The Density Attack for PRIMES

All numbers < n

Witnesses to compositeness of n

- It works, but does it work well?

The Chinese Remainder Theorem

- Let \(n = n_1 n_2 \cdots n_k \), where \(n_i \) are pairwise relatively prime.
- For any integers \(a_1, a_2, \ldots, a_k \), the set of simultaneous equations
 \[
 x = a_1 \mod n_1 \\
 x = a_2 \mod n_2 \\
 \vdots \\
 x = a_k \mod n_k
 \]
 has a unique solution modulo \(n \) for the unknown \(x \).

Fermat’s “Little” Theorem\(^a\)

Lemma 56 For all \(0 < a < p \), \(a^{p-1} = 1 \mod p \).
- Consider \(a^{\Phi(p)} = \{am \mod p : m \in \Phi(p)\} \).
- \(a^{\Phi(p)} = \Phi(p) \).
 - Suppose \(am = am' \mod p \) for \(m > m' \), where \(m, m' \in \Phi(p) \).
 - That means \(a(m - m') = 0 \mod p \), and \(p \) divides \(a \) or \(m - m' \), which is impossible.
- Hence \((p - 1)! = a^{p-1}(p-1)! \mod p \).
- Finally, \((a^{p-1} - 1) = 0 \mod p \) because \(p \nmid (p - 1)! \).

\(^a\)Pierre de Fermat (1601–1665).
The Fermat-Euler Theorem

Corollary 57 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- As $12 = 2^2 \times 3$,
 $$\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4$$
- In fact, $\Phi(12) = \{1, 5, 7, 11\}$.
- For example,
 $$5^4 = 625 = 1 \mod 12.$$

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p - 1$.
- A primitive root of p is thus a number with exponent $p - 1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that $R(k) = 0$ for $k \nmid (p - 1)$.
- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$.

Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that
 $$m^k = 1 \mod p,$$
- Every residue $s \in \Phi(p)$ has an exponent,
 - $1, s, s^2, s^3, \ldots$ eventually repeats itself, say
 $$s^i = s^j \mod p,$$
 - which means $s^j \equiv 1 \mod p$.
- If the exponent of m is k and $m^\ell = 1 \mod p$, then $k|\ell$.
- Otherwise, $\ell = qk + a$ for $0 < a < k$, and
 $$m^\ell = m^{qk+a} = m^a = 1 \mod p,$$ a contradiction.

Lemma 58 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Size of $R(k)$

- Let s be a residue of exponent k.
 - $1, s, s^2, \ldots, s^{k-1}$ are all distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with $i < j$ and s is of exponent $j - i < k$, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p,$
 they are all the solutions of $x^k = 1 \mod p$.
- But do all of them have exponent k (i.e., $R(k) = k$)?
- And if not (i.e., $R(k) < k$), how many of them do?
Size of $R(k)$ (continued)

- Suppose $\ell < k$ and $\ell \not\in \Phi(k)$ with $\gcd(\ell, k) = d > 1$.
- Then
 $$(s')^{k/d} = 1 \mod p,$$
- Therefore, s' has exponent at most k/d, which is less than k.
- We conclude that
 $$R(k) \leq \phi(k).$$

A Few Calculations

- From p. 338, we know $\phi(p - 1) = 4$.
- Hence $R(12) = 4$.
- And there are 4 primitives roots of p.
- As $\Phi(p - 1) = \{1, 5, 7, 11\}$, the primitive roots are g^1, g^5, g^7, g^{11} for any primitive root g.

Size of $R(k)$ (concluded)

- Because all $p - 1$ residues have an exponent,
 $$p - 1 = \sum_{k\mid (p - 1)} R(k) \leq \sum_{k\mid (p - 1)} \phi(k) = p - 1$$
 by Lemma 54 on p. 331.
- Hence
 $$R(k) = \begin{cases} \phi(k) & \text{when } k \mid (p - 1) \\ 0 & \text{otherwise} \end{cases}$$
- In particular, $R(p - 1) = \phi(p - 1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 50 (p. 324).

The Other Direction of Theorem 50 (p. 324)

- Suppose p is not a prime,
- We proceed to show that no primitive roots exist.
- Suppose $r^{p - 1} = 1 \mod p$, the 1st condition of the primitive root on p. 324.
- We will show that the 2nd condition must be violated.
- $r^{\phi(p)} = 1 \mod p$ by the Fermat-Euler theorem (p. 338),
- Because p is not a prime, $\phi(p) < p - 1$.
The Other Direction of Theorem 50 (concluded)

- Let \(k \) be the smallest integer such that \(r^k = 1 \mod p \).
- As \(k|\phi(p) \), \(k < p - 1 \).
- Let \(q \) be a prime divisor of \((p - 1)/k > 1 \).
- Then \(k|(p - 1)/q \).
- Therefore, by virtue of the definition of \(k \),
 \[
 r^{(p - 1)/q} = 1 \mod p,
 \]
- But this violates the 2nd condition of the primitive root on p. 324.

Bipartite Perfect Matching

- We are given a bipartite graph \(G = (U, V, E) \).
 - \(U = \{u_1, u_2, \ldots, u_n\} \).
 - \(V = \{v_1, v_2, \ldots, v_n\} \).
 - \(E \subseteq U \times V \).
- We are asked if there is a perfect matching.
 - A permutation \(\pi \) of \(\{1, 2, \ldots, n\} \) such that
 \[
 (u_i, v_{\pi(i)}) \in E
 \]
 for all \(u_i \in U \).

Randomized Algorithms\(^a\)

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
 - Primality tests, extraction of square roots, etc.
- There are problems where randomization is necessary.
 - Secure protocols,
- Are randomized algorithms algorithms?\(^b\)

\(^a\)Rabin, 1976, Solovay and Strassen, 1977.
\(^b\)“Truth is so delicate that one has only to depart the least bit from it to fall into error.” The Provincial Letters, Pascal (1623-1662).
Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^G whose (i,j)th entry A^G_{ij} is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.
- The determinant of A^G is

$$\det(A^G) = \sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A^G_{i,\pi(i)}, \quad (5)$$

where π ranges over all permutations of n elements and $\sigma(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

Determinant and Bipartite Perfect Matching

In $\sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A^G_{i,\pi(i)}$, note the following:

- Each summand corresponds to a possible perfect matching π.
- As all variables appear only once, all of these summands are different monomials and will not cancel.

Proposition 59 (Edmonds, 1967) G has a perfect matching if and only if $\det(A^G)$ is not identically zero.

The Perfect Matching in the Determinant

- The matrix is

$$A^G = \begin{bmatrix}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{bmatrix}.$$

- $\det(A^G)$ contains term $x_{14}x_{22}x_{35}x_{43}x_{51}$, which denotes a perfect matching.
How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $\det(A^G)$.
- Expanding the determinant polynomial is not feasible,
 - Too many terms,
- Observation: If $\det(A^G)$ is \textit{identically} zero, then it
 remains zero if we substitute \textit{arbitrary} integers for the
 variables x_1, \ldots, x_m.
- What is the likelihood of obtaining a zero when $\det(A^G)$
 is \textit{not} identically zero?

Density Attack

- The density of roots in the domain is at most
 \[\frac{mdM^m - 1}{M^m} = \frac{md}{M}. \]
- This suggests a sampling algorithm.

Number of Roots of a Polynomials

Lemma 60 (Schwartz, 1980) Let $p(x_1, x_2, \ldots, x_m) \neq 0$
be a polynomial in m variables each of degree at most d. Let
$M \in \mathbb{Z}^+$. Then the number of m-tuples
\[(x_1, x_2, \ldots, x_m) \in \{0, 1, \ldots, M-1\}^m \]
such that $p(x_1, x_2, \ldots, x_m) = 0$ is
\[\leq mdM^m - 1. \]

- By induction on m.

A Randomized Bipartite Perfect Matching Algorithm\(^a\)

1: Choose n^2 integers i_1, \ldots, i_m from $\{0, 1, \ldots, b-1\}$
 randomly;
1: Calculate $\det(A^G(i_1, \ldots, i_m))$ by Gaussian elimination;
2: if $\det(A^G(i_1, \ldots, i_m)) \neq 0$ then
3: \textbf{return} “G has a perfect matching”;
4: \textbf{else}
5: \textbf{return} “G has no perfect matchings”;
6: \textbf{end if}

\(^a\)Lovász, 1979.
Analysis

- Pick \(b \) such that \(br^2 = 2n^2 \).
- If \(G \) has no perfect matchings, the algorithm will always be correct.
- Suppose \(G \) has a perfect matching.
 - The algorithm will answer incorrectly with probability at most \(n^2d/b = 0.5 \) because \(d = 1 \).
 - Repeat the algorithm independently \(k \) times and output “\(G \) has no perfect matchings” if all of the \(k \) runs say so.
 - The error probability is now reduced to at most \(2^k \).

Monte Carlo Algorithms

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives).
 - If the algorithm answers in the negative, then it may make an error (false negative).
- The probability that the algorithm makes a false negative is at most 0.5.
- This probability is not over the space of all graphs or determinants, but over the algorithm’s own coin flips.
- It holds for any bipartite graph.

The Markov Inequality

\textbf{Lemma 61} Let \(x \) be a random variable taking nonnegative integer values. Then for any \(k > 0 \),
\[\text{prob}[x \geq kE[x]] \leq 1/k. \]

- Let \(p_i \) denote the probability that \(x = i \).
\[E[x] = \sum_i ip_i = \sum_{i < kE[x]} ip_i + \sum_{i \geq kE[x]} ip_i \geq kE[x] \times \text{prob}[x \geq kE[x]]. \]

*Andrei Andreyevich Markov (1856-1922).
A Random Walk Algorithm for \(\phi \) in CNF Form

1: Start with an *arbitrary* truth assignment \(T \);
2: for \(i = 1, 2, \ldots, r \) do
3: \(T \leftarrow \phi \) then
4: \textbf{return} "\(\phi \) is satisfiable";
5: else
6: Let \(c \) be an unsatisfiable clause in \(\phi \) under \(T \); {All
of its literals are false under \(T \).}
7: Pick any \(x \) of these literals at random;
8: Modify \(T \) to make \(x \) true;
9: \textbf{end if}
10: \textbf{end for}
11: \textbf{return} "\(\phi \) is unsatisfiable";

The Proof

- Let \(\hat{T} \) be a truth assignment such that \(\hat{T} \models \phi \).
- Let \(t(i) \) denote the expected number of repetitions of the
flipping step until a satisfying truth assignment is found
if our starting \(T \) differs from \(\hat{T} \) in \(i \) values.
 - Their Hamming distance is \(i \).
- It can be shown that \(t(i) \) is finite.
- \(t(0) = 0 \) because it means that \(T = \hat{T} \) and hence \(T \models \phi \).
- If \(T \neq \hat{T} \) or \(T \) is not equal to any other satisfying truth
 assignment, then we need to flip at least once.

3SAT and 2SAT Again

- Note that if \(\phi \) is unsatisfiable, the algorithm will not
 refute it.
- The random walk algorithm runs in exponential time for
 3SAT.
- But we will show that it works well for 2SAT.

Theorem 62 Suppose the random walk algorithm with
\(r = 2n^2 \) is applied to any satisfiable 2SAT problem with \(n \)
variables, Then a satisfying truth assignment will be
discovered with probability at least 0.5.

The Proof (continued)

- We flip to pick among the 2 literals of a clause not
 satisfied by the present \(T \).
- At least one of the 2 literals is true under \(\hat{T} \), because \(\hat{T} \)
satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \(\hat{T} \).
- Thus
\[
t(i) \leq \frac{t(i - 1) + t(i + 1)}{2} + 1
\]
for \(0 < i < n \).
- Inequality is used because, for example, \(T \) may differ
 from \(\hat{T} \) in both literals.
The Proof (continued)

- It must also hold that
 \[t(n) \leq t(n-1) + 1 \]
 because at \(i = n \), we can only decrease \(i \).
- As we are only interested in upper bounds, we solve
 \[
 x(0) = 0 \\
 x(n) = x(n-1) + 1 \\
 x(i) = \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n
 \]
- This is one-dimensional random walk with a reflecting and an absorbing barrier.

The Proof (continued)

- Iteratively, we obtain
 \[
 x(2) = 4n - 4 \\
 \vdots \\
 x(i) = 2in - i^2 \\
 \]
- The worst case happens when \(i = n \), in which case
 \[x(n) = n^2. \]

The Proof (continued)

- Add the equations up to obtain
 \[
 x(1) + x(2) + \ldots + x(n) = x(0) + x(1) + 2x(2) + \ldots + 2x(n-2) + x(n-1) + x(n) + n + x(n-1).
 \]
- Simplify to yield
 \[
 \frac{x(1) + x(n) - x(n-1)}{2} = n.
 \]
- As \(x(n) - x(n-1) = 1 \), we have
 \[x(1) = 2n - 1. \]

The Proof (concluded)

- We therefore reach the conclusion that
 \[t(i) \leq x(i) \leq x(n) = n^2. \]
- So the expected number of steps is at most \(n^2 \).
- The algorithm picks a running time \(2n^2 \).
- This amounts to invoking the Markov inequality (p. 360) with \(k = 2 \), with the consequence of having a probability of 0.5.
Boosting the Performance

- We can pick \(r = 2mn^2 \) to have an error probability of \(\leq (2m)^{-1} \) by Markov's inequality.
- Alternatively, with the same running time, we can run the \(r = 2n^2 \) algorithm \(m \) times.
- But the error probability is reduced to \(\leq 2^{-m} \).
- The gain comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

The Density Attack for PRIMES

1. Pick \(k \in \{2, \ldots, p - 1\} \) randomly; \{Assume \(p > 2 \}\}
2. if \(k | p \) then
3. \hspace{1em} \textbf{return} \"N is a composite\";
4. else
5. \hspace{1em} \textbf{return} \"N is a prime\";
6. \hspace{1em} \textbf{end if}

The probability of success when \(p \) is composite is \(1 - \phi(p)/p \).

Primality Tests

- PRIMES asks if a number \(p \) is a prime.
- The classic algorithm tests if \(k | p \) for \(k = 2, 3, \ldots, \sqrt{p} \).
- But it runs in \(\Omega(2^{n/2}) \) steps, where \(n = |p| = \log_2 p \).
The Fermat Test for Primality

- Fermat's "little" theorem on p. 337 suggests the following primality test for any given number \(p \):
 - Pick a number \(a \) randomly from \(\{1, 2, \ldots, p - 1\} \).
 - If \(a^{p-1} \neq 1 \mod p \), then declare "\(p \) is composite."
 - Otherwise, declare "\(p \) is probably prime."

- Unfortunately, there are composite numbers called **Carmichael numbers** that will pass the Fermat test for all \(a \in \{1, 2, \ldots, p - 1\} \).
- It is only recently that Carmichael numbers are known to be infinite in number.

Euler's Test

Lemma 63 (Euler) Let \(p \) be an odd prime and \(a \neq 0 \mod p \).

1. If \(a^{(p-1)/2} = 1 \mod p \), then \(x^2 = a \mod p \) has two roots.
2. If \(a^{(p-1)/2} \neq 1 \mod p \), then \(a^{(p-1)/2} = -1 \mod p \) and \(x^2 = a \mod p \) has no roots.

- Let \(r \) be a primitive root of \(p \).
- If \(a = r^{2j} \), then \(a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p \) and its two distinct roots are \(r^j, -r^j = -r^{j+(p-1)/2} \).

Square Roots Modulo a Prime

- Equation \(x^2 = a \mod p \) has at most two (distinct) roots by Lemma 58 on p. 339.
 - The roots are called **square roots**.
 - Numbers \(a \) with square roots and \(\gcd(a, p) = 1 \) are called **quadratic residues**:
 \[1^2 \mod p, 2^2 \mod p, \ldots, (p - 1)^2 \mod p. \]

- We shall show that a number either has two roots or has none, and testing which is true is trivial.
- We remark that there are no known efficient **deterministic** algorithms to find the roots.

The Proof (concluded)

- Since there are \((p - 1)/2 \) such \(a \)'s, and each such \(a \) has two distinct roots, we have run out of square roots.
 - \(\{c : c^2 = a \mod p\} = \{1, 2, \ldots, p - 1\}. \)

- If \(a = r^{2j+1} \), then it has no roots because all the square roots are taken.
- By Fermat's "little" theorem, \(r^{(p-1)/2} \) is a square root of \(1 \), so \(r^{(p-1)/2} = \pm 1 \mod p. \)

- But as \(r \) is a primitive root, \(r^{(p-1)/2} = -1 \mod p. \)
- \(a^{(p-1)/2} = (r^{(p-1)/2})^{2j+1} = (-1)^{2j+1} = -1 \mod p. \)