Approximability, Unapproximability, and Between

- **KNapsack**, **Node Cover**, **MaxSAT**, and **Max Cut** have approximation thresholds less than 1.
 - **Knapsack** has a threshold of 0 (see p. 586).
 - But **node cover** and **maxsat** have a threshold larger than 0.
- The situation is maximally pessimistic for **TSP**: It cannot be approximated unless $P = NP$ (see p. 584).
 - The approximation threshold of **TSP** is 1.
 - If the **TSP** satisfies the triangular inequality, the threshold is $1/3$.
- The same holds for **Independent Set**.

Unapproximability of TSP

Theorem 75 The approximation threshold of TSP is 1 unless $P = NP$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete **Hamiltonian Cycle**.
- Given any graph $G = (V, E)$, construct a TSP with $|V|$ cities with distances
 \[d_{ij} = \begin{cases}
 1, & \text{if } \{i, j\} \in E \\
 \frac{|V|}{1-\epsilon}, & \text{otherwise}
 \end{cases} \]

\[a \text{ Sahni and Gonzales (1976).} \]

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour’s length.
 - The optimum tour has a cost exceeding $|V|$.
 - Hence G has no Hamiltonian cycles.

Theorem 76 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for **Knapsack**.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$. \(^b\)
- We must find an $S \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.
- Let
 \[V = \max\{v_1, v_2, \ldots, v_n\}. \]

\[a \text{ Ibarra and Kim (1975).} \]

\[b \text{ If the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (892922045) on December 29, 2004.} \]
The Proof (continued)

- For $0 \leq i \leq n$ and $0 \leq v \leq nV$, define $W(i, v)$ to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v) = \infty$ for all v.
- Then
 \[W(i + 1, v) = \min\{W(i, v), W(i, v - u_{i+1}) + w_{i+1}\} \]
- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2V)$, not polynomial time.
- Key idea: Limit the number of precision bits.

The Proof (concluded)

- Hence
 \[\sum_{i \in S'} v_i \geq \sum_{i \in S} v_i - n2^b. \]
- Because V is a lower bound on OPT (if, without loss of generality, $w_i \leq W$), the relative deviation from the optimum is at most $n2^b/V$.
- By truncating the last $b = \lfloor \log_2 \frac{V}{\epsilon n} \rfloor$ bits of the values, the algorithm becomes ϵ-approximate.
- The running time is then $O(n^2V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm\(^a\).
- On p. 587, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$.
- How about TSP (D), another NP-complete problem?

\(^a\)Garey and Johnson (1978).
No Pseudo-Polynomial-Time Algorithms for TSP (D)
- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a \textit{value} polynomial in the input length.
- Corollary 39 (p. 304) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2.
- As HAMILTONIAN PATH is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP.
- TSP (D) is said to be \textbf{strongly NP-hard}.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Fully Polynomial-Time Approximation Scheme
- A polynomial-time approximation scheme is \textbf{fully polynomial (FPTAS)} if the running time depends polynomially on $|x|$ and $1/\epsilon$.
 - Maybe the best result for a “hard” problem.
 - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 586).

Polynomial-Time Approximation Scheme
- Algorithm M is a \textbf{polynomial-time approximation scheme (PTAS)} for a problem if:
 - For each $\epsilon > 0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in $|x|$.
 * Think of ϵ as a constant.
 - M is an ϵ-approximation algorithm for every $\epsilon > 0$.

Square of G
- Let $G = (V, E)$ be an undirected graph.
- G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges
 $\{\{(u, u'), (v, v')\} : (u = v \land \{u', v'\} \in E) \lor \{u, v\} \in E\}$.
Independent Sets of G and G^2

Lemma 77 \(G(V, E) \) has an independent set of size \(k \) if and only if \(G^2 \) has an independent set of size \(k^2 \).

- Suppose \(G \) has an independent set \(I \subseteq V \) of size \(k \).
- \(\{(u, v) : u, v \in I\} \) is an independent set of size \(k^2 \) of \(G^2 \).

The Proof (continued)

- Suppose \(G^2 \) has an independent set \(I^2 \) of size \(k^2 \).
- \(U \equiv \{u : \exists v \in V (u, v) \in I^2\} \) is an independent set of \(G \).

- \(|U| \) is the number of “rows” that the nodes in \(I^2 \) occupy.

The Proof (concluded)\(^{a}\)

- If \(|U| \geq k \), then we are done.
- Now assume \(|U| < k \).
- As the \(k^2 \) nodes in \(I^2 \) cover fewer than \(k \) “rows,” there must be a “row” in possession of \(> k \) nodes of \(I^2 \).
- Those \(> k \) nodes will be independent in \(G \) as each “row” is a copy of \(G \).

\(^{a}\)Thanks to a lively class discussion on December 29, 2004.

Approximability of INDEPENDENT SET

- The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 78 If there is a polynomial-time \(\epsilon \)-approximation algorithm for INDEPENDENT SET for any \(0 < \epsilon < 1 \), then there is a polynomial-time approximation scheme.

- Let \(G \) be a graph with a maximum independent set of size \(k \).
- Suppose there is an \(O(n^4) \)-time \(\epsilon \)-approximation algorithm for INDEPENDENT SET.
The Proof (continued)

- By Lemma 77 (p. 595), the maximum independent set of G^2 has size k^2.
- Apply the algorithm to G^2.
- The running time is $O(n^{2\ell})$.
- The resulting independent set has size $\geq (1 - \epsilon)k^2$.
- By the construction in Lemma 77 (p. 595), we can obtain an independent set of size $\geq \sqrt{(1 - \epsilon)k^2}$ for G.
- Hence there is a $(1 - \sqrt{1 - \epsilon})$-approximation algorithm for INDEPENDENT SET.

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2\ell}$ to obtain an $(1 - (1 - \epsilon)^{2 - \ell})$-approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2\ell}$.\(^a\)
- Now pick $\ell = \lceil \log \frac{\log(1/\epsilon)}{\log(1/\epsilon')} \rceil$.
- The running time becomes $n^{\frac{\log(1/\epsilon)}{\log(1/\epsilon')}}$.
- It is an ϵ'-approximation algorithm for INDEPENDENT SET.

\(^a\)It is not fully polynomial.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 37, p. 286).
- NODE COVER has an approximation threshold at most 0.5 (p. 569).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs NP
Densitya

The density of language $L \subseteq \Sigma^*$ is defined as

\[\text{dens}_L(n) = |\{x \in L : |x| \leq n\}|. \]

- If $L = \{0, 1\}^*$, then $\text{dens}_L(n) = 2^{n+1} - 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,
 \[\text{dens}_L(n) \leq n + 1. \]
 - Because $L \subseteq \{\epsilon, 0, 00, \ldots, 00\cdots0\ldots\}$.

aBerman and Hartmanis (1977).

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exploits self-reducibility if it reduces the problem to the same problem with a smaller size.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n.
- $t \in \{0, 1\}^j$ is a partial truth assignment for x_1, x_2, \ldots, x_j.
- $\phi[t]$ denotes the expression after substituting the truth values of t for x_1, x_2, \ldots, x_t in ϕ.

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

\begin{algorithm}
\begin{algorithmic}[1]
\STATE 1: if $|t| = n$ then
\STATE 2: \hspace{1em} return $\phi[t]$;
\STATE 3: \hspace{1em} \textbf{else}
\STATE 4: \hspace{2em} return $\phi[t0] \lor \phi[t1]$;
\STATE 5: \hspace{1em} \textbf{end if}
\end{algorithmic}
\end{algorithm}

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).
NP-Completeness and Density

Theorem 79 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then $P = NP$.

- Suppose there is a reduction R from sat to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 606.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

The Proof (continued)

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random access memory model.
- The running time is $O(Mp(n))$, where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.

1: if $|t| = n$ then
2: return $\phi[t]$;
3: else
4: if $(R(\phi[t]), v)$ is in table H then
5: return v;
6: else
7: if $\phi[0]$ = “satisfiable” or $\phi[1]$ = “satisfiable” then
8: Insert $(R(\phi[t]), 1)$ into H;
9: return “satisfiable”;
10: else
11: Insert $(R(\phi[t]), 0)$ into H;
12: return “unsatisfiable”;
13: end if
14: end if
15: if
The Proof (continued)

- There is a set $T = \{t_1, t_2, \ldots \}$ of invocations (partial truth assignments, i.e.) such that:
 - $|T| \geq (M-1)/(2n)$.
 - All invocations in T are recursive (nonleaves).
 - None of the elements of T is a prefix of another.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.

- The existence of T implies that there are at least $(M-1)/(2n)$ different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1)/(2n) \leq p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.\(^a\)

\(^a\)Mahaney (1980).