A Few Calculations

- From p. 362, we know $\phi(p - 1) = 4$.
- Hence $R(12) = 4$.
- And there are 4 primitives roots of p.
- As $\Phi(p - 1) = \{1, 5, 7, 11\}$, the primitive roots are g^1, g^5, g^7, g^{11} for any primitive root g.

The Other Direction of Theorem 47 (p. 346)

- We must show p is a prime only if there is a number r (called primitive root) such that
 1. $r^{p-1} \equiv 1 \pmod{p}$, and
 2. $r^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of $p - 1$.
- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} \equiv 1 \pmod{p}$ (note $\gcd(r, p) = 1$).
- We will show that the 2nd condition must be violated.

The Proof (concluded)

- $r^{\phi(p)} \equiv 1 \pmod{p}$ by the Fermat-Euler theorem (p. 362).
- Because p is not a prime, $\phi(p) < p - 1$.
- Let k be the smallest integer such that $r^k \equiv 1 \pmod{p}$.
- As $k \leq \phi(p)$, $k < p - 1$.
- Let q be a prime divisor of $(p - 1)/k > 1$.
- Then $k|(p - 1)/q$.
- Therefore, by virtue of the definition of k,
 $$r^{(p-1)/q} \equiv 1 \pmod{p}.$$
- But this violates the 2nd condition.

Function Problems

- Decisions problem are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?
Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let \(\phi(x_1, x_2, \ldots, x_n) \) be a boolean expression.
 - If \(\phi \) is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return “no.”
- We next show that if SAT \(\in \) P, then FSAT has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

1: \(t := \epsilon \);
2: if \(\phi \in \text{SAT} \) then
3: for \(i = 1, 2, \ldots, n \) do
4: if \(\phi[x_i = \text{true}] \in \text{SAT} \) then
5: \(t := t \cup \{ x_i = \text{true} \} \);
6: \(\phi := \phi[x_i = \text{true}] \);
7: else
8: \(t := t \cup \{ x_i = \text{false} \} \);
9: \(\phi := \phi[x_i = \text{false}] \);
10: end if
11: end for
12: return \(t \);
13: else
14: return “no”;
15: end if

Analysis

- There are \(\leq n + 1 \) calls to the algorithm for SAT\(^a\).
- Shorter boolean expressions than \(\phi \) are used in each call to the algorithm for SAT.
- So if SAT can be solved in polynomial time, so can FSAT.
- Hence SAT and FSAT are equally hard (or easy).

\(^a\)Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.
TSP and TSP (D) Revisited

- We are given \(n \) cities 1, 2, \ldots, \(n \) and integer distances \(d_{ij} = d_{ji} \) between any two cities \(i \) and \(j \).
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
 - The shortest total distance must be at most \(2|\lambda| \), where \(\lambda \) is the input.
- TSP (D) asks if there is a tour with a total distance at most \(B \).
- We next show that if TSP (D) \(\in P \), then TSP has a polynomial-time algorithm.

Analysis

- An edge that is not on any optimal tour will be eliminated, with its \(d_{ij} \) set to \(C + 1 \).
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with \(n \) edges which are not eliminated (why?).
- There are \(O(|\lambda| + n^2) \) calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

An Algorithm for TSP Using TSP (D)

1. Perform a binary search over interval \([0, 2|\lambda|] \) by calling TSP (D) to obtain the shortest distance \(C \);
2. for \(i, j = 1, 2, \ldots, n \) do
3. Call TSP (D) with \(B = C \) and \(d_{ij} = C + 1 \);
4. if “no” then
5. Restore \(d_{ij} \) to old value; \{Edge \([i, j] \) is critical.\}
6. end if
7. end for
8. return the tour with edges whose \(d_{ij} \leq C \);

Randomized Computation
I know that half my advertising works,
I just don’t know which half.
— John Wanamaker

I know that half my advertising is
a waste of money,
I just don’t know which half!
— McGraw-Hill ad.

Randomized Algorithms

• Randomized algorithms flip unbiased coins.
• There are important problems for which there are no
 known efficient deterministic algorithms but for which
 very efficient randomized algorithms exist.
 – Extraction of square roots, for instance.
• There are problems where randomization is necessary.
 – Secure protocols.
• Randomized version can be more efficient.
 – Parallel algorithm for maximal independent set.
• Are randomized algorithms algorithms?

Bipartite Perfect Matching

• We are given a bipartite graph $G = (U, V, E)$.
 – $U = \{u_1, u_2, \ldots, u_n\}$.
 – $V = \{v_1, v_2, \ldots, v_n\}$.
 – $E \subseteq U \times V$.
• We are asked if there is a perfect matching.
 – A permutation π of $\{1, 2, \ldots, n\}$ such that
 $$(u_i, v_{\pi(i)}) \in E$$
 for all $u_i \in U$.

A Perfect Matching
Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^G whose (i,j)th entry A^G_{ij} is a variable x_{ij} if $(u_i,v_j) \in E$ and zero otherwise.
- The determinant of A^G is
 \[
 \det(A^G) = \sum_\pi \text{sgn}(\pi) \prod_{i=1}^n A^G_{i,\pi(i)}. \tag{5}
 \]
 - π ranges over all permutations of n elements.
 - $\text{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

Determinant and Bipartite Perfect Matching

- In $\sum_\pi \text{sgn}(\pi) \prod_{i=1}^n A^G_{i,\pi(i)}$, note the following:
 - Each summand corresponds to a possible perfect matching π.
 - As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 56 (Edmonds (1967)) G has a perfect matching if and only if $\det(A^G)$ is not identically zero.

The Perfect Matching in the Determinant

- The matrix is
 \[
 A^G = \begin{bmatrix}
 0 & 0 & x_{13} & x_{14} & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 x_{31} & 0 & 0 & 0 & x_{35} \\
 x_{41} & 0 & x_{43} & x_{44} & 0 \\
 x_{51} & 0 & 0 & 0 & x_{55}
 \end{bmatrix}.
 \]
- $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}$, each denoting a perfect matching.
How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $\det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- Observation: If $\det(A^G)$ is identically zero, then it remains zero if we substitute arbitrary integers for the variables x_{11}, \ldots, x_{nn}.
- What is the likelihood of obtaining a zero when $\det(A^G)$ is not identically zero?

Density Attack

- The density of roots in the domain is at most
 $$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$
- So suppose $p(x_1, x_2, \ldots, x_m) \not\equiv 0$.
- Then a random
 $$(x_1, x_2, \ldots, x_n) \in \{0, 1, \ldots, M-1\}^n$$
 has a probability of $\leq md/M$ of being a root of p.

Number of Roots of a Polynomial

Lemma 57 (Schwartz (1980)) Let $p(x_1, x_2, \ldots, x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples
 $$(x_1, x_2, \ldots, x_m) \in \{0, 1, \ldots, M-1\}^m$$
such that $p(x_1, x_2, \ldots, x_m) = 0$ is
 $$\leq mdM^{m-1}.$$
- By induction on m (consult the textbook).

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, \ldots, x_m) \not\equiv 0$.
1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
2: if $p(i_1, i_2, \ldots, i_m) \not\equiv 0$ then
3: return “p is not identically zero”;
4: else
5: return “p is identically zero”;
6: end if
A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect matching.

1: Choose n^2 integers i_{11}, \ldots, i_{nn} from $\{0, 1, \ldots, b - 1\}$ randomly;
1: Calculate $\det(A^G(i_{11}, \ldots, i_{nn}))$ by Gaussian elimination;
2: if $\det(A^G(i_{11}, \ldots, i_{nn})) \neq 0$ then
3: return "G has a perfect matching";
4: else
5: return "G has no perfect matchings";
6: end if

aLovász (1979).

Perfect Matching for General Graphs

- Page 382 is about bipartite perfect matching
- Now we are given a graph $G = (V, E)$.
 - $V = \{v_1, v_2, \ldots, v_{2n}\}$.
- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, \ldots, 2n\}$ such that
 $$(v_i, v_{\pi(i)}) \in E$$
 for all $v_i \in V$.

Analysis

- Pick $b = 2n^2$.
- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2d/b = 0.5$ because $d = 1$.
 - Run the algorithm independently k times and output "G has no perfect matchings" if they all say no.
 - The error probability is now reduced to at most 2^{-k}.
- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of $2n$ nodes?a

aThanks to a lively class discussion on November 24, 2004.

The Tutte Matrixa

- Given a graph $G = (V, E)$, construct the $2n \times 2n$ Tutte matrix T^G such that
 $$T^G_{ij} = \begin{cases}
 x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\
 -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\
 0 & \text{othersie.}
 \end{cases}$$
- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 56 (p. 385):
 \textbf{Proposition 58} G has a perfect matching if and only if $\det(T^G)$ is not identically zero.

aWilliam Thomas Tutte (1917–2002).
Monte Carlo Algorithms

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives).
 - If the algorithm answers in the negative, then it may make an error (false negative).
- The algorithm makes a false negative with probability \(\leq 0.5 \).
- This probability is not over the space of all graphs or determinants, but over the algorithm's own coin flips.
 - It holds for any bipartite graph.

\(^*\text{Metropolis and Ulam (1949).}\)

The Markov Inequality

Lemma 59 Let \(x \) be a random variable taking nonnegative integer values. Then for any \(k > 0 \),

\[
\Pr[x \geq kE[x]] \leq \frac{1}{k}.
\]

- Let \(p_i \) denote the probability that \(x = i \).

\[
E[x] = \sum_i ip_i = \sum_{i < kE[x]} ip_i + \sum_{i \geq kE[x]} ip_i \geq kE[x] \times \Pr[x \geq kE[x]].
\]

\(^*\text{Andrei Andreyevich Markov (1856–1922).}\)

An Application of Markov’s Inequality

- Algorithm \(C \) runs in expected time \(T(n) \) and always gives the right answer.
- Consider an algorithm that runs \(C \) for time \(kT(n) \) and rejects the input if \(C \) does not stop within the time bound.
- By Markov’s inequality, this new algorithm runs in time \(kT(n) \) and gives the wrong answer with probability \(\leq 1/k \).
- By running this algorithm \(m \) times, we reduce the error probability to \(\leq k^{-m} \).

An Application of Markov’s Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time \(mkT(n) \) once and rejects the input if it does not stop within the time bound.
- By Markov’s inequality, this new algorithm gives the wrong answer with probability \(\leq 1/(mk) \).
- This is a far cry from the previous algorithm’s error probability of \(\leq k^{-m} \).
- The loss comes from the fact that Markov’s inequality does not take advantage of any specific feature of the random variable.
FSAT for \(k \)-SAT Formulas (p. 373)

- Let \(\phi(x_1, x_2, \ldots, x_n) \) be a \(k \)-SAT formula.
- If \(\phi \) is satisfiable, then return a satisfying truth assignment.
- Otherwise, return “no.”
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for \(\phi \) in CNF Form

1: Start with an arbitrary truth assignment \(T \);
2: for \(i = 1, 2, \ldots, r \) do
3: if \(T \models \phi \) then
4: return “\(\phi \) is satisfiable with \(T \)”;
5: else
6: Let \(c \) be an unsatisfiable clause in \(\phi \) under \(T \); \{All of its literals are false under \(T \).\}
7: Pick any \(x \) of these literals at random;
8: Modify \(T \) to make \(x \) true;
9: end if
10: end for
11: return “\(\phi \) is unsatisfiable”;

3SAT vs. 2SAT Again

- Note that if \(\phi \) is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected \(O((1.333 \cdots + \epsilon)^n) \) time with \(r = 3n \), much better than \(O(2^n) \).\(^a\)
- We will show immediately that it works well for 2SAT.
- The state of the art is expected \(O(1.324^n) \) time for 3SAT and expected \(O(1.474^n) \) time for 4SAT.\(^b\)

\(^a\)Schöning (1999).
\(^b\)Kwama and Tamaki (2004).