Spanning Trees and Optimization Problems
(Excerpt)
Chapter 1

Counting Spanning Trees

A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G.

How many trees are there spanning all the vertices in Figure 1.1?

![Figure 1.1: A four-vertex complete graph K_4.]

Figure 1.2 gives all 16 spanning trees of the four-vertex complete graph in Figure 1.1.

Definition 1.1 A Prüfer sequence of length $n - 2$, for $n \geq 2$, is any sequence of integers between 1 and n, with repetitions allowed.

Lemma 1.1
There are n^{n-2} Prüfer sequences of length $n - 2$.

Example 1.1
The set of Prüfer sequences of length 2 is $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}$. In total, there are $4^{4-2} = 16$ Prüfer sequences of length 2.

Algorithm: Prüfer Encoding

Input: A labeled tree with vertices labeled by 1, 2, 3, ..., n.

Output: A Prüfer sequence.

Repeat $n - 2$ times
Spanning Trees and Optimization Problems (Excerpt)

$\text{FIGURE 1.2: All 16 spanning trees of } K_4.$

$v \leftarrow$ the leaf with the lowest label
Put the label of v's unique neighbor in the output sequence.
Remove v from the tree.

Now consider a more complicated tree in Figure 1.3. What is its corresponding Prüfer sequence?

Figure 1.4 illustrates the encoding process step by step.

Algorithm: Prüfer Decoding
Input: A Prüfer sequence $P = (p_1, p_2, \ldots, p_{n-2})$.
Output: A labeled tree with vertices labeled by $1, 2, 3, \ldots, n$.

$P \leftarrow$ the input Prüfer sequence
$n \leftarrow |P| + 2$
FIGURE 1.3: An eight-vertex spanning tree.

FIGURE 1.4: Generating a Prüfer sequence from a spanning tree.

\[V \leftarrow \{1, 2, \ldots, n\} \]

Start with \(n \) isolated vertices labeled \(1, 2, \ldots, n \).

for \(i = 1 \) to \(n - 2 \) do

\(v \leftarrow \) the smallest element of the set \(V \) that does not occur in \(P \)
Connect vertex \(v \) to vertex \(p_i \)
Remove \(v \) from the set \(V \)
Remove the element \(p_i \) from the sequence \(P \)
/* Now \(P = (p_{i+1}, p_{i+2}, \ldots, p_{n-2}) */
Connect the vertices corresponding to the two numbers in \(V \).

Figure 1.5 illustrates the decoding process step by step.

FIGURE 1.5: Recovering a spanning tree from a Prüfer sequence.
THEOREM 1.1
The number of spanning trees in K_n is n^{n-2}.

Let $G - e$ denote the graph obtained by removing edge e from G. Let $G \backslash e$ denote the resulting graph after contracting e in G. In other words, $G \backslash e$ is the graph obtained by deleting e, and merging its ends. Let $\tau(G)$ denote the number of spanning trees of G. The following recursive formula computes the number of spanning trees in a graph.

THEOREM 1.2
$\tau(G) = \tau(G - e) + \tau(G \backslash e)$