Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(\lceil |x| \rceil)}$ computation paths of N on x halt with “yes.”
 - If $x \not\in L$, then all computation paths halt with “no.”
- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time).

Where RP Fits

- $P \subseteq \text{RP} \subseteq \text{NP}$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- $\text{COMPOSITENESS} \in \text{RP}$; $\text{PRIMES} \in \text{coRP}$; $\text{PRIMES} \in \text{RP}$.
 - In fact, $\text{PRIMES} \in P$.
- $\text{RP} \cup \text{coRP}$ is a “plausible” notion of efficient computation.

aAdleman and Huang (1987).

Comments on RP

- Nondeterministic steps can be seen as fair coin flips.
- There are no false positive answers.
- The probability of false negatives, $1 - \epsilon$, is at most 0.5.
- Any constant between 0 and 1 can replace 0.5.
 - By repeating the algorithm $k = \lceil -\frac{1}{\log_2 \frac{1}{\epsilon}} \rceil$ times, the probability of false negatives becomes $(1 - \epsilon)^k \leq 0.5$.
- In fact, ϵ can be arbitrarily close to 0 as long as it is of the order $1/p(n)$ for some polynomial $p(n)$,
 - $\frac{1}{\log_2 \frac{1}{\epsilon}} = O(\frac{1}{\epsilon}) = O(p(n))$.

ZPPa (Zero Probabilistic Polynomial)

- The class ZPP is defined as $\text{RP} \cap \text{coRP}$.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives and the other with no false negatives.
 - If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
 - A positive answer from the one without false positives,
 - A negative answer from the one without false negatives.
The ZPP Algorithm (Las Vegas)
1: {Suppose $L \in \text{ZPP}.}\}
2: \{N_1$ has no false positives, and N_2 has no false
 negatives.}\}
3: while true do
4: if $N_1(x) = \text{“yes”}$ then
5: return “yes”;
6: end if
7: if $N_2(x) = \text{“no”}$ then
8: return “no”;
9: end if
10: end while

Et Tu, RP?
1: {Suppose $L \in \text{RP}.}\}
2: \{N$ decides L without false positives.}\}
3: while true do
4: if $N(x) = \text{“yes”}$ then
5: return “yes”;\)
6: end if
7: {But what to do here?}\)
8: end while
• You eventually get a “yes” if $x \in L$.
• But how to get a “no” when $x \notin L$?
• You have to sacrifice either correctness or bounded
 running time.

ZPP (concluded)
• The expected running time for the correct answer to
 emerge is polynomial,
 - The probability that a run of the 2 algorithms does
 not generate a definite answer is 0.5.
 - Let $p(n)$ be the running time of each run.
 - The expected running time for a definite answer is
 $\sum_{i=1}^{\infty} 0.5^i p(n) = 2p(n)$.
• Essentially, ZPP is the class of problems that can be
 solved without errors in expected polynomial time.

Large Deviations
• You have a biased coin.
• One side has probability $0.5 + \epsilon$ to appear and the other
 $0.5 - \epsilon$, for some $0 < \epsilon < 1$.
• But you do not know which is which.
• How to decide which side is the more likely with high
 confidence?
• Answer: Flip the coin many times and pick the side that
 appeared the most times.
• Question: Can you quantify the confidence?
The Chernoff Bound\(^a\)

Theorem 65 (Chernoff (1952)) Suppose \(x_1, x_2, \ldots, x_n\) are independent random variables taking the values 1 and 0 with probabilities \(p\) and \(1 - p\), respectively. Let \(X = \sum_{i=1}^{n} x_i\). Then for all \(0 \leq \theta \leq 1\),

\[
\text{prob}[X \geq (1 + \theta)p n] \leq e^{-\theta^2 p n / 2}.
\]

- The probability that the deviate of a binomial random variable from its expected value decreases exponentially with the deviation.
- The Chernoff bound is asymptotically optimal.

\(^a\)Herman Chernoff (1923).

The Proof

- Let \(t\) be any positive real number.
- Then
 \[
 \text{prob}[X \geq (1 + \theta)p n] = e^{t X} \geq e^{t(1 + \theta)p n}.
 \]
- Markov’s inequality (p. 372) generalized to real-valued random variables says that
 \[
 \text{prob} \left[e^{k X} \leq k E[e^{t X}] \right] \leq 1/k.
 \]
 With \(k = e^{t(1 + \theta)p n} / E[e^{t X}]\), we have
 \[
 \text{prob}[X \geq (1 + \theta)p n] \leq e^{-t(1 + \theta)p n} E[e^{t X}].
 \]

The Proof (continued)

- Because \(X = \sum_{i=1}^{n} x_i\) and \(x_i\)’s are independent,
 \[
 E[e^{t X}] = (E[e^{t x_i}])^n = [1 + p(e^t - 1)]^n.
 \]
- Substituting, we obtain
 \[
 \text{prob}[X \geq (1 + \theta)p n] \leq e^{-t(1 + \theta)p n [1 + p(e^t - 1)]^n}
 \]
 \[
 \leq e^{-t(1 + \theta)p n} e^{p n (e^t - 1)}
 \]
 as \((1 + a)^n \leq e^{an}\) for all \(a > 0\).

The Proof (concluded)

- With the choice of \(t = \ln(1 + \theta)\), the above becomes
 \[
 \text{prob}[X \geq (1 + \theta)p n] \leq e^{-p n [1 + \theta \ln(1 + \theta)]}.
 \]
- The exponent expands to \(-\theta^2 / 2 + \theta^3 / 6 - \theta^4 / 12 + \ldots\) for
 \(0 \leq \theta \leq 1\), which is less than
 \[
 -\theta^2 / 2 + \theta^3 / 6 \leq \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \leq \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\theta^2 / 3.
 \]
Power of the Majority Rule

From $\text{prob}[X \leq (1 - \theta)pn] \leq e^{\frac{\theta^2}{2} pn}$ (prove it):

Corollary 66 If $p = (1/2) + \epsilon$ for some $0 \leq \epsilon \leq 1/2$, then

$$\text{prob} \left[\sum_{i=1}^{n} x_i \leq n/2 \right] \leq e^{\epsilon^2 n/2}.$$

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 406) hence demands $\approx 1.4k/\epsilon^2$
 independent coin flips to guarantee making an error
 with probability at most 2^{-k} with the majority rule.

BPPa (Bounded Probabilistic Polynomial)

- The class BPP contains all languages for which there is
 a precise polynomial-time NTM N such that:
 - If $x \in L$, then at least $3/4$ of the computation paths
 of N on x lead to “yes.”
 - If $x \notin L$, then at least $3/4$ of the computation paths
 of N on x lead to “no.”
- N accepts or rejects by a clear majority.

aGill (1977).

Magic $3/4$?

- The number $3/4$ bounds the probability of a right
 answer away from $1/2$.
- Any constant \textit{strictly} between $1/2$ and 1 can be used
 without affecting the class BPP.
- In fact, 0.5 plus any inverse polynomial between $1/2$ and 1,
 $$0.5 + 1/p(n),$$
 can be used.

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

1: \textbf{for} $i = 1, 2, \ldots, 2k + 1$ \textbf{do}
2: \quad Run N on input x;
3: \textbf{end for}
4: if “yes” is the majority answer \textbf{then}
5: \quad “yes”;
6: \textbf{else}
7: \quad “no”;
8: \textbf{end if}
Analysis

- The running time remains polynomial, being $2k + 1$ times N’s running time.
- By Corollary 66 (p. 411), the probability of a false answer is at most e^{-k}.
- By taking $k = [2/e^2]$, the error probability is at most 1/4.
- As with the RP case, ϵ can be any inverse polynomial, because k remains polynomial in n.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- $(RP \cup coRP) \subseteq (NP \cup coNP)$.
- $(RP \cup coRP) \subseteq BPP$.
- Whether BPP $\subseteq (NP \cup coNP)$ is unknown.
- But it is unlikely that NP \subseteq BPP (p. 641).

Probability Amplification for BPP

- Let m be the number of random bits used by a BPP algorithm.
 - By definition, m is polynomial in n.
- With $k = \Theta(\log m)$ in the majority vote algorithm, we can lower the error probability to $\leq (3m)^{-1}$.

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in$ BPP becomes one for $L \in$ coBPP by reversing the answer.
- Hence $BPP = coBPP$.
- This approach does not work for RP.
- It did not work for NP either.
\textbf{Circuit Complexity}

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with \(n \) inputs computes a boolean function of \(n \) variables.
- By identify \texttt{true} with 1 and \texttt{false} with 0, a boolean circuit with \(n \) inputs accepts certain strings in \(\{0,1\}^n \).
- To relate circuits with arbitrary languages, we need one circuit for each possible input length \(n \).

\textbf{Formal Definitions}

- The size of a circuit is the number of \textit{gates} in it.
- A family of circuits is an infinite sequence
 \(C = (C_0, C_1, \ldots) \) of boolean circuits, where \(C_n \) has \(n \) boolean inputs.
- \(L \subseteq \{0,1\}^* \) has \textbf{polynomial circuits} if there is a family of circuits \(C \) such that:
 - The size of \(C_n \) is at most \(p(n) \) for some fixed polynomial \(p \).
 - For input \(x \in \{0,1\}^* \), \(C_{|x|} \) outputs 1 if and only if \(x \in L \).
 - \(C_n \) accepts \(L \cap \{0,1\}^n \).
Exponential Circuits Contain All Languages

- Theorem 16 (p. 157) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But exponential circuits can solve all problems.

Proposition 67 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq \{0, 1\}^*$, $L \cap \{0, 1\}^n$ can be decided by a circuit of size 2^{n+2}.

The Circuit Complexity of P

Proposition 68 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time $p(n)$.
- By Corollary 31 (p. 240), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0, 1\}^n$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

The Proof (concluded)

- Define boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \notin L. \end{cases}$$

- $f(x_1x_2\cdots x_n) = (x_1 \land f(1x_2\cdots x_n)) \lor (\neg x_1 \land f(0x_2\cdots x_n))$.
- The circuit size $s(n)$ for $f(x_1x_2\cdots x_n)$ hence satisfies

$$s(n) = 3 + 2s(n-1)$$

with $s(1) = 1$.
- Solve it to obtain $s(n) = 2^{n+1} + 2^n - 1 = 4$.

Languages That Polynomial Circuits Accept

- Do polynomial circuits accept only languages in P?
- There are undecidable languages that have polynomial circuits.
 - Let $L \subseteq \{0, 1\}^*$ be an undecidable language.
 - Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}$.
 - U must be undecidable.
 - $U \cap \{1\}^n$ can be accepted by C_n that is trivially false if $1^n \notin U$ and trivially true if $1^n \in U$.
 - The family of circuits (C_0, C_1, \ldots) is polynomial in size.
A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
 - Circuits are not a realistic model of computation,
 - Polynomial circuits are not a plausible notion of efficient computation,
- What gives?
- The effective and efficient constructibility of C_0, C_1, \ldots.

Uniform Polynomial Circuits and P

Theorem 69 $L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 68 (p. 425).
- Now suppose L has uniformly polynomial circuits,
- Decide $x \in L$ in polynomial time as follows:
 - Let $n = |x|$.
 - Build C_n in $\log n$ space, hence polynomial time.
 - Evaluate the circuit with input x in polynomial time.
- Therefore $L \in P$.

Uniformity

- A family (C_0, C_1, \ldots) of circuits is **uniform** if there is a $\log n$-space bounded TM which on input 1^n outputs C_n.
 - Circuits now cannot accept undecidable languages (why?).
 - The circuit family on p. 426 is not constructible by a single Turing machine (algorithm).
- A language has uniformly polynomial circuits if there is a uniform family of polynomial circuits that decide it.

Relation to P vs. NP

- Theorem 69 implies that $P \neq \text{NP}$ if and only if NP-complete problems have no uniformly polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $P \neq \text{NP}$ conjecture without success so far,
 - Theorem 16 (p. 157) states that there are boolean functions requiring $2^n/(2n)$ gates to compute.
 - In fact, almost all boolean functions do,
BPP’s Circuit Complexity

Theorem 70 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
 - Something exists if its probability of existence is nonzero.
- How to efficiently generate circuit C_n given 1^n is not known.
- If the construction of C_n is efficient, then $P = BPP$, an unlikely result.

The Proof

- Let $L \in BPP$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_0, C_1, \ldots.
- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.
- Let $A_n = \{a_1, a_2, \ldots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.
- Let $m = 12(n + 1)$.
- Each $a_i \in A_n$ represents a sequence of nondeterministic choices i.e., a computation path for N.

The Proof (continued)

- Let x be an input with $|x| = n$.
- Circuit C_n simulates N on x with each sequence of choices in A_n and then takes the majority of the m outcomes.
- Because N with a_i is a polynomial-time TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.
 - See the proof of Proposition 68 (p. 425).
- The size of C_n is therefore $O([mp(n)]^2) = O(n^2p(n)^2)$, a polynomial.
- We next prove the existence of A_n making C_n correct.

The Circuit

Majority logic
The Proof (continued)

- Call \(a_i \) **bad** if it leads \(N \) to a false positive or a false negative answer.
- Select \(A_n \) **uniformly randomly**.
- For each \(x \in \{0, 1\}^n \), \(1/4 \) of the computations of \(N \) are erroneous.
- Because the sequences in \(A_n \) are chosen randomly and independently, the expected number of bad \(a_i \)'s is \(m/4 \).
- By the Chernoff bound (p. 407), the probability that the number of bad \(a_i \)'s is \(m/2 \) or more is at most
 \[
 \epsilon = \frac{m}{12} < 2^{(n+1)}.
 \]

Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is **cryptography**.

\[\begin{array}{c}
\text{Alice} \\
\hline \\
\text{Eve} \\
\hline \\
\text{Bob}
\end{array}\]

*“Whoever wishes to keep a secret must hide the fact that he possesses one,” Johann Wolfgang von Goethe (1749-1832).

The Proof (concluded)

- The error probability is \(< 2^{(n+1)} \) for each \(x \in \{0, 1\}^n \).
- The probability that there is an \(x \) such that \(A_n \) results in an incorrect answer is \(< 2 \cdot 2^{(n+1)} = 2^{n+1} \).
 - \[\text{prob}[A \cup B \cup \cdots] \leq \text{prob}[A] + \text{prob}[B] + \cdots.\]
- So with probability one half, a random \(A_n \) produces a correct \(C_n \) for all inputs of length \(n \).
- Because this probability exceeds 0, an \(A_n \) that makes majority vote work for all inputs of length \(n \) exists.
- Hence a correct \(C_n \) exists.

Encryption and Decryption

- Alice and Bob agree on two algorithms \(E \) and \(D \) the **encryption** and the **decryption algorithms**.
- Both \(E \) and \(D \) are known to the public in the analysis.
- Alice runs \(E \) and wants to send a message \(x \) to Bob.
- Bob operates \(D \).
- Privacy is assured in terms of two numbers \(e, d \), the **encryption** and **decryption keys**.
- Alice sends \(y = E(e, x) \) to Bob, who then performs \(D(d, y) = x \) to recover \(x \).
- \(x \) is called **plaintext**, and \(y \) is called **ciphertext**.
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover y from x without knowing d.
 - As D is public, d must be kept secret.
 - e may or may not be a secret.

Degrees of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- Such systems are said to be informationally secure.
- A system is computationally secure if breaking it is theoretically possible, just computationally infeasible.