogeneous Recurrence Relations (concluded)

- Now suppose we impose the initial condition \(a_0 = A \).
- Then the (unique) particular solution is \(a_n = Ad^n \).
 - Because \(A = a_0 = Cd^0 = C \).
- Note that \(a_n = na_{n-1} \) is not a first-order linear homogeneous recurrence relation.
 - Its solution is \(n! \) when \(a_0 = 1 \).

First-Order Linear Homogeneous Recurrence Relations

- Consider the recurrence relation
 \[
 a_{n+1} = da_n,
 \]
 where \(n \geq 0 \) and \(d \) is a constant.
- The general solution is given by
 \[
 a_n = Cd^n
 \]
 for any constant \(C \).
 - It satisfies the relation: \(Cd^{n+1} = dCd^n \).
- There are infinitely many solutions, one for each choice of \(C \).

First-Order Linear Non-homogeneous Recurrence Relations

- Consider the recurrence relation
 \[
 a_{n+1} + da_n = f(n).
 \]
 - \(n \geq 0 \).
 - \(d \) is a constant.
 - \(f(n) : \mathbb{N} \to \mathbb{N} \).
- A general solution no longer exists.
kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients

- Consider the \(k \)-th order recurrence relation
 \[
 C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = 0, \quad (30)
 \]

 where \(C_n, C_{n-1}, \ldots, C_{n-k} \in \mathbb{R}, C_n \neq 0, \) and \(C_{n-k} \neq 0. \)

- Add \(k \) initial conditions for \(a_0, a_1, \ldots, a_k. \)

- Clearly, \(a_n \) is well-defined for each \(n = k, k+1, \ldots. \)

kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients (concluded)

- A solution \(y \) for \(a_n \) is general if for any particular solution \(y' \), the undetermined coefficients of \(y \) can be found so that \(y \) is identical to \(y'. \)

- Any general solution for \(a_n \) that satisfies the \(k \) initial conditions and Eq. (30) is a particular solution.

- In fact, it is the unique particular solution because any solution agreeing at \(n = 0, 1, \ldots, k-1 \) must agree for all \(n \geq 0. \)

Conditions for the General Solution

Theorem 28 Let \(a_n^{(1)}, a_n^{(2)}, \ldots, a_n^{(k)} \) be \(k \) particular solutions of Eq. (30). If

\[
\begin{vmatrix}
 a_0^{(1)} & a_0^{(2)} & \cdots & a_0^{(k)} \\
 a_1^{(1)} & a_1^{(2)} & \cdots & a_1^{(k)} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{k-1}^{(1)} & a_{k-1}^{(2)} & \cdots & a_{k-1}^{(k)}
\end{vmatrix} \neq 0, \tag{31}
\]

then \(a_n = C_1 a_n^{(1)} + C_2 a_n^{(2)} + \cdots + C_k a_n^{(k)} \) is the general solution, where \(C_1, C_2, \ldots, C_k \) are arbitrary constants.\(^a\)

Fundamental Sets

- The particular solutions of Eq. (30) on p. 359,
 \[a_n^{(1)}, a_n^{(2)}, \ldots, a_n^{(k)}, \]
 that also satisfy inequality (31) in Theorem 28 are said to form a fundamental set of solutions.
- Solving a linear homogeneous recurrence equation thus reduces to finding a fundamental set!

The Justification

- Assume \(a_n \) has the form \(cr^n \) for nonzero \(c \) and \(r \).
- After substitution into recurrence equation (30) on p. 359, \(r \) satisfies characteristic equation (32).
- Let \(r_1, r_2, \ldots, r_k \) be the \(k \) distinct (nonzero) roots.
- Hence \(a_n = r_i^n \) is a solution for \(1 \leq i \leq k \).
- Solutions \(r_i^n \) form a fundamental set because

kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients: Distinct Roots

- Let \(r_1, r_2, \ldots, r_k \) be the (characteristic) roots of the characteristic equation
 \[C_n r^n + C_{n-1} r^{n-1} + \cdots + C_0 = 0. \quad (32) \]
- If \(r_1, r_2, \ldots, r_k \) are distinct, then the general solution has the form
 \[a_n = c_1 r_1^n + c_2 r_2^n + \cdots + c_k r_k^n, \]
 for constants \(c_1, c_2, \ldots, c_k \) determined by the initial conditions.

The Justification (continued)

- The \(k \times k \) matrix is called a **Vandermonde matrix**, which is nonsingular whenever \(r_1, r_2, \ldots, r_k \) are distinct.\(^a\)

\(^a\)This is a standard result in linear algebra.
The Justification (concluded)

- Hence

\[a_n = c_1 r_1^n + c_2 r_2^n + \cdots + c_k r_k^n \]

is the general solution.

- The k coefficients c_1, c_2, \ldots, c_k are determined uniquely by the k initial conditions $a_0, a_1, \ldots, a_{k-1}$:

\[
\begin{pmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{k-1}
\end{pmatrix} =
\begin{pmatrix}
 1 & 1 & \cdots & 1 \\
 r_1 & r_2 & \cdots & r_k \\
 \vdots & \vdots & \ddots & \vdots \\
 r_1^{k-1} & r_2^{k-1} & \cdots & r_k^{k-1}
\end{pmatrix}
\begin{pmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_k
\end{pmatrix}.
\]

(33)

The Fibonacci Relation (concluded)

- Solve

\[
\begin{align*}
0 &= a_0 = c_1 + c_2 \\
1 &= a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2}
\end{align*}
\]

for $c_1 = \frac{1}{\sqrt{5}}$ and $c_2 = \frac{1}{\sqrt{5}}$.

- The solution is finally

\[
a_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

The Fibonacci Relation

- Consider $a_{n+2} = a_{n+1} + a_n$.

- The initial conditions are $a_0 = 0$ and $a_1 = 1$.

- The characteristic equation is $r^2 - r - 1 = 0$, with two roots $(1 \pm \sqrt{5})/2$.

- The general solution is hence

\[
a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

Don't Believe It?

\[
\begin{align*}
a_2 &= \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^2 - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^2 \\
&= \frac{1}{\sqrt{5}} \frac{1 + 2\sqrt{5} + 5}{4} - \frac{1}{\sqrt{5}} \frac{1 - 2\sqrt{5} + 5}{4} = 1, \\
a_3 &= \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^3 - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^3 \\
&= \frac{1}{\sqrt{5}} \frac{1 + 3\sqrt{5} + 15 + 5\sqrt{5}}{8} - \frac{1}{\sqrt{5}} \frac{1 - 3\sqrt{5} + 15 - 5\sqrt{5}}{8} = 2.
\end{align*}
\]
Initial Conditions

- Different initial conditions give rise to different solutions.
- Suppose $a_0 = 1$ and $a_1 = 2$.
- Then solve

$$1 = a_0 = c_1 + c_2$$

$$2 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2}$$

for $c_1 = \frac{[(1 + \sqrt{5})/2]^2}{\sqrt{5}}$ and $c_2 = \frac{[(1 \sqrt{5})/2]^2}{\sqrt{5}}$.

Example: A Third-Order Relation

- Consider

$$2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$$

with $a_0 = 0$, $a_1 = 1$, and $a_2 = 2$.
- The characteristic equation $2r^3 - r^2 - 2r + 1 = 0$ has three distinct real roots: 1, -1, and 0.5.
- The general solution is

$$a_n = c_1 n^1 + c_2 n^(-1) + c_3 (1/2)^n$$

$$= c_1 + c_2 (1)^n + c_3 (1/2)^n.$$