Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.
Comments (continued)

- Whatever a verifier can “learn” from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except “$x \in L$.”
- For all practical purposes “whatever” can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.
Comments (concluded)

- The “paradox” is resolved by noting that it is not the transcript of the conversation that convinces the verifier, but the fact that this conversation was held “on line.”
- There is no zero-knowledge requirement when $x \notin L$.
- *Computational* zero-knowledge proofs are based on complexity assumptions.
- It is known that if one-way functions exist, then zero-knowledge proofs exist for all problems in NP.
Zero-Knowledge Proof of Quadratic Residuosity

1: for $m = 1, 2, \ldots, \log_2 n$ do

2: Peggy chooses a random $v \in Z_n^*$ and sends $y = v^2 \mod n$ to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends $z = u^i v \mod n$, where u is a square root of x; \{$u^2 \equiv x \mod n.$\}

5: Victor checks if $z^2 \equiv x^i y \mod n$;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
Analysis

• Assume extracting the square root of a quadratic residue modulo a product of two primes is hard without knowing the factors.

• Suppose x is a quadratic nonresidue.
 – Peggy can answer only one of the two possible challenges.
 * Reason: y is a quadratic residue if and only if xy is a quadratic nonresidue.
 – So Peggy will be caught in any given round with probability one half.
Analysis (continued)

• Suppose \(x \) is a quadratic residue.
 – Peggy can answer all challenges.
 – So Victor will accept \(x \).

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when \(x \) is a quadratic residue can be generated without Peggy!
 – So interaction with Peggy is useless.
Analysis (continued)

- Here is how.
- Suppose x is a quadratic residue.
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient algorithm Bob that generates (y, i, z) with the same probability without accessing Peggy.
Analysis (concluded)

1: Bob chooses a random $z \in \mathbb{Z}_n^*$;
2: Bob chooses a random bit i;
3: Bob calculates $y = z^2x^{-i} \mod n$;
4: Bob writes (y, i, z) into the transcript;
Comments

- Bob cheats because \((y, i, z)\) is *not* generated in the same order as in the original transcript.
 - Bob picks Victor’s challenge first.
 - Bob then picks Peggy’s answer.
 - Bob finally patches the transcript.
 - So it is not the transcript that convinces Victor, but that conversation with Peggy is held “on line.”

- The same holds even if the transcript was generated by a cheating Victor’s interaction with (honest) Peggy, but we skip the details.
Zero-Knowledge Proof of 3 Colorability

1: for $i = 1, 2, \ldots, |E|^2$ do
2: Peggy chooses a random permutation π of the 3-coloring ϕ;
3: Peggy samples an encryption scheme randomly and sends
 $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to
 Peggy for the coloring of the endpoints of e;
5: if $e = (u, v) \in E$ then
6: Peggy reveals the coloring of u and v and "proves" that
 they correspond to their encryption;
7: else
8: Peggy stops;
9: end if

*Goldreich, Micali, and Wigderson (1986).
10: if the “proof” provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13: if \(\pi(\phi(u)) = \pi(\phi(v)) \) or \(\pi(\phi(u)), \pi(\phi(v)) \not\in \{1, 2, 3\} \) then
14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;
Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.

- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq (1 - m^{-1})^{m^2} \leq e^{-m}$, where $m = |E|$.

- Thus the protocol is valid.

- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.

- The proof that the protocol is zero-knowledge to any verifier is more intricate.
IP and PSPACE

• We next prove that $\text{coNP} \subseteq \text{IP}$.

• Shamir in 1990 proved that IP equals PSPACE using similar ideas.
Interactive Proof for Boolean Unsatisfiability

• A 3SAT formula is a conjunction of disjunctions of at most three literals.

• We shall present an interactive proof for boolean unsatisfiability.

• For any unsatisfiable 3SAT formula \(\phi(x_1, x_2, \ldots, x_n) \), there is an interactive proof for the fact that it is unsatisfiable.

• Therefore, \(\text{coNP} \subseteq \text{IP} \).
Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- $T \rightarrow \text{positive integer}$
- $F \rightarrow 0$
- $x_i \rightarrow x_i$
- $\overline{x}_i \rightarrow 1 - x_i$
- $\lor \rightarrow +$
- $\land \rightarrow \times$
- $\phi(x_1, x_2, \ldots, x_n) \rightarrow \Phi(x_1, x_2, \ldots, x_n)$
The Arithmetic Version

- A boolean formula is transformed into a multivariate polynomial \(\Phi \).

- It is easy to verify that \(\phi \) is unsatisfiable if and only if

\[
\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \ldots, x_n) = 0.
\]

- But the above seems to require exponential time.

- We turn to more intricate methods.
Choosing the Field

• Suppose \(\phi \) has \(m \) clauses of length three each.

• Then \(\Phi(x_1, x_2, \ldots, x_n) \leq 3^m \) for any truth assignment \((x_1, x_2, \ldots, x_n) \).

• Because there are at most \(2^n \) truth assignments,

\[
\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \ldots, x_n) \leq 2^n 3^m.
\]
Choosing the Field (concluded)

- By choosing a prime $q > 2^n 3^m$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \ldots, x_n) \equiv 0 \mod q.$$

- Working under a finite field allows us to uniformly select a random element in the field.
Binding Peggy

• Peggy has to find a sequence of polynomials that satisfy a number of restrictions.

• The restrictions are imposed by Victor: After receiving a polynomial from Peggy, Victor sets a new restriction for the next polynomial in the sequence.

• These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found.

• However, if ϕ is not unsatisfiable, any Peggy has only a small probability of finding such a sequence.
 - The probability is taken over Victor’s coin tosses.
The Algorithm

1: Peggy and Victor both arithmetize ϕ to obtain Φ;
2: Peggy picks a prime $q > 2^n 3^m$ and sends it to Victor;
3: Victor rejects and stops if q is not a prime;
4: Victor sets v_0 to 0;
5: for $i = 1, 2, \ldots, n$ do
6: Peggy calculates $P_i^*(z) =
\sum_{x_{i+1}=0,1} \ldots \sum_{x_n=0,1} \Phi(r_1, \ldots, r_{i-1}, z, x_{i+1}, \ldots, x_n)$;
7: Peggy sends $P_i^*(z)$ to Victor;
8: Victor rejects and stops if $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$ or
 $P_i^*(z)$’s degree exceeds m; \{ $P_i^*(z)$ has at most m clauses. \}
9: Victor uniformly picks $r_i \in \mathbb{Z}_q$ and sets $v_i = P_i^*(r_i) \mod q$;
10: Victor sends r_i to Peggy;
11: end for
12: Victor accepts iff $\Phi(r_1, r_2, \ldots, r_n) \equiv v_n \mod q$;
Comments

- The following invariant is maintained by the algorithm:

\[P_i^*(0) + P_i^*(1) \equiv P_{i-1}^*(r_{i-1}) \mod q \quad (11) \]

for \(1 \leq i \leq n \).

- The computation of \(v_1, v_2, \ldots, v_n \) must rely on Peggy’s supplied polynomials as Victor does not have the power to carry out the exponential-time calculations.

- But \(\Phi(r_1, r_2, \ldots, r_n) \) in Step 12 is computed without relying on Peggy’s polynomials.
Completeness

- Suppose ϕ is unsatisfiable.
- For $i \geq 1$,

\[
P_i^*(0) + P_i^*(1) = \sum_{x_i=0,1} \cdots \sum_{x_n=0,1} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n) = P_{i-1}^*(r_{i-1}) \equiv v_{i-1} \mod q.
\]
Completeness (concluded)

- In particular at $i = 1$, because ϕ is unsatisfiable, we have

\[
P_1^*(0) + P_1^*(1) = \sum_{x_1=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, \ldots, x_n)
\equiv v_0
= 0 \mod q.
\]

- Finally, $v_n = P_n^*(r_n) = \Phi(r_1, r_2, \ldots, r_n)$.

- Because all the tests by Victor will pass, Victor will accept ϕ.
Soundness

• Suppose ϕ is not unsatisfiable.
• An honest Peggy following the protocol will fail after sending $P_1^*(z)$.
• We will show that if Peggy is dishonest in one round (by sending a polynomial other than $P_i^*(z)$), then with high probability she must be dishonest in the next round, too.
• In the last round (Step 12), her dishonesty is exposed.
Soundness (continued)

- Let $P_i(z)$ represent the polynomial sent by Peggy in place of $P_i^*(z)$.
- Victor calculates $v_i = P_i(r_i) \mod p$.
- In order to deceive Victor in the next round, round $i + 1$, Peggy must use r_1, r_2, \ldots, r_i to find a $P_{i+1}(z)$ of degree at most m such that

$$P_{i+1}(0) + P_{i+1}(1) = v_i \mod q$$

(see Step 8 of the algorithm on p. 526).

- And so on to the end, except that Peggy has no control over Step 12.
A Key Claim

Theorem 82 If $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \text{ mod } q$, then either Victor rejects in the ith round, or $P_i^*(r_i) \not\equiv v_i \text{ mod } q$ with probability at least $1 - (m/q)$, where the probability is taken over Victor’s choices of r_i.

- Remember that Victor has no way of knowing $P_i^*(r_i)$.
- Victor calculates v_i’s with $P_i(z)$s, claimed by the not necessarily trust-worthy Peggy as $P_i^*(z)$s.
- What Victor can do is to check for consistencies.
The Proof of Theorem 82 (continued)

- If Peggy sends a $P_i(z)$ which equals $P_i^*(z)$, then
 \[P_i(0) + P_i(1) = P_i^*(0) + P_i^*(1) \neq v_{i-1} \mod q, \]
 and Victor rejects immediately.

- Suppose Peggy sends a $P_i(z)$ different from $P_i^*(z)$.

- If $P_i(z)$ does not pass Victor’s test
 \[P_i(0) + P_i(1) \equiv v_{i-1} \mod q, \tag{12} \]
 then Victor rejects and we are done, too.
The Proof of Theorem 82 (concluded)

• Finally, assume $P_i(z)$ passes the test (12).

• Because $P_i(z) - P_i^*(z) \neq 0$ is a polynomial of degree at most m, it has at most m roots $r_i \in \mathbb{Z}_q$, i.e.,

$$P_i^*(r_i) \equiv v_i \mod q.$$

• Hence

$$P_i^*(r_i) \equiv v_i \mod q$$

with probability at most m/q.
Soundness (continued)

- Suppose Victor does not reject in any of the first n rounds.

- As ϕ is not unsatisfiable,

$$P_1^*(0) + P_1^*(1) \not\equiv v_0 \mod q.$$

- By Theorem 82 (p. 532) and the fact that Victor does not reject, we have $P_1^*(r_1) \not\equiv v_1 \mod q$ with probability at least $1 - (m/q)$.

- Now by Eq. (11) on p. 527,

$$P_1^*(r_1) = P_2^*(0) + P_2^*(1) \not\equiv v_1 \mod q.$$
Soundness (concluded)

- Iterating on this procedure, we eventually arrive at

\[P_n^*(r_n) \neq v_n \mod q \]

with probability at least \((1 - m/q)^n\).

- As \(P_n^*(r_n) = \Phi(r_1, r_2, \ldots, r_n) \), Victor’s last test at Step 12 fails and he rejects.

- Altogether, Victor rejects with probability at least

\[[1 - (m/q)]^n > 1 - (nm/q) > 2/3 \]

because \(q > 2^n 3^m \).
An Example

• \((x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)\).

• The above is satisfied by assigning true to \(x_1\).

• The arithmetized formula is

\[
\Phi(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \times [x_1 + (1 - x_2) + (1 - x_3)].
\]

• Indeed, \(\sum_{x_1=0,1} \sum_{x_2=0,1} \sum_{x_3=0,1} \Phi(x_1, x_2, x_3) = 16 \neq 0\).

• We have \(n = 3\) and \(m = 2\).

• A prime \(q\) that satisfies \(q > 2^3 \times 3^2 = 72\) is 73.
An Example (continued)

- The table below is an execution of the algorithm in \mathbb{Z}_{73} when Peggy follows the protocol.

<table>
<thead>
<tr>
<th>i</th>
<th>$P_i^*(z)$</th>
<th>$P_i^(0) + P_i^(1) = v_{i-1}$?</th>
<th>r_i</th>
<th>v_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$4z^2 + 8z + 2$</td>
<td>16</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

- Victor therefore rejects ϕ early on at $i = 1$.
An Example (continued)

- Now suppose Peggy does not follow the protocol.
- In order to deceive Victor, she comes up with fake polynomials $P_i(z)$’s from beginning to end.
- The table below is an execution of the algorithm.

<table>
<thead>
<tr>
<th>i</th>
<th>$P_i(z)$</th>
<th>$P_i(0) + P_i(1)$</th>
<th>$= v_{i-1}$?</th>
<th>r_i</th>
<th>v_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$8z^2 + 11z + 27$</td>
<td>0</td>
<td>yes</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>$10z^2 + 9z + 21$</td>
<td>61</td>
<td>yes</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>$z^2 + 2z + 34$</td>
<td>71</td>
<td>yes</td>
<td>r_3</td>
<td>$P_3(r_3)$</td>
</tr>
</tbody>
</table>
An Example (concluded)

- Victor has been satisfied up to round 3.
- Finally at Step 12, Victor checks if
 \[\Phi(10, 4, r_3) \equiv P_3(r_3) \mod 73. \]
- It can be verified that the only choices of
 \[r_3 \in \{0, 1, \ldots, 72\} \]
 that can mislead Victor are 10 and 12.
- The probability of that happening is only \(2/73\).
An Example

- \((x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2). \)

- The above is unsatisfiable.

- The arithmetized formula is

 \[
 \Phi(x_1, x_2) = (x_1 + x_2) \times (x_1 + 1 - x_2) \times (1 - x_1 + x_2) \times (2 - x_1 - x_2).
 \]

- Because \(\Phi(x_1, x_2) = 0 \) for any boolean assignment \(\{0, 1\}^2 \) to \((x_1, x_2)\), certainly

 \[
 \sum_{x_1=0,1} \sum_{x_2=0,1} \Phi(x_1, x_2) = 0.
 \]

- With \(n = 2 \) and \(m = 4 \), a prime \(q \) that satisfies \(q > 2^2 \times 3^4 = 4 \times 81 = 324 \) is 331.
An Example (concluded)

- The table below is an execution of the algorithm in \(Z_{331} \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(P_i^*(z))</th>
<th>(P_i^(0) + P_i^(1))</th>
<th>(= v_{i-1})?</th>
<th>(r_i)</th>
<th>(v_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(z(z + 1)(1 - z)(2 - z) + (z + 1)z(2 - z)(1 - z))</td>
<td>0</td>
<td>yes</td>
<td>10</td>
<td>283</td>
</tr>
<tr>
<td>2</td>
<td>((10 + z) \times (11 - z) \times (-9 + z) \times (-8 - z))</td>
<td>283</td>
<td>yes</td>
<td>5</td>
<td>46</td>
</tr>
</tbody>
</table>

- Victor calculates \(\Phi(10, 5) \equiv 46 \text{ mod } 331 \).

- As it equals \(v_2 = 46 \), Victor accepts \(\phi \) as unsatisfiable.
Objections to the Soundness Proof?a

- Based on the steps required of a cheating Peggy on p. 531, why must we go through so many rounds (in fact, \(n\) rounds)?

- Why not just go directly to round \(n\):
 - Victor sends \(r_1, r_2, \ldots, r_{n-1}\) to Peggy.
 - Peggy returns with a (claimed) \(P_n^*(z)\).
 - Victor accepts if and only if
 \[
 \Phi(r_1, r_2, \ldots, r_{n-1}, r_n) \equiv P_n^*(r_n) \mod q
 \]
 for a random \(r_n \in \mathbb{Z}_q\).

aContributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen (R90008) on January 2, 2002.
Objections to the Soundness Proof? (continued)

• Let us analyze the compressed proposal when ϕ is satisfiable.

• To succeed in foiling Victor, Peggy must find a polynomial $P_n(z)$ of degree m such that

$$\Phi(r_1, r_2, \ldots, r_{n-1}, z) \equiv P_n(z) \mod q.$$

• But this she is able to do: Just give the verifier the polynomial $\Phi(r_1, r_2, \ldots, r_{n-1}, z)$!

• What has happened?
Objections to the Soundness Proof? (concluded)

• You need the intermediate rounds to “tie” Peggy up with a chain of claims.

• In the original algorithm on p. 526, for example, $P_n(z)$ is bound by the equality $P_n(0) + P_n(1) \equiv v_{n-1} \mod q$ in Step 8.

• That v_{n-1} is in turn derived by an earlier polynomial $P_{n-1}(z)$, which is in turn bound by $P_{n-1}(0) + P_{n-1}(1) \equiv v_{n-2} \mod q$, and so on.
Densitya

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$ \text{dens}_L(n) = |\{x \in L : |x| \leq n\}|. $$

- If $L = \{0, 1\}^*$, then $\text{dens}_L(n) = 2^{n+1} - 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,
 $$ \text{dens}_L(n) \leq n + 1. $$
 - Because $L \subseteq \{0, 00, \ldots, 00 \cdots 0, \ldots\}$.

aBerman and Hartmanis (1977).
Sparsity

- **Sparse languages** are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.
Self-Reducibility for \textit{SAT}

- An algorithm exploits \textit{self-reducibility} if it reduces the problem to the same problem with a smaller size.

- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n.

- $t \in \{0, 1\}^j$ is a \textit{partial} truth assignment for x_1, x_2, \ldots, x_j.

- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ.
An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

1: if $|t| = n$ then
2: \hspace{1em} return $\phi[t]$;
3: else
4: \hspace{1em} return $\phi[t0] \lor \phi[t1]$;
5: end if

The above algorithm runs in exponential time.
NP-Completeness and Densitya

Theorem 83 If a unary language $U \subseteq \{0\}^*$ is
NP-complete, then $P = NP$.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ϕ
with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time
exhaustive search on p. 549.
- The trick is to keep the already discovered results $\phi[t]$
in a hash table H.

aBerman (1978).
1: if $|t| = n$ then
2: return $\phi[t]$;
3: else
4: if $(R(\phi[t]), v)$ is in table H then
5: return v;
6: else
7: if $\phi[t0] =$ “satisfiable” or $\phi[t1] =$ “satisfiable” then
8: Insert $(R(\phi[t]), 1)$ into H;
9: return “satisfiable”;
10: else
11: Insert $(R(\phi[t]), 0)$ into H;
12: return “unsatisfiable”;
13: end if
14: end if
15: end if
The Proof (continued)

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.

- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.

- As R maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.

- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?

- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random access memory model.
- The running time is $O(Mp(n))$, where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.
- There is a set $T = \{t_1, t_2, \ldots \}$ of invocations (partial truth assignments, i.e.) such that:
 - $|T| \geq M/(2n)$.
 - All invocations in T are recursive (nonleaves).
 - None of the elements of T is a prefix of another.
3rd step: Delete all t's at most n ancestors (prefixes) from further consideration

2nd step: Select any bottom undeleted invocation t and add it to T

1st step: Delete leaves; at most $M/2$ nonleaves remaining
The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.

- The existence of T implies that there are at least $M/(2n)$ different $R(\phi[t])$ values in the table.
The Proof (concluded)

- We already know that there are at most $p(n)$ such values.

- Hence $M/(2n) \leq p(n)$.

- Thus $M \leq 2np(n)$.

- The running time is therefore $O(Mp(n)) = O(np^2(n))$.

- We comment that this theorem holds for any sparse language, not just unary ones.\(^a\)

\(^{a}\text{Mahaney (1980).}\)
NP-Completeness and Density

Theorem 84 (Fortung (1979)) *If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then $P = NP$.*

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.
Finis