MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that $|S| = |V - S|$.
- It has many applications, especially in VLSI layout.

MAX BISECTION is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add $|V|$ isolated nodes to G to yield G'.
- G' has $2 \times |V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

- Every cut $(S, V - S)$ of $G = (V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V - S$.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
 - A graph $G = (V, E)$, where $|V| = 2n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 - K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 - K$.
Theorem 38 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

Karp (1972).
Graph Coloring

- **k-coloring** asks if the nodes of a graph can be colored with \(\leq k \) colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- **k-coloring** is NP-complete for \(k \geq 3 \) (why?).

3-coloring is NP-Complete

- We will reduce NAESAT to 3-coloring.
- We are given a set of clauses \(C_1, C_2, \ldots, C_m \) each with 3 literals.
- The boolean variables are \(x_1, x_2, \ldots, x_n \).
- We shall construct a graph \(G \) such that it can be colored with colors \(\{0, 1, 2\} \) if and only if all the clauses can be NAE-satisfied.

\(^a\text{Karp (1972).}\)

The Proof (continued)

- Every variable \(x_i \) is involved in a triangle \([a, x_i, \neg x_i]\) with a common node \(a \).
- Each clause \(C_i = (c_{i1} \lor c_{i2} \lor c_{i3}) \) is also represented by a triangle \([c_{i1}, c_{i2}, c_{i3}]\).
 - Node \(c_{ij} \) with the same label as one in some triangle \([a, x_k, \neg x_k]\) represent distinct nodes.
- There is an edge between \(c_{ij} \) and the node that represents the \(j \)th literal of \(C_i \).

Construction for \(\cdots \land (x_1 \lor \neg x_2 \lor \neg x_3) \land \cdots \)
The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- Treat 1 as true and 0 as false.\(^a\)
 - We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

\(^a\)The opposite also works.

The Proof (concluded)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
 - Color the remaining node with color 2.
- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 40 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F = \{S_1, S_2, \ldots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume $|U| = 3m$ for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded)

Corollary 41 SET COVERING, SET PACKING, and EXACT COVER BY 3-SETS are all NP-complete.
The knapsack Problem

- There is a set of \(n \) items.
- Item \(i \) has value \(v_i \in \mathbb{Z}^+ \) and weight \(w_i \in \mathbb{Z}^+ \).
- We are given \(K \in \mathbb{Z}^+ \) and \(W \in \mathbb{Z}^+ \).
- \textsc{knapsack} asks if there exists a subset \(S \subseteq \{1, 2, \ldots, n\} \) such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \geq K \).
- We want to achieve the maximum satisfaction within the budget.

\textbf{KNAPSACK} is NP-Complete

- \textsc{knapsack} \textsc{\in} NP: Guess an \(S \) and verify the constraints.
- We assume \(u_i = w_i \) for all \(i \) and \(K = W \).
- \textsc{knapsack} now asks if a subset of \(\{w_1, w_2, \ldots, w_n\} \) adds up to exactly \(K \).
 - Picture yourself as a radio DJ.
 - Or a person trying to control the calories intake.
- We shall reduce \textsc{exact cover by 3-sets} to \textsc{knapsack}.

The Proof (continued)

- We are given a family \(F = \{S_1, S_2, \ldots, S_n\} \) of size-3 subsets of \(U = \{1, 2, \ldots, 3m\} \).
- \textsc{exact cover by 3-sets} asks if there are \(m \) disjoint sets in \(F \) that cover the set \(U \).
- Think of a set as a bit vector in \(\{0, 1\}^{3m} \).
 - \(001100010 \) means the set \(\{3, 4, 8\} \), and \(110010000 \) means the set \(\{1, 2, 5\} \).
 - Our goal is \(11\cdots1 \).

\textbf{The Proof (continued)}

- A bit vector can also be considered as a binary \textit{number}.
- Set union resembles addition.
 - \(001100010 + 110010000 = 111110010 \), which denotes the set \(\{1, 2, 3, 4, 5, 8\} \), as desired.
- Trouble occurs when there is \textit{carry}.
 - \(001100010 + 001110000 = 010010010 \), which denotes the set \(\{2, 5, 8\} \), not the desired \(\{3, 4, 5, 8\} \).
The Proof (continued)
- Carry may also lead to a situation where we obtain our solution \(11\cdots1\) with more than \(m\) sets in \(F\).
 - \(001100010 + 001110000 + 101100000 + 00001101 = 111111111\).
 - But this “solution” \(\{1, 3, 4, 5, 6, 7, 8, 9\}\) does not correspond to an exact cover.
 - And it uses 4 sets instead of the required 3. a
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are \(n\) vectors in total, we change the base from 2 to \(n + 1\).

\[\text{Thanks to a lively class discussion on November 20, 2002.}\]

\[\text{Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.}\]
BIN PACKINGS

- We are given \(N \) positive integers \(a_1, a_2, \ldots, a_N \), an integer \(C \) (the capacity), and an integer \(B \) (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into \(B \) subsets, each of which has total sum at most \(C \).
- Think of packing bags at the check-out counter.

Theorem 42 BIN PACKING is NP-complete.

INTEGER PROGRAMMING Is NP-Complete

- SET COVERING can be expressed by the inequalities
 \[
 Ax \geq \vec{1}, \quad \sum_{i=1}^{n} x_i \leq B, \quad 0 \leq x_i \leq 1, \text{ where}
 \]
 - \(x_i \) is one if and only if \(S_i \) is in the cover.
 - \(A \) is the matrix whose columns are the bit vectors of the sets \(S_1, S_2, \ldots \).
 - \(\vec{1} \) is the vector of 1s.
- This shows INTEGER PROGRAMMING is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

Easier or Harder?

- Adding restrictions on the allowable problem instances will not make a problem harder.
 - We are now solving a subset of problem instances.
 - The INDEPENDENT SET proof (p. 278), and the KNAPSACK proof (p. 319).
 - SAT to 2SAT (easier by p. 265).
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 244).

Thanks to a lively class discussion on October 29, 2003.
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions may make a problem easier, as hard, or harder.

- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (harder by p. 301).
 - LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 327).
 - SAT to NAESAT (equally hard by p. 273) and MAX CUT to MAX BISECTION (equally hard by p. 299).
 - 3-COLORING to 2-COLORING (easier by p. 306).