The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define
 $$H_f = \{ M; x : M \text{ accepts input } x \text{ after at most } f(|x|) \text{ steps}\},$$
 where M is deterministic.
- Assume the input is binary.

$H_f \not\in \text{TIME}(f([n/2]))$

- Suppose there is a TM M_{H_f} deciding H_f in time $f([n/2])$.
- Consider machine $D_f(M)$:

 \[
 \text{if } M_{H_f}(M; M) = \text{"yes" then } \text{"no" else } \text{"yes"}
 \]

- D_f on input M runs in the same time as M_{H_f} on input $M; M$, i.e., in time $f(\lceil \frac{2n+1}{2} \rceil) = f(n)$.
- $D_f(D_f) = \text{"yes" } \Rightarrow \text{ } D_f \not\in H_f \Rightarrow D_f(D_f) = \text{"no,"}$
- Similarly, $D_f(D_f) = \text{"no" } \Rightarrow \text{ } D_f(D_f) = \text{"yes,"}.$

$H_f \in \text{TIME}(f(n)^3)$

- For each input $M; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
 - Use the single-string simulator (p. 57), the universal TM (p. 107), and the linear speedup theorem (p. 62).
- From p. 61, the total running time is $O(\ell k^2 f(n)^2)$, where ℓ is the length to encode each symbol or state of M and k is M's number of strings.
- As $\ell = O(\log n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

The Time Hierarchy Theorem

Theorem 16 If $f(n) \geq n$ is proper, then

\[\text{TIME}(f(n)) \subset \text{TIME}(f(2n+1)^3). \]

- The quantified halting problem makes it so.

Corollary 17 $P \subset EXP$.

- $P \subset \text{TIME}(2^n)$ because $\text{poly}(n) \leq 2^n$ for n large enough.
- But by Theorem 16,
 \[\text{TIME}(2^n) \subset \text{TIME}((2^{2n+1})^3) \subset \text{TIME}(2^{n^2}) \subset \text{EXP}. \]
The Space Hierarchy Theorem

Theorem 18 If $f(n)$ is proper, then

$\text{SPACE}(f(n)) \subset \text{SPACE}(f(n) \log f(n))$.

Corollary 19 $L \subset \text{PSPACE}$.

The Reachability Method

- A computation of a TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Initial configuration

The reachability method may give the edges on the fly without explicitly storing the whole configuration graph.

Relations between Complexity Classes

Theorem 20 Suppose $f(n)$ is proper. Then

1. $\text{SPACE}(f(n)) \subset \text{NSPACE}(f(n))$,
 $\text{TIME}(f(n)) \subset \text{NTIME}(f(n))$.
2. $\text{NTIME}(f(n)) \subset \text{SPACE}(f(n))$.
3. $\text{NSPACE}(f(n)) \subset \text{TIME}(k^{\log n + f(n)})$.

- Proof of 2:
 - Explore the computation tree of the NTM for “yes.”
 - Use the depth-first search as f is proper.
Proof of Theorem 20(2)

- (continued)
 - Specifically, generate a \(f(n) \)-bit sequence denoting the nondeterministic choices over \(f(n) \) steps.
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps until a “yes” is encountered or the tree is exhausted.
 - Each path simulation consumes at most \(O(f(n)) \) space because it takes \(O(f(n)) \) time.
 - The total space is \(O(f(n)) \) as space is recycled.

Proof of Theorem 20(3) (continued)

- We only care about
 \[
 (q_1, b \ w_2, w_2, \ldots, w_k, 1, u_k),
 \]
 where \(i \) is an integer between 0 and \(n \) for the position of the first cursor.
- The number of configurations is therefore at most
 \[
 |K| \times (n + 1) \times |\Sigma|^{(2k + 4)f(n)} = O(c_1^{\log n + f(n)})
 \]
for some \(c_1 \), which depends on \(M \).
- Add edges to the configuration graph based on the transition function.

Proof of Theorem 20(3) (concluded)

- \(x \in L \iff \) there is a path in the configuration graph from the initial configuration to a configuration of the form (“yes”, \(s \ldots \)) [there may be many of them],
- The problem is therefore that of reachability on a graph with \(O(c_1^{\log n + f(n)}) \) nodes,
- It is in \(\text{TIME}(c_1^{\log n + f(n)}) \) for some \(c \) because reachability is in \(\text{TIME}(n^k) \) for some \(k \) and
 \[
 \left(c_1^{\log n + f(n)} \right)^k = (c_1^k)^{\log n + f(n)}.
 \]
A Corollary of the Reachability Method

Corollary 21 For any NTM M in $\text{NSPACE}(f(n))$, where $f(n) = \Omega(\log n)$, there is a TM in $\text{SPACE}(f(n))$ that writes out the configuration graph of $M(x)$, given input x.

- From the proof of Theorem 20 (p. 169), especially Eq. (3) on p. 172, the number of configurations is $O(c^{f(n)})$ for some constant c.
- Use two counters each with space $O(f(n))$ to enumerate all possible pairs of configurations, (C_1, C_2).
- Write (C_1, C_2) to the output string if C_1 yields C_2.

Nondeterministic Space and Deterministic Space

- By Theorem 5 (p. 88),
 \[\text{NTIME}(f(n)) \subseteq \text{TIME}(c^{f(n)}), \]
 an exponential gap.
- There is no proof that the exponential gap is inherent, however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch’s theorem.

The Grand Chain of Inclusions

$L \subseteq NL \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXP}$.

- It is known that $\text{PSPACE} \subseteq \text{EXP}$.
- By Corollary 19 (p. 166), we know $L \subseteq \text{PSPACE}$.
- The chain must break somewhere between L and PSPACE.
- We suspect all four inclusions are proper.
- But there are no proofs yet.

Savitch’s Theorem

Theorem 22 (Savitch, 1970)

$\text{REACHABILITY} \in \text{SPACE}(\log^2 n)$.

- Let G be a graph with n nodes.
- For $i \geq 0$, let
 \[\text{PATH}(x, y, i) \]
 mean there is a path from node x to node y of length at most 2^i.
- There is a path from x to y if and only if $\text{PATH}(x, y, \lfloor \log n \rfloor)$ holds.
The Simple Idea for Computing \(\text{PATH}(x, y, i) \)

- For \(i > 0 \), \(\text{PATH}(x, y, i) \) if and only if there exists a \(z \) such that \(\text{PATH}(x, z, i - 1) \) and \(\text{PATH}(z, y, i - 1) \).
- For \(\text{PATH}(x, y, 0) \), check the input graph or if \(x = y \).
- We compute \(\text{PATH}(x, y, \lceil \log n \rceil) \) with a depth-first search on a tree with nodes \((x, y, i)\)s.
- Like stacks in recursive calls, we keep only the current path of \((x, y, i)\)s.
- The space requirement is proportional to the depth of the tree, \(\lceil \log n \rceil \).

The Algorithm for \(\text{PATH}(x, y, i) \)

1. if \(i = 0 \) then
2. if \(x = y \) or \((x, y) \in G\) then
3. return true;
4. else
5. return false;
6. end if
7. else
8. for \(z = 1, 2, \ldots, n \) do
9. if \(\text{PATH}(x, z, i - 1) \) and \(\text{PATH}(z, y, i - 1) \) then
10. return true;
11. end if
12. end for
13. return false;
14. end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 23 Let \(f(n) \geq \log n \) be proper. Then

\[
\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)).
\]

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 172, the configuration graph has \(O(e^f(n)) \) nodes; hence each node takes space \(O(f(n)) \).
- But the graph is implicit we check for connectedness only when \(i = 0 \), by examining the input string.
Implications of Savitch's Theorem

- PSPACE = NSPACE.
- Nondeterminism is less powerful with respect to space.
- It may be very powerful with respect to time as it is not known if P = NP.

Functions and Nondeterministic TMs

- An NTM computes function F if the following hold:
 - On input x, each computation path either outputs the correct answer $F(x)$ or ends up in state “no.”
 - At least one computation path ends up with $F(x)$.
- So all successful paths agree on their output.
- Existence of output indicates successful computation.
- As before, the machine observes a space bound $f(n)$ if at halting all strings (except for the input and output ones) are of length at most $f(|x|)$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 160).
- On p. 186, we shall prove
 $$\text{coNSPACE}(f(n)) = \text{NSPACE}(f(n)).$$
- So
 $$\text{coNL} = \text{NL},$$
 $$\text{coPSPACE} = \text{NPSPACE},$$
- But there are still no hints of $\text{coNP} = \text{NP}$.

How an NTM Computes a Function

- x
The Immerman-Szelepscényi Theorem

Theorem 24 (Szelepscényi, 1987, Immerman, 1988)
Given a graph G and a node x, the number of nodes reachable from x in G can be computed by an NTM within space $O(\log n)$.

- The algorithm has four nested loops.
- Let n be the number of nodes.
- $S(k)$ denotes the set of nodes in G that can be reached from x by paths of length at most k.
- So $|S(n - 1)|$ is the desired answer.

The Algorithm: Top 2 Levels
1: $|S(0)| := 1$;
2: for $k = 1, 2, \ldots, n$ do
3: \{ Compute $|S(k)|$ from $|S(k - 1)|$ saved in previous loop. \}
4: $\ell := 0$
5: for $u = 1, 2, \ldots, n$ do
6: if $u \in S(k)$ then
7: $\ell := \ell + 1$
8: end if
9: end for
10: $|S(k)| := \ell$
11: end for
12: return $|S(n - 1)|$;
13: end

The Third Loop, for $u \in S(k)$
1: $m := 0$; \{ Count members of $S(k - 1)$ encountered. \}
2: reply := false;
3: for $v = 1, 2, \ldots, n$ do
4: if $v \in S(k - 1)$ then
5: $m := m + 1$
6: if $G(v, u)$ then
7: reply := true;
8: end if
9: end if
10: end for
11: if $m < |S(k - 1)|$ then
12: “no”; \{ Cannot be sure of the validity of reply. \}
13: end if
14: return reply;

The Fourth Loop, for $v \in S(k - 1)$
1: $s := 2$
2: for $i = 1, 2, \ldots, k - 1$ do
3: Guess a node $t \in \{1, 2, \ldots, n\}$; \{ Nondeterminism. \}
4: if $(s, t) \notin G$ then
5: “no”;
6: end if
7: $s := t$
8: end for
9: if $t = v$ then
10: return true;
11: else
12: “no”;
13: end if
Wrap Up the Proof

- Space is needed for $k, |S(k - 1)|, \ell, u, m, v, s, i, t$.
- The nondeterministic algorithm needs space $O(\log n)$.

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A.
 - The answer to x for B is the same as the answer to $R(x)$ for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, $R(x)$ might as well solve B.
- Problem A is at least as hard as problem B if B reduces to A.

Closure under Complement of Nondeterministic Space

Corollary 25 If $f \geq \log n$ is proper, then

$$\text{NSPACE}(f(n)) = \text{coNSPACE}(f(n))$$

- Run the above algorithm on the configuration graph of the NTM M deciding $L \in \text{NSPACE}(f(n))$ on input x.
- We accept only if no accepting configurations have been encountered and if $|S(n - 1)|$ is computed.
 - The existence of $|S(n - 1)|$ means that every reachable configuration has been visited.

Reduction

Solving problem B by calling the algorithm for problem once and without further processing its answer.
Reduction between Languages

- Language L_1 is reducible to L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs x, $x \in L_1$ if and only if $R(x) \in L_2$.
- R is called a (Karp) reduction from L_1 to L_2.
- Note that by Theorem 20 (p. 169), R runs in polynomial time.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- Suppose G has n nodes: $1, 2, \ldots, n$.
- $R(G)$ has n^2 boolean variables x_{ij}, $1 \leq i, j \leq n$.
- x_{ij} means “node j is the ith node in the Hamiltonian path.”

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- A language $A \in \text{TIME}(n^{99})$ may be “easier” than a language $B \in \text{TIME}(n^3)$.
- This happens when A is reducible to B.
 - In this situation, it is necessary that $|R(x)| = \Omega(n^{33})$ or that R runs in time $\Omega(n^{99})$ so that $A \notin \text{TIME}(n^k)$ for some $k < 99$.

The Clauses of $R(G)$

1. Each node j must appear in the path.
 - $x_{ij} \lor x_{i+1,j} \lor \ldots \lor x_{n,j}$ for each j.
2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{i,j}$ for all i, j, k with $i \neq k$.
3. Every position i on the path must be occupied.
 - $x_{i1} \lor x_{i2} \lor \ldots \lor x_{in}$ for each i.
4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$.
5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{i,j} \lor \neg x_{i+1,j}$ for all $(i, j) \notin G$ and $k = 1, 2, \ldots, n$.
The Proof

- $R(G)$ can be computed efficiently.
- Suppose $T \models R(G)$.
- Clauses of 1 and 2 imply that for each j, there is a unique i such that $T \models x_{ij}$.
- Clauses of 3 and 4 imply that for each i, there is a unique j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.
- Clauses of 5 guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G = (V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.

The Proof (concluded)

- Conversely, suppose G has a Hamiltonian path
 $$(\pi(1), \pi(2), \ldots, \pi(n)),$$
 where π is a permutation.
- Clearly, the truth assignment
 $$T(x_{ij}) = \text{true} \text{ if and only if } \pi(i) = j$$
 satisfies all clauses of $R(G)$.

The Gates

- The gates are
 - g_{ijk} with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
 - h_{ijk} with $1 \leq i, j, k \leq n$.
- g_{ijk}: There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk}: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if $i = j$ or $(i, j) \in E$.
The Construction

- \(h_{ijk} \) is an AND gate with predecessors \(g_{i,k} \) and \(g_{k,j,k} \), where \(k = 1, 2, \ldots, n \).
- \(g_{ijk} \) is an OR gate with predecessors \(g_{i,j,k} \) and \(h_{i,j,k} \), where \(k = 1, 2, \ldots, n \).
- \(g_{nn} \) is the output gate.
- Interestingly, \(R(G) \) uses no \(\neg \) gates: It is a monotone circuit.
- The depth of \(R(G) \) is \(O(n) \), which is not optimal.

The Clauses of \(R(C) \)

- \(g \) is a variable gate \(x \): Add clauses \(\neg g \lor x \) and \(g \lor \neg x \).
 - Meaning: \(g \Leftrightarrow x \).
- \(g \) is a true gate: Add clause \(g \).
 - Meaning: \(g \) must be true to make \(R(C) \) true.
- \(g \) is a false gate: Add clause \(\neg g \).
 - Meaning: \(g \) must be false to make \(R(C) \) true.
- \(g \) is a \(\neg \) gate with predecessor gate \(h \): Add clauses \(\neg g \lor \neg h \) and \(g \land h \).
 - Meaning: \(g \Leftrightarrow \neg h \).

Reduction of CIRCUIT SAT to SAT

- Given a circuit \(C \), we shall construct a boolean expression \(R(C) \) such that \(R(C) \) is satisfiable if and only if \(C \) is satisfiable.
 - \(R(C) \) will turn out to be a CNF.
- The variables of \(R(C) \) are those of \(C \) plus \(g \) for each gate \(g \) of \(C \).
- Each gate of \(C \) will be turned into equivalent clauses of \(R(C) \).
- Recall that clauses are \(\land \)ed together.

The Clauses of \(R(C) \) (concluded)

- \(g \) is a \(\lor \) gate with predecessor gates \(h \) and \(h' \): Add clauses \(\neg h \lor g \), \(\neg h' \lor g \), and \(h \lor h' \lor \neg g \).
 - Meaning: \(g \Leftrightarrow (h \lor h') \).
- \(g \) is a \(\land \) gate with predecessor gates \(h \) and \(h' \): Add clauses \(\neg g \lor h \), \(\neg g \lor h' \), and \(\neg h \lor \neg h' \lor g \).
 - Meaning: \(g \Leftrightarrow (h \land h') \).
- \(g \) is the output gate: Add clause \(g \).
 - Meaning: \(g \) must be true to make \(R(C) \) true.