Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G = (V,E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.

The Gates

- The gates are
 - g_{ijk} with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
 - h_{ijk} with $1 \leq i, j, k \leq n$.
- g_{ijk}: There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk}: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if $i = j$ or $(i,j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where $k = 1, 2, \ldots, n$.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where $k = 1, 2, \ldots, n$.
- g_{1nn} is the output gate.
- Interestingly, $R(G)$ uses no \neg gates: It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we shall construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is satisfiable.
 - $R(C)$ will turn out to be a CNF.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- Each gate of C will be turned into equivalent clauses of $R(C)$.
- Recall that clauses are \land-ed together.
The Clauses of \(R(C) \)

\(g \) is a variable gate \(x \): Add clauses \((\neg g \lor x)\) and \((g \lor \neg x)\).
- Meaning: \(g \leftrightarrow x \).

\(g \) is a true gate: Add clause \((g)\).
- Meaning: \(g \) must be true to make \(R(C) \) true.

\(g \) is a false gate: Add clause \((\neg g)\).
- Meaning: \(g \) must be false to make \(R(C) \) true.

\(g \) is a \(\neg \) gate with predecessor gate \(h \): Add clauses \((\neg g \lor \neg h)\) and \((g \lor h)\).
- Meaning: \(g \leftrightarrow \neg h \).

\(g \) is a \(\lor \) gate with predecessor gates \(h \) and \(h' \): Add clauses \((\neg h \lor g)\), \((\neg h' \lor g)\), and \((h \lor h' \lor \neg g)\).
- Meaning: \(g \leftrightarrow (h \lor h') \).

\(g \) is a \(\land \) gate with predecessor gates \(h \) and \(h' \): Add clauses \((\neg g \lor h)\), \((\neg g \lor h')\), and \((h \lor h' \lor g)\).
- Meaning: \(g \leftrightarrow (h \land h') \).

\(g \) is the output gate: Add clause \((g)\).
- Meaning: \(g \) must be true to make \(R(C) \) true.

\[\]

Composition of Reductions

Proposition 24 If \(R_{12} \) is a reduction from \(L_1 \) to \(L_2 \) and \(R_{23} \) is a reduction from \(L_2 \) to \(L_3 \), then the composition \(R_{12} \circ R_{23} \) is a reduction from \(L_1 \) to \(L_3 \).
- Clearly \(x \in L_1 \) if and only if \(R_{23}(R_{12}(x)) \in L_3 \).
- How to compute \(R_{12} \circ R_{23} \) in space \(O(\log n) \), as required by the definition of reduction?

The Proof (continued)

- An obvious way is to generate \(R_{12}(x) \) first and then feeding it to \(R_{23} \).
- This takes polynomial time.\(^a\)
 - It takes polynomial time to produce \(R_{12}(x) \) of polynomial length.
 - It also takes polynomial time to produce \(R_{23}(R_{12}(x)) \).
- Trouble is \(R_{12}(x) \) may consume up to polynomial space, much more than the logarithmic space required.

\(^a\)Hence our concern disappears had we required reductions to be in \(P \) instead of \(L \).
The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants the ith bit, $R_{12}(x)$ will be simulated until the ith bit is available.
 - The initial $i-1$ bits should not be committed to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
 - The ith output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is \mathcal{C}-complete if every $L' \in \mathcal{C}$ can be reduced to L.
 - Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest.

Completeness

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
- Many infinite structures (such as integers and reals) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.

Hardness

- Let \mathcal{C} be a complexity class.
- L is \mathcal{C}-hard if every $L' \in \mathcal{C}$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is \mathcal{C}-hard, then by definition, every \mathcal{C}-complete problem can be reduced to L.

\[\text{Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.}\]
Closedness under Reduction

- A class \mathcal{C} is **closed under reductions** if whenever L is reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$.
- $\text{P, NP, coNP, L, NL, PSPACE, and EXP}$ are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 25 Let \mathcal{C}' and \mathcal{C} be two complexity classes such that $\mathcal{C}' \subseteq \mathcal{C}$. Assume \mathcal{C}' is closed under reductions and L is a complete problem for \mathcal{C}. Then $\mathcal{C} = \mathcal{C}'$ if and only if $L \in \mathcal{C}'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because \mathcal{C}' is closed under reductions, $A \in \mathcal{C}'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- As $\mathcal{C}' \subseteq \mathcal{C}$, we conclude that $\mathcal{C} = \mathcal{C}'$.

On the other hand, suppose $\mathcal{C} = \mathcal{C}'$.

- As L is \mathcal{C}-complete, $L \in \mathcal{C}$.
- Thus, trivially, $L \in \mathcal{C}'$.

The Proof (concluded)
Two Immediate Corollaries
Proposition 25 implies that
• $P = NP$ if and only if an NP-complete problem in P.
• $L = P$ if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes
Proposition 26 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then $C = C'$.
• All languages $L \in C$ reduce to $L \in C'$.
• Since C' is closed under reductions, $L \in C'$.
• Hence $C \subseteq C'$.
• The proof for $C' \subseteq C$ is symmetric.

Table of Computation
• Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
• Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound (recall that it is an upper bound).
 – It is a sequence of configurations.
• Rows correspond to time steps 0 to $|x|^k - 1$.
• Columns are positions in the string of M.
• The (i, j)th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table
• M halts after at most $|x|^k - 2$ steps.
 – The string length hence never exceeds $|x|^k$.
• Assume a large enough k to make it true for $|x| \geq 2$.
• Pad the table with $__$ so that each row has length $|x|^k$.
 – The computation will never reach the right end of the table for lack of time.
• If the cursor scans the jth position at time i when M is at state q and the symbol is σ, then the (i, j)th entry is a new symbol σ_q.
Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q.
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright.
- So the first symbol in every row is a \triangleright and not a \triangleright_q.

Comments

- Each row is essentially a configuration.
- If the input $x = 010001$, then the first row is
 \[
 \begin{array}{c}
 |x|^k \\
 \triangleright 010001 \\
 \end{array}
 \]
- A typical row may be
 \[
 \begin{array}{c}
 |x|^k \\
 \triangleright 10100_{q,0}1110100 \\
 \end{array}
 \]
- The last rows must look like $\triangleright \cdots \text{"yes"} \cdots$

A P-Complete Problem

Theorem 27 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that CIRCUIT VALUE \in P.
- For any $L \in$ P, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, $R(x)$ is a variable-free circuit such that $x \in L$ if and only if $R(x)$ evaluates to true.
- Let M decide L in time n^k.
- Let T be the computation table of M on x.
The Proof (continued)

• When $i = 0$, or $j = 0$, or $j = |x|^k - 1$, then the value of T_{ij} is known.
 - The jth symbol of x or \bigcup, a \triangleright, and a \bigcup, respectively.
 - Three out of four of T’s borders are known.

> a b c d e f □

• Consider other entries T_{ij}.

• T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$.

\[
\begin{array}{ccc}
 T_{i-1,j-1} & T_{i-1,j} & T_{i-1,j+1} \\
 T_{ij} & & \\
\end{array}
\]

• Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{ \sigma_q : \sigma \in \Sigma, q \in K \}$.

• Encode each symbol of Γ as an m-bit number, where $m = \lceil \log_2 |\Gamma| \rceil$

(state assignment in circuit design).

The Proof (continued)

• Let binary string $S_{ij1}S_{ij2} \cdots S_{ijm}$ encode T_{ij}.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries $S_{ij\ell}$, where

\[
0 \leq i \leq n^k - 1, \\
0 \leq j \leq n^k - 1, \\
1 \leq \ell \leq m.
\]
The Proof (continued)

- These F_i's depend on only M's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with $3m$-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.
 - C is like an ASIC (application-specific IC) chip.

The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme columns.
- $R(x)$ consists of $(|x|^k - 1)(|x|^k - 2)$ copies of circuit C.
- Without loss of generality, assume the output “yes”/“no” (coded as 1/0) appear at position $(|x|^k - 1, 1)$.

Circuit C

\[
\begin{array}{ccccc}
T_{i-1,j-1} & T_{i-1,j} & T_{i-1,j+1} & & \\
\end{array}
\]

\[
C
\]

\[
T_{ij}
\]

The Computation Tableau and $R(x)$

\[
\begin{array}{cccccccc}
\uparrow & a & b & c & d & e & f & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\uparrow & c & c & c & c & c & c & \downarrow \\
\hline
\hline
\hline
\end{array}
\]
A Corollary

The construction in the above proof shows the following.

Corollary 28 If $L \in \text{TIME}(T(n))$, then a circuit with $O(T^2(n))$ gates can decide if $x \in L$ for $|x| = n$.

MONOTONE CIRCUIT VALUE is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 29 MONOTONE CIRCUIT VALUE is P-complete.

- Given any general circuit, we can “move the ¬’s downwards” using de Morgan’s laws. (Think!)

MONOTONE CIRCUIT VALUE

- A monotone boolean circuit’s output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits as they can compute only monotone boolean functions.
 - Monotone circuits do not contain ¬ gates.
- MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied to monotone circuits.

Cook’s Theorem: the First NP-Complete Problem

Theorem 30 (Cook (1971)) SAT is NP-complete.

- SAT \in NP (p. 84).
- CIRCUIT SAT reduces to SAT (p. 213).
- Now we only need to show that all languages in NP can be reduced to CIRCUIT SAT.
The Proof (continued)

• Let single-string NTM M decide $L \in \text{NP}$ in time n^k.
• Assume M has exactly two nondeterministic choices at each step: choices 0 and 1.
• For each input x, we construct circuit $R(x)$ such that $x \in L$ if and only if $R(x)$ is satisfiable.
• A sequence of nondeterministic choices is a bit string $B = (c_1, c_2, \ldots, c_{|x|^{k-1}}) \in \{0,1\}^{|x|^k}$.
• Once B is fixed, the computation is deterministic.

The Computation Tableau for NTMs and $R(x)$

The Proof (concluded)

• Each choice of B results in a deterministic polynomial-time computation, hence a table like the one on p. 241.
• Each circuit C at time i has an extra binary input c corresponding to the nondeterministic choice: $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}, c) = T_{ij}$.

The overall circuit $R(x)$ (on p. 248) is satisfiable if there is a truth assignment B such that the computation table accepts.

• This happens if and only if M accepts x, i.e., $x \in L$.
Parsimonious Reductions

• The reduction R in Cook’s theorem (p. 245) is such that
 – Each satisfying truth assignment for circuit $R(x)$
 corresponds to an accepting computation path for $M(x)$.
• The number of satisfying truth assignments for $R(x)$
 equals that of $M(x)$’s accepting computation paths.
• This kind of reduction is called **parsimonious**.
• We will loosen the timing requirement for parsimonious
 reduction: It runs in deterministic polynomial time.

Wir müssen wissen, wir werden wissen.
(We must know, we shall know.)
— David Hilbert (1900)

Two Notions

• Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings.
• R is called **polynomially decidable** if
 \[
 \{x; y : (x, y) \in R\}
 \]
 is in P.
• R is said to be **polynomially balanced** if $(x, y) \in R$
 implies $|y| \leq |x|^k$ for some $k \geq 1$.

NP-Complete Problems
An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let $L \subseteq \Sigma^*$ be a language. Then $L \in \text{NP}$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{x : \exists y (x, y) \in R\}.$$

• Suppose such an R exists.
• L can be decided by this NTM:
 – On input x, the NTM guesses a y of length $\leq |x|^k$ and tests if $(x, y) \in R$ in polynomial time.
 – It returns “yes” if the test is positive.

The Proof (concluded)

• Now suppose $L \in \text{NP}$.
• NTM N decides L in time $|x|^k$.
• Define R as follows: $(x, y) \in R$ if and only if y is the encoding of an accepting computation of N on input x.
• Clearly R is polynomially balanced because N is polynomially bounded.
• R is polynomially decidable because it can be efficiently verified by checking with N’s transition function.
• Finally $L = \{x : (x, y) \in R$ for some $y\}$ because N decides L.

Comments

• Any “yes” instance x of an NP problem has at least one succinct certificate or polynomial witness y.
• “No” instances have none.
• Certificates are short and easy to verify.
 – An alleged satisfying truth assignment for SAT; an alleged Hamiltonian path for HAMILTONIAN PATH.
• Certificates may be hard to generate (otherwise, NP equals P), but verification must be easy.
• NP is the class of easy-to-verify (in P) problems.

You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 25 (p. 224) and Proposition 26 (p. 227), it is the least likely to be in P.
• Your options are:
 – Approximations.
 – Special cases.
 – Average performance.
 – Randomized algorithms.
 – Exponential-time algorithms that work well in practice.
 – “Heuristics” (and pray).