More Undecidability

- \{M : M \text{ halts on all inputs}\}.
 - Given \(M; x \), we construct the following machine:
 * \(M_x(y) : \text{if } y = x \text{ then } M(x) \text{ else halt.} \)
 - \(M_x \) halts on all inputs if and only if \(M \) halts on \(x \).
 - So if the said language were recursive, \(H \) would be recursive, a contradiction.
 - This technique is called reduction.
- \{M; x : \text{there is a } y \text{ such that } M(x) = y\}.
- \{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}.
- \{M; x; y : M(x) = y\}.
Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that
 $$x \in L \text{ if and only if } R(x) \in H.$$
- This suffices to prove that L is undecidable.
Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \overline{L}.

- Let L be decided by M (which is deterministic).
- Swap the “yes” state and the “no” state of M.
- The new machine decides \overline{L}.
- This idea does not work if is “recursive” is replaced with “recursively enumerable” (p. 79).
Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M}, respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then $x \in L$ and M' halts on state “yes.”
- If \overline{M} accepts, then $x \notin L$ and M' halts on state “no.”
R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not \overline{RE}).

R: The set of all recursive languages.
- $R = RE \cap coRE$ (p. 116).
- There exist languages in RE but not in R or coRE (such as H).
- There are languages in coRE but not in R or RE (such as \overline{H}).
- There are languages in neither RE nor coRE.
Notations

• Suppose M is a TM accepting L.

• Write $L(M) = L$.

• If $M(x)$ is never “yes” nor $\not\rightarrow$ (as required by the definition of acceptance), we define $L(M) = \emptyset$.

• Of course, if $M(x) = \not\rightarrow$ for all x, then $L(M) = \emptyset$, too.
Nontrivial Properties of Sets in RE

- A property of a set accepted by a TM (a recursively enumerable set) is **trivial** if it is always true or false.
 - Is an RE set accepted by a TM? Always true.
- It can be defined by the set \(C \) of RE sets that satisfy it.
- The property is nontrivial if \(C \neq \text{RE} \) and \(C \neq \emptyset \).
- Up to now, all nontrivial properties of RE sets are undecidable (p. 113).
- In fact, Rice’s theorem confirms that.
Rice’s Theorem

Theorem 12 (Rice’s theorem) Suppose $C \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question “$L(M) \in C$?” is undecidable.

- Assume that $\emptyset \notin C$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in C).
- Let $L \in C$ be accepted by TM M_L (recall that $C \neq \emptyset$).
- Let M_H accept the undecidable language H.
 - M_H exists (p. 109).
The Proof (continued)

- Consider machine $M_x(y)$:

 $\textbf{if } M_H(x) = \text{"yes" } \textbf{then } M_L(y) \textbf{ else } \uparrow$

- If we can prove that

 $L(M_x) \in \mathcal{C}$ if and only if $x \in H$, \hspace{1cm} (2)

 then we are done because the halting problem has been reduced to deciding $L(M_x) \in \mathcal{C}$.

- We proceed to prove claim (2).
The Proof (concluded)

• Suppose $x \in H$, i.e., $M_H(x) = \text{‘yes’}$.

 – $M_x(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.

 – Hence $L(M_x) = L \in C$.

• Suppose $M_H(x) = \uparrow$.

 – M_x never halts.

 – $L(M_x) = \emptyset \notin C$.
Consequences of Rice’s Theorem

Corollary 13 The following properties of recursively enumerative sets are undecidable.

- *Emptiness.*
- *Finiteness.*
- *Regularity.*
- *Context-freedom.*
Boolean Logica

Boolean variables: x_1, x_2, \ldots.

Literals: $x_i, \neg x_i$.

Boolean connectives: \lor, \land, \neg.

Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_1 \lor \phi_2$ (disjunction), $\phi_1 \land \phi_2$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_i$ stands for $\phi_1 \lor \phi_2 \lor \cdots \lor \phi_n$.
- $\bigwedge_{i=1}^{n} \phi_i$ stands for $\phi_1 \land \phi_2 \land \cdots \land \phi_n$.

Implications: $\phi_1 \Rightarrow \phi_2$ is a shorthand for $\neg \phi_1 \lor \phi_2$.

Biconditionals: $\phi_1 \Leftrightarrow \phi_2$ is a shorthand for

$(\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1)$.

aBoole (1815–1864), 1847.
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.

- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.

 - $\{x_1 = \text{true}, x_2 = \text{false}\}$ it appropriate to $x_1 \lor x_2$.
Satisfaction

• $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.

• ϕ_1 and ϕ_2 are equivalent, written

$$\phi_1 \equiv \phi_2,$$

if for any truth assignment T appropriate to both of them, $T \models \phi_1$ if and only if $T \models \phi_2$.

– Equivalently, $T \models (\phi_1 \Leftrightarrow \phi_2)$.
Truth Tables

• Suppose ϕ has n boolean variables.

• A truth table contains 2^n rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.

• A truth table can be used to prove if two boolean expressions are equivalent.

• De Morgan’s laws say that

\[\neg(\phi_1 \land \phi_2) = \neg\phi_1 \lor \neg\phi_2 \]
\[\neg(\phi_1 \lor \phi_2) = \neg\phi_1 \land \neg\phi_2 \]
<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Conjunctive Normal Forms

- A boolean expression ϕ is in **conjunctive normal form** (CNF) if

$$\phi = \bigwedge_{i=1}^{n} C_i,$$

where each **clause** C_i is the disjunction of one or more literals.

- For example,

$$(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_2 \lor x_3).$$

is in CNF.
Disjunctive Normal Forms

- A boolean expression ϕ is in **disjunctive normal form** (DNF) if

$$
\phi = \bigvee_{i=1}^{n} D_i,
$$

where each **implicant** D_i is the conjunction of one or more literals.

- For example,

$$(x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (x_2 \land x_3).$$

is in DNF.
Any Expression ϕ Can Be Converted into CNFs and DNFs

$\phi = x_j$: This is trivially true.

$\phi = \neg \phi_1$ and a CNF is sought: Turn ϕ_1 into a DNF and apply de Morgan’s laws to make a CNF for ϕ.

$\phi = \neg \phi_1$ and a DNF is sought: Turn ϕ_1 into a CNF and apply de Morgan’s laws to make a DNF for ϕ.

$\phi = \phi_1 \lor \phi_2$ and a DNF is sought: Make ϕ_1 and ϕ_2 DNFs.

$\phi = \phi_1 \lor \phi_2$ and a CNF is sought: Let $\phi_1 = \bigwedge_{i=1}^{n_1} A_i$ and $\phi_2 = \bigwedge_{i=1}^{n_2} B_i$ be CNFs. Set $\phi = \bigwedge_{i=1}^{n_1} \bigwedge_{j=1}^{n_2} (A_i \lor B_j)$.

$\phi = \phi_1 \land \phi_2$: Similar.
Satisfiability

- A boolean expression ϕ is **satisfiable** if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is **valid** or a **tautology**, written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.
- ϕ is **unsatisfiable** if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

aWittgenstein (1889–1951), 1922.
SATISFIABILITY (SAT)

- The **length** of a boolean expression is the length of the string encoding it.
- **SATISFIABILITY (SAT):** Given a CNF ϕ, is it satisfiable?
- Solvable in time $O(n^22^n)$ on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 80).
- A most important problem in answering the $P = NP$ problem (p. 225).
UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

• UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?

• VALIDITY: Given a boolean expression ϕ, is it valid?
 – ϕ is valid if and only if $\neg\phi$ is unsatisfiable.
 – So UNSAT and VALIDITY have the same complexity.

• Both are solvable in time $O(n^22^n)$ on a TM by the truth table method.
Relations among \textsc{sat}, \textsc{unsat}, and \textsc{validity}

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems—satisfiability, unsatisfiability, validity—are known to be in \textsc{p}.
Horn Clauses

• A **Horn clause** is a clause with at most one *positive* literal.

 \[\neg x_2 \lor x_3, \neg x_1 \lor \neg x_2 \lor \neg x_3. \]

• A Horn clause of form \(y \lor \neg x_1 \lor \neg x_2 \lor \cdots \lor \neg x_m \) can be rewritten as an implication

\[
(x_1 \land x_2 \land \cdots \land x_m) \Rightarrow y, \\
\]

where \(y \) is the positive literal.

 – If \(m = 0 \), use \texttt{true} \(\Rightarrow y \), also in implication form.

• If a Horn clause has no positive literals, we keep its *non-implication* form, \(\neg x_1 \lor \neg x_2 \lor \cdots \lor \neg x_m \).
Satisfiability of CNFs with Horn Clauses Is in P

• Interpret a truth assignment as a set T of those variables that are assigned true.
 - $T \models x_i$ if and only if $x_i \in T$.
 - $x_i \notin T$ means $x_i = \text{false}$, not that x_i is undetermined.

• Let ϕ be a conjunction of Horn clauses.

• We will prove that satisfiability of ϕ is in P.
The Algorithm

1: $T := \emptyset$; \{All variables are false.\}
2: \textbf{while} not all \textit{implications} are satisfied \textbf{do}
3: \hspace{1em} Pick a $(x_1 \land x_2 \land \cdots \land x_m) \Rightarrow y$ not satisfied by T;
4: \hspace{1em} Add y to T; \{Make y true (it was false).\}
5: \textbf{end while}
6: \textbf{if} $T \models \phi$ \textbf{then}
7: \hspace{1em} \textbf{return} “ϕ is satisfiable”;
8: \textbf{else}
9: \hspace{1em} \textbf{return} “ϕ is unsatisfiable”;
10: \textbf{end if}
Analysis of the Algorithm

- T is monotonically increasing in size.
- Eventually T will be large enough to make all implications (but not necessarily all Horn clauses) true.
 - Note we only make false variables true, never vice versa.
 - Reversing y’s truth value will not make currently satisfied implications false.
- So the **while** loop will terminate.
- By the time the **while** loop exits, all implications are satisfied by T.
- The running time is clearly polynomial.
Analysis of the Algorithm (continued)

- Any set T' satisfying all the implications must be such that $T \subseteq T'$.
 - Otherwise, consider the first time in the execution of the algorithm at which $T \not\subseteq T'$.
 - That $(x_1 \land x_2 \land \cdots \land x_m) \Rightarrow y$ causes the insertion of y to T means $T \models x_1 \land x_2 \land \cdots \land x_m$ (and $T \not\models y$).
 - Hence $y \not\in T'$ but $\{x_1, x_2, \ldots, x_m\} \in T'$.
 - Hence $T \not\models (x_1 \land x_2 \land \cdots \land x_m) \Rightarrow y$, a contradiction.
Analysis of the Algorithm (concluded)

- If $T \not\models \neg x_1 \lor \neg x_2 \lor \cdots \lor \neg x_m$, then
 $$\{x_1, x_2, \ldots, x_m\} \subseteq T.$$

- Hence no supersets of T can satisfy this clause.

- Because to satisfy all the implications must be a superset of T, ϕ is unsatisfiable.
Boolean Functions

• An n-ary boolean function is a function

$$f : \{\text{true, false}\}^n \rightarrow \{\text{true, false}\}.$$

• It can be represented by a truth table.

• There are 2^n such boolean functions.

 – Each of the 2^n truth assignments can make f true or false.
Boolean Functions (continued)

- A boolean expression expresses a boolean function.
 - Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
 - $\bigvee T \models \phi$, literal y_i is true under $T(y_1 \land y_2 \land \cdots \land y_n)$.
 - The boolean function on p. 129 produces $p \land q$.
 - The lengtha is $\leq n2^n \leq 2^{2n}$.
 - In general, the exponential length in n cannot be avoided (p. 150)!

aWe mean the logical connectives here.
Boolean Circuits

• A boolean circuit is a graph C whose nodes are the gates.
• There are no cycles in C.
• All nodes have indegree (number of incoming edges) equal to 0, 1, or 2.
• Each gate has a sort from

$$\{\text{true}, \text{false}, \lor, \land, \neg, x_1, x_2, \ldots\}.$$
Boolean Circuits (concluded)

- Gates of sort from \{\texttt{true}, \texttt{false}, x_1, x_2, \ldots\} are the \textbf{inputs} of \(C\) and have an indegree of zero.

- The \textbf{output gate(s)} has no outgoing edges.

- A boolean circuit computes a boolean function.
Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:
An Example

$$(x_1 \land x_2) \land (x_3 \lor x_4) \lor \neg(x_3 \lor x_4)$$

- Circuits are more economical because of the possibility of sharing.
CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- CIRCUIT SAT ∈ NP: Guess a truth assignment and then evaluate the circuit.

- CIRCUIT VALUE ∈ P: Evaluate the circuit from the input gates gradually towards the output gate.
Some Boolean Functions Need Exponential Circuits

Theorem 14 (Shannon, 1949) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different n-ary boolean functions.
- There are at most $((n + 5) \times m^2)^m$ boolean circuits with m or fewer gates.
- But $((n + 5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$.

 $$m \log_2((n + 5) \times m^2) = 2^n \left(1 - \frac{\log_2 \left(\frac{4n^2}{n+5}\right)}{2n}\right) < 2^n$$

 for $n \geq 2$.

- Can be improved to “almost all boolean functions...”
Proper (Complexity) Functions

- We say that $f : \mathbb{N} \to \mathbb{N}$ is a **proper (complexity)** function if the following hold:
 - f is nondecreasing.
 - There is a k-string TM M_f such that
 $$M_f(x) = \square^f(|x|)$$
 for any x.
 - M_f halts after $O(|x| + f(|x|))$ steps.
 - M_f uses $O(f(|x|))$ space besides its input x.
Examples of Proper Functions

- Most “reasonable” functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n, \sqrt{n}, $n!$, etc.

- If f and g are proper, then so are $f + g$, fg, and 2^g.

- Nonproper functions when serving as the time bounds for complexity classes spoil “the theory building.”
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the gap theorem).

- We shall henceforth use only proper functions in relation to complexity classes $\text{TIME}(f(n))$, $\text{SPACE}(f(n))$, $\text{NTIME}(f(n))$, and $\text{NSPACE}(f(n))$.
Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.

- When the space is bounded by a proper function \(f \), computations can be assumed to halt:

 - Run the TM associated with \(f \) to produce an output of length \(f(n) \) first.

 - The space-bound computation must repeat a configuration if it runs for more than \(c^{n+f(n)} \) steps for some \(c \) (p. 171).

 - So we can count steps to prevent infinite loops.
Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precise $f(n)$ steps, and
 - All of its strings are at halting of length precisely $g(n)$.
 * If M is a TM with input and output, we exclude the first and the last strings.

- M can be deterministic or nondeterministic.
Precise TMs Are General

Proposition 15 Suppose a (deterministic or nondeterministic) TM M decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M' which decides L in time $O(n + f(n))$ (space $O(f(n))$, respectively).
The Proof

- \(M' \) on input \(x \) first simulates the TM \(M_f \) associated with the proper function \(f \) on \(x \).
- \(M_f \)'s output of length \(f(|x|) \) will serve as a “yardstick” or an “alarm clock.”
- If \(f \) is a space bound:
 - \(M' \) simulates on \(M_f \)'s output string.
 - The total space, besides the input string, is \(O(f(n)) \).
The Proof (concluded)

- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the “clock” string.
 - The simulation stops at the moment the “clock” string is exhausted.
 - The time bound is therefore $O(|x| + f(|x|))$.
The Most Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.

- For example, $\text{NTIME}(n^k) = \bigcup_{j>0} \text{NTIME}(n^j)$.

\[
\begin{align*}
P &= \text{TIME}(n^k) \\
\text{NP} &= \text{NTIME}(n^k) \\
\text{PSPACE} &= \text{SPACE}(n^k) \\
\text{NPSPACE} &= \text{NSPACE}(n^k) \\
\text{EXP} &= \text{TIME}(2^{n^k}) \\
L &= \text{SPACE}(\log n) \\
\text{NL} &= \text{NSPACE}(\log n)
\end{align*}
\]
Complements of Nondeterministic Classes

- From p. 117, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE, not the languages not in RE.

- Recall that the complement of L, denoted by \bar{L}, is the language $\Sigma^* - L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.
The Co-Classes

• For any complexity class \mathcal{C}, $\text{co}\mathcal{C}$ denotes the class

 $\{\overline{L} : L \in \mathcal{C}\}$.

• Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C} = \text{co}\mathcal{C}$.

 – They are said to be **closed under complement**.

 – A deterministic TM deciding L can be converted to one that decides \overline{L} within the same time or space bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed under complement is not known (p. 79).
Comments

- Then coC is the class
 \[\{ \bar{L} : L \in C \} . \]
- It is true that $x \in L$ if and only if $x \not\in \bar{L}$.
- But it is not true that $L \in C$ if and only if $L \not\in \text{coC}$.
 - coC is not defined as \bar{C}.