What This Course Is All About

Computability: What can be computed?
- There exist *well-defined* problems that cannot be computed.
- In fact, “most” problems cannot be computed.

Complexity: What is a computable problem’s inherent complexity?
- Some computable problems require at least exponential time and/or space; they are **intractable**.
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?
Tractability and intractability

- Polynomial in terms of the input size n defines tractability.
 - n, $n \log n$, n^2, n^{90}.
 - Time, space, circuit size, random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical unless correctness is sacrificed.
 - $n^{\log n}$, $2\sqrt{n}$, 2^n, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.
Growth of Factorials

<table>
<thead>
<tr>
<th>n</th>
<th>$n!$</th>
<th>n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>362880</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>3628800</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>39916800</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>12</td>
<td>479001600</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>13</td>
<td>6227020800</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>14</td>
<td>87178291200</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>15</td>
<td>1307674368000</td>
</tr>
<tr>
<td>8</td>
<td>40320</td>
<td>16</td>
<td>20,922,789,888,000</td>
</tr>
</tbody>
</table>
Most Important Results: a Sampler

- An operational definition of computability.
- Decision problems in logic are undecidable.
- Decisions problems on program behavior are usually undecidable.
- Complexity classes and the existence of intractable problems.
- Complete problems for a complexity class.
- Randomization and cryptographic applications.
- Approximability.
What Is Computation?

- That can be coded in an **algorithm**.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - “Let s be the least upper bound of compact set A” is not an algorithm.
 - “Let s be a smallest element of a finite-sized array” can be solved by an algorithm.
Turing Machinesa

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K is a finite set of states.
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
 - Σ includes \square (blank) and $>$ (first symbol).
- $\delta : K \times \Sigma \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \Sigma \times \{\leftarrow, \rightarrow, \text{−}\}$ is a transition function.
 - \leftarrow (left), \rightarrow (right), and − (stay) signify cursor movements.

aTuring, 1936.
A TM Schema

\[\delta \]

\[\text{1000110000111001110001110} \]
“Physical” Interpretations

- The tape: computer memory and registers.
- K: instruction numbers.
- s: “main()” in C.
- Σ: alphabet much like the ASCII code.
“Physical” Interpretations (concluded)

• δ: the program with the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
 - Given the current state $q \in K$ and the current symbol $\sigma \in \Sigma$,
 \[
 \delta(q, \sigma) = (p, \rho, D)
 \]
 specifies the next state p, the symbol ρ to be written over σ, and the direction D the cursor will move afterwards.
 - We require $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ for convenience.
The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright, followed by a *finitely* long string $x \in (\Sigma - \{\sqcup\})^*$.
- x is the **input** of the TM.
 - The input must not contain \sqcups!
- The cursor is pointing to the first symbol, always a \triangleright.
- The TM takes each step according to δ.
- The cursor never falls off the left end of the string.
- The cursor may overwrite \sqcup to make the string longer during the computation.
Program Size

- The program δ is a function from $K \times \Sigma$ to $(K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \Sigma \times \{\leftarrow, \rightarrow, _\}$.
- $|K| \times |\Sigma|$ lines suffice to specify such a function.
- Given K and Σ, there are
 \[((|K| + 3) \times |\Sigma| \times 3)^{|K|\times|\Sigma|} \]
 possible δ’s, a constant—albeit large.
 - A program must have a finite size.
- Different δ’s may define the same behavior.
<table>
<thead>
<tr>
<th>K</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$(|K| + 3) \times |\Sigma| \times 3$ possibilities
The Halting of a TM

- A TM M may halt in three cases.

 "yes": The machine accepts its input x, and

 $M(x) = \text{"yes"}$.

 "no": The machine rejects its input x, and

 $M(x) = \text{"no"}$.

 h: $M(x) = y$, where the string consists of a \triangleright, followed
 by a finite string y, whose last symbol is not \sqcup,
 followed by a string of \sqcups.

 - y is called the output of the computation.
 - y may be empty denoted by ϵ.

- If M never halts on x, then write $M(x) = \not\rightarrow$.
Programming TMs

• We describe a TM in pseudocode.

• Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
 – Imagine developing a complexity theory based on C++.
Configurations

- A **configuration** is a complete description of the current state of the computation.

- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.

- A configuration is a triple \((q, w, u)\):
 - \(q \in K\).
 - \(w \in \Sigma^*\) is the string to the left of the cursor (inclusive).
 - \(u \in \Sigma^*\) is the string to the right of the cursor.
\begin{itemize}
\item $w = \triangleright 1000110000.$
\item $u = 111001110001110.$
\end{itemize}
Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step, denoted
 \[(q, w, u) \xrightarrow{M} (q', w', u'),\]
 if a step of M from configuration (q, w, u) results in configuration (q', w', u').
- That configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps is denoted by $(q, w, u) \xrightarrow{M^k} (q', w', u')$.
- That configuration (q, w, u) yields configuration (q', w', u') is denoted by $(q, w, u) \xrightarrow{M^*} (q', w', u')$.
Inserting a Symbol

• We want to compute $f(x) = ax$.
 – The TM moves the last symbol of x to the right by one position.
 – It then moves the next to last symbol to the right, and so on.
 – The TM finally writes a in the first position.

• The total number of steps is $O(n)$, where n is the length of x.
Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).

- A TM program can be written to recognize palindromes: “yes” for palindromes and “no” for nonpalindromes.
 - It matches the first character with the last character, the second character with the next to last character, etc.
 - This program takes $O(n^2)$ steps.
A Matching Lower Bound for Palindrome

Theorem 1 Palindrome on single-string TMs takes $\Omega(n^2)$ steps in the worst case.
The Proof: Communications

- Our input is more restricted; hence any lower bound holds for the original problem.

- Each communication between the two halves across the cut is a state from K, hence of size $O(1)$.

- $C(x, x)$: the sequence of communications for palindrome problem $P(x, x)$ across the cut.

- $C(x, x) \neq C(y, y)$ when $x \neq y$.
 - Otherwise, $C(x, x) = C(y, y) = C(x, y)$, and $P(x, y)$ has the same answer as $P(x, x)$!

- $C(x, x)$ is distinct for each x.
The Proof: Cut and Paste
The Proof: Amount of Communications

- Assume $|x| = |y| = m = n/3$.

- We first seek a lower bound on the total number of communications:

$$\sum_{x \in \{0,1\}^m} |C(x, x)|.$$

- Define

$$\kappa \equiv (m + 1) \log_2 |K| - \log_2 |K| m - 1 + \log_2 |K| (|K| - 1).$$
The Proof: Amount of Communications (continued)

- There are $\leq |K|^i$ distinct $C(x, x)$s with $|C(x, x)| = i$.

- Hence there are at most

$$\sum_{i=0}^{\kappa} |K|^i = \frac{|K|^{\kappa+1} - 1}{|K| - 1} \leq \frac{|K|^{\kappa+1}}{|K| - 1} = \frac{2^{m+1}}{m}$$

 distinct $C(x, x)$s with $|C(x, x)| \leq \kappa$.

- The rest must have $|C(x, x)| > \kappa$.

- Because $C(x, x)$ is distinct for each x (p. 35), there are at least $2^m - \frac{2^{m+1}}{m}$ of them with $|C(x, x)| > \kappa$.
The Proof: Amount of Communications (concluded)

- Thus
 \[
 \sum_{x \in \{0,1\}^m} |C(x, x)| \geq \sum_{x \in \{0,1\}^m, |C(x, x)| > \kappa} |C(x, x)| \\
 > \kappa \left(2^m - \frac{2^{m+1}}{m}\right) \\
 = \kappa 2^m m - 2 \frac{m}{m}.
 \]

- As \(\kappa = \Theta(m) \), the total number of communications is
 \[
 \sum_{x \in \{0,1\}^m} |C(x, x)| = \Omega(m 2^m). \quad (1)
 \]
The Proof (continued)

We now lower-bound the number of communication points.
The Proof (continued)

- \(C_i(x, x) \) denotes the sequence of communications for \(P(x, x) \) given the cut.
- \(T(n) \): the worst-case running time for \(x \) of length \(n \).
- \(T(n) \geq \sum_{i=1}^{m} |C_i(x, x)|. \)
- As \(T(n) \) is the worst-case time bound,

\[
2^m T(n) \geq \sum_{x \in \{0,1\}^m} \sum_{i=1}^{m} |C_i(x, x)| \\
= \sum_{i=1}^{m} \sum_{x \in \{0,1\}^m} |C_i(x, x)|.
\]
The Proof (concluded)

- By the pigeonhole principle\(^a\), there exists an \(0 \leq i^* \leq m\),

\[
\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| \leq \frac{2^m T(n)}{m}.
\]

- Eq. (1) on p. 39 says that

\[
\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| = \Omega(m2^m).
\]

- Hence

\[T(n) = \Omega(m^2) = \Omega(n^2).\]

\(^a\)Dirichlet (1805 1859).
Comments on Lower-Bound Proofs

• They are usually difficult.
 – Often worthy of a Ph.D. degree.

• A lower bound that matches a known upper bound (given by an efficient algorithm) shows that the algorithm is optimal.
 – The simple $O(n^2)$ algorithm for palindrome is optimal.

• This is rare and model dependent.
 – Searching, sorting, palindrome, matrix-vector multiplication, etc.
Decidability and Recursive Languages

- Let $L \subseteq (\Sigma - \{\square\})^*$ be a language, i.e., a set of strings of symbols with a finite length.
 - For example, \(\{0, 01, 10, 210, 1010, \ldots \} \).

- Let M be a TM such that for any string x:
 - If $x \in L$, then $M(x) = \text{“yes.”}$
 - If $x \notin L$, then $M(x) = \text{“no.”}$

- We say M decides L.

- If L is decided by some TM, then L is called recursive.
 - Palindromes over \(\{0, 1\}^* \) are recursive.
Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma - \{\|\})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then $M(x) = \text{"yes."}$
 - If $x \notin L$, then $M(x) = \not\triangleright$.
- We say M accepts L.
- If L is accepted by some TM, then L is called a recursively enumerable language.
Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- Let TM M decides L.
- M' is identical to M except that when M is about to halt with a “no” state, M' goes into an infinite loop.
 - M' is constructed by modifying M’s program.
- M' accepts L.
Turing-Computable Functions

- Let $f : (\Sigma - \{\square\})^* \rightarrow \Sigma^*$.
 - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in (\Sigma - \{\square\})^*$,
 $M(x) = f(x)$.
- We call f a recursive function if such an M exists.
Church’s Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).

- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.

- All have been proved to be equivalent.

- No “intuitively computable” problems have been shown to be Turing-uncomputable (yet).
Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are* polynomially related.
 – Representations of a graph as an adjacency matrix
 and as a linked list are both succinct.
 – The *unary* representation of numbers is not succinct.
 – The *binary* representation of numbers is succinct.
 * 1001 vs. 11111111.

• All numbers will be binary from now on.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, "yes", "no"\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.
A 2-String TM

δ

$\triangleright 1000110000111001110001110$

$\triangleright 111110000$

$\triangleright 111110000$
Palindromes Revisited

- A 2-string TM can decide palindromes in $O(n)$ steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-triple

\[
(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),
\]

where \(w_iu_i\) is the \(i\)th string and the \(i\)th cursor is reading the last symbol of \(w_i\).

- Note that \(\triangleright\) is each \(w_i\)'s first symbol.

- The \(k\)-string TM’s initial configuration is

\[
(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon).
\]
Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x) = \uparrow$, then the time required by M on x is ∞.
- Machine M operates within time $f(n)$ for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
 - $|x|$ is the length of string x.
 - Function $f(n)$ is a time bound for M.

Time Complexity Classesa

- Suppose language $L \subseteq (\Sigma - \{\square\})^*$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \text{TIME}(f(n))$.
- $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\text{TIME}(f(n))$ is called a \textbf{complexity class}.
 - Palindrome is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

aHartmanis, Stearns, 1965, Hartmanis, Lewis, Stearns, 1965.