Theory of Computation

homework 3
Due: 11/19/2013

Problem 1 Prove that the following language is coNP-complete.

\[L_{\text{coNP}} = \{ \phi : \text{a Boolean formula that is satisfied by every assignment} \} \]

Ans: It is clear that \(L_{\text{coNP}} \) is in coNP by its definition. We then prove that every \(L \in \text{coNP} \) can be reduced to \(L_{\text{coNP}} \). First, we know that \(\bar{L} \) (which is in NP) can reduce to SAT (an NP-complete problem). For every input \(x \in \{0,1\}^* \) that reduction produces a formula \(\phi_x \) that is satisfiable iff \(x \in \bar{L} \). On p. 424 of the lecture notes, we know that \(L' \) is coNP-complete iff \(\bar{L'} \) is NP-complete. Hence SAT COMPLEMENT is coNP-complete and \(L \in \text{coNP} \) can reduce to SAT COMPLEMENT. As \(\phi_x \) is unsatisfiable iff \(x \in L \), we can readily see that the *same* reduction shows that \(L_{\text{coNP}} \) is coNP-complete.

Problem 2 Given a set \(S = \{a_1, a_2, ..., a_n\} \) and a number \(T \), we ask if there exists a subset \(S' \subseteq S \) such that \(\sum_{a_i \in S'} a_i = T \). Prove that this problem is NP-complete.

Ans: An instance of KNAPSACK contains \(n \) items with values \(v_1, ..., v_n \) and weights \(w_1, ..., w_n \), a weight limit \(W \), and a goal \(K \). KNAPSACK asks if there exists a subset \(S \subseteq \{1,2,...,n\} \) such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \geq K \). We now reduce KNAPSACK to our problem by simply letting \(x_i = 0,1 \), \(w_i = v_i \) and \(W = K \) to give us the equation \(\sum_{i \in S} w_i x_i = K \). Clearly, a solution to this instance exists if and only if a solution \(S \) exists such that \(\sum_{a_i \in S'} a_i = T \). Since this version of KNAPSACK is NP-complete (refers to slide p. 393), our problem is hence NP-complete.