Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- **Heuristics** have been developed to attack them.
- They are **approximation algorithms**.
- How good are the approximations?
 - We are looking for theoretically *guaranteed* bounds, not “empirical” bounds.
- Are there NP problems that cannot be approximated well (assuming NP ≠ P)?
- Are there NP problems that cannot be approximated at all (assuming NP ≠ P)?

Optimization Problem and Threshold Language

- Given a maximization (minimization) problem, its decision version, the **threshold language**, asks if the optimal cost is at least (at most, resp.) a given threshold.
- If the decision version is hard, the optimization problem cannot be easy.
 - Otherwise, we can solve the optimization problem first and then do a simple test.
- If the optimization problem is hard, its decision version is not expected to be easy.
 - Otherwise, we can often do a binary search to bracket the optimal cost.

Some Definitions

- Given an **optimization problem**, each problem instance \(x \) has a set of **feasible solutions** \(F(x) \).
- Each feasible solution \(s \in F(x) \) has a cost \(c(s) \in \mathbb{Z}^+ \).
- The **optimum cost** is \(\text{opt}(x) = \min_{s \in F(x)} c(s) \) for a minimization problem.
- It is \(\text{opt}(x) = \max_{s \in F(x)} c(s) \) for a maximization problem.

Approximation Algorithms

- Let algorithm \(M \) on \(x \) returns a feasible solution.
- \(M \) is an **\(\epsilon \)-approximation algorithm**, where \(\epsilon \geq 0 \), if for all \(x \),
 \[
 \frac{|c(M(x)) - \text{opt}(x)|}{\text{opt}(x), c(M(x))} \leq \epsilon.
 \]
 - For a minimization problem,
 \[
 \frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon.
 \]
 - For a maximization problem,
 \[
 \frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \leq \epsilon.
 \]
Lower and Upper Bounds

- For a minimization problem,
 \[\min_{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}. \]
- So approximation ratio \(\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \geq 1 - \epsilon. \)

- For a maximization problem,
 \[(1 - \epsilon) \times \max_{s \in F(x)} c(s) \leq c(M(x)) \leq \max_{s \in F(x)} c(s). \]
- So approximation ratio \(\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \geq 1 - \epsilon. \)
- The above are alternative definitions of \(\epsilon \)-approximation algorithms.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all \(\epsilon \geq 0 \) such that there is a polynomial-time \(\epsilon \)-approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If \(P = NP \), then all optimization problems in \(NP \) have approximation threshold 0.
- So we assume \(P \neq NP \) for the rest of the discussion.

Range Bounds

- \(\epsilon \) takes values between 0 and 1.
- For maximization problems, an \(\epsilon \)-approximation algorithm returns solutions within \([1 - \epsilon] \times \text{OPT}, \text{OPT} \].
- For minimization problems, an \(\epsilon \)-approximation algorithm returns solutions within \([\text{OPT}, \frac{1}{1-\epsilon}] \).
- For each NP-complete optimization problem, we shall be interested in determining the smallest \(\epsilon \) for which there is a polynomial-time \(\epsilon \)-approximation algorithm.
- Sometimes \(\epsilon \) has no minimum value.

NODE COVER

- NODE COVER seeks the smallest \(C \subseteq V \) in graph \(G = (V, E) \) such that for each edge in \(E \), at least one of its endpoints is in \(C \).
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce approximation ratio \(\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n) \).
- It is not an \(\epsilon \)-approximation algorithm for any \(\epsilon < 1 \).
A 0.5-Approximation Algorithm
1: $C := \emptyset$;
2: while $E \neq \emptyset$ do
3: Delete an arbitrary edge $[u, v]$ from E;
4: Delete edges incident with u and v from E;
5: Add u and v to C; {Add 2 nodes to C each time.}
6: end while
7: return C;

Analysis
- C contains $|C|/2$ edges.
- No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $\text{opt}(G) \geq |C|/2$.
- So $\frac{\text{opt}(G)}{|C|} \geq 1/2$.
- The approximation threshold is ≤ 0.5.

Maximum Satisfiability
- Given a set of clauses, MaxSAT seeks the truth assignment that satisfies the most.
- Max2SAT is already NP-complete (p. 263).
- Consider the more general k-MaxGSAT for constant k.
 - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \ldots, \phi_m\}$ in n variables.
 - Each ϕ_i is a general expression involving k variables.
 - k-MaxGSAT seeks the truth assignment that satisfies the most expressions.
A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments.
- A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$.
- Hence a random truth assignment satisfies an expected number

 $$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

 of expressions ϕ_i.

The Search Procedure (concluded)

- By our hill-climbing procedure,

 $$p(\Phi[x_1 = t_1, x_2 = t_2, \ldots, x_n = t_n])$$

 $$\geq \cdots$$

 $$\geq p(\Phi[x_1 = t_1, x_2 = t_2])$$

 $$\geq p(\Phi[x_1 = t_1])$$

 $$\geq p(\Phi).$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n).
- The algorithm is deterministic.

The Search Procedure

- Clearly

 $$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \text{true}]) + p(\Phi[x_1 = \text{false}] \}.$$

- Select the $t_i \in \{\text{true, false}\}$ such that $p(\Phi[x_1 = t_1])$ is the larger one.

- Note that $p(\Phi[x_1 = t_1]) \geq p(\Phi)$.

- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i, i.e., those with $p(\phi_i) > 0$.

- Hence the ratio of algorithm’s output vs. the optimum is

 $$\frac{p(\Phi)}{\sum_{p(\phi_i) > 0} 1} \geq \frac{\sum_i p(\phi_i) \geq 0 p(\phi_i)}{\sum_{p(\phi_i) > 0} 1} \geq \min_{p(\phi_i) > 0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon = 1 \cdot \min_{p(\phi_i) > 0} p(\phi_i)$.

- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon = 1 - 2^{-k}$.
Back to MAXSAT

- In MAXSAT, the ϕ_i's are clauses.
- Hence $p(\phi_i) \geq 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon = 1/2$.\(^a\)
- If the clauses have k distinct literals, $p(\phi_i) = 1 - 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless $P = NP$.

\(^a\)Johnson (1974).

A 0.5-Approximation Algorithm for MAX CUT

1: $S := \emptyset$
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: $S := S \cup \{v\}$
4: end while
5: return S

- A 0.12-approximation algorithm exists.\(^a\)
- 0.059-approximation algorithms do not exist unless NP = ZPP.

\(^a\)Goemans and Williamson (1995).

MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph $G = (V, E)$ into $(S, V - S)$ so that there are as many edges as possible between S and $V - S$ (p. 284).
- Local search starts from a feasible solution and performs “local” improvements until none are possible.

Analysis

- Optimal cut
- Heuristic cut
Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$ and the optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j.
- Because no migration of nodes can improve the algorithm's cut, for each node in V_1, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
- Considering all nodes in V_1 together, we have $2e_{11} + e_{12} \leq e_{13} + e_{14}$, which implies
 $$e_{12} \leq e_{13} + e_{14}.$$

Approximability, Unapproximability, and Between

- **KNAPSACK**, **NODE COVER**, **MAXSAT**, and **MAX CUT** have approximation thresholds less than 1.
 - **KNAPSACK** has a threshold of 0.
 - But **NODE COVER** and **MAXSAT** have a threshold larger than 0.
- The situation is maximally pessimistic for **TSP**: It cannot be approximated unless $P = NP$.
 - The approximation threshold of **TSP** is 1.
 - The threshold is $1/3$ if the **TSP** satisfies the triangular inequality.
 - The same holds for **INDEPENDENT SET**.

Analysis (concluded)

- Similarly,
 $$e_{12} \leq e_{23} + e_{24}$$
 $$e_{34} \leq e_{23} + e_{13}$$
 $$e_{34} \leq e_{14} + e_{24}$$
- Adding all four inequalities, dividing both sides by 2 and adding the inequality $e_{14} + e_{23} \leq e_{14} + e_{23} + e_{13} + e_{24}$, we obtain
 $$e_{12} + e_{34} + e_{14} + e_{23} \leq 2(e_{13} + e_{14} + e_{23} + e_{24}).$$
- The above says our solution is at least half the optimum.

Unapproximability of TSP\(^a\)

Theorem 72 The approximation threshold of **TSP** is 1 unless $P = NP$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for **TSP** for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete **HAMILTONIAN CYCLE**.
- Given any graph $G = (V, E)$, construct a **TSP** with $|V|$ cities with distances
 $$d_{ij} = \begin{cases}
 1, & \text{if } \{i, j\} \in E \\
 \left\lceil \frac{|V|}{2} \right\rceil, & \text{otherwise}
 \end{cases}$$

\(^a\)Sahni and Gonzalez (1976).
The Proof (concluded)
- Run the alleged approximation algorithm on this instance.
- Suppose a tour of cost $|V|$ is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{\varepsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{\varepsilon}$.
 - Because the algorithm is ε-approximate, the optimum is at least $1 - \varepsilon$ times the returned tour’s length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero\(^a\)

Theorem 73 For any ε, there is a polynomial-time ε-approximation algorithm for KNAPSACK.
- We have n weights w_1, w_2, \ldots, w_n, a weight limit W, and n values v_1, v_2, \ldots, v_n.
- We must find an $S \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.
- Let $V = \max\{v_1, v_2, \ldots, v_n\}$.

\(^a\)Barva and Kim (1975).

The Proof (continued)
- For $0 \leq i \leq n$ and $0 \leq v \leq nV$, define $W(i, v)$ to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v) = \infty$ for all v.
- Then
 \[W(i + 1, v) = \min\{W(i, v), W(i, v - v_i + 1) + w_i + 1\} \]
- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2V)$, not polynomial time.
- Key idea: Limit the number of precision bits.
The Proof (concluded)

• Hence

\[\sum_{i \in S'} v_i \geq \sum_{i \in S} v_i \quad n2^b. \]

• Because \(V \) is a lower bound on \(\omega^* \) (if, without loss of

 generality, \(w_i \leq W \)), the relative deviation from the

 optimum is at most \(n2^b/V \).

• By truncating the last \(b = \lceil \log_2 \frac{V}{n} \rceil \) bits of the values,

 the algorithm becomes \(\epsilon \)-approximate.

• The running time is then \(O(n^2V/b) = O(n^3/\epsilon) \), a

 polynomial in \(n \) and \(\epsilon \).