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Abstract

Results: We have produced a computer program, named
sim3, that solves the following computational problem. Two
DNA sequences are given, where the shorter sequence is very
similar to some contiguous region of the longer sequence.
Sim3 determines such a similar region of the longer sequence,
and then computes an optimal set of single-nucleotide
changes (i.e. insertions, deletions or substitutions) that will
convert the shorter sequence to that region. Thus, the
alignment scoring scheme is designed to model sequencing
errors, rather than evolutionary processes. The program can
align a 100 kb sequence to a 1 megabase sequence in a few
seconds on a workstation, provided that there are very few
differences between the shorter sequence and some region in
the longer sequence. The program has been used to assemble
sequence data for the Genomes Division at the National
Center for Biotechnology Information.

Availability: A version of sim3 for UNIX machines can be
obtained by anonymous ftp from ncbi. nlm. nih. gov, in the
pub/sim3 directory.

Contact: For portable versions for Macs and PCs, contact
zjing@sunset. nlm. nih. gov.

Introduction

Sim3 computes (or attempts to compute, under a heuristic
option available to the user) an alignment that minimizes
the sum of the following costs: (i) except for the end gaps
of the shorter sequence (which are not penalized), a gap of
length £ in either sequence is penalized at the cost of k4 1;
(ii) each mismatch costs 1. Adding 1 to a gap’s length to
derive its cost decreases the likelihood of generating gaps that
are separated by only a few paired nucleotides. Figure 1
illustrates the scoring scheme.

Our algorithm runs in two phases. Phase 1 locates the
interval in the longer sequence that should be aligned with
the shorter sequence. Phase 2 employs a divide-and-conquer
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approach to determine that alignment. The end gaps, if they
exist, are then added to the alignment. Figure 2 illustrates
the two-phase approach, using the familiar representation
of a pairwise alignment as path through the dynamic
programming grid.

Two methods are provided for accomplishing Phase 1. The
first, called ‘heuristic Phase 1°, runs much faster than the
second, but only the second can be guaranteed to produce
an optimal subinterval of the longer sequence. Phase 2, whose
computation time is insignificant if the alignment cost is
small, is always solved exactly. In addition to choosing which
approach is to be used for Phase 1, the user can provide an
upper bound on the alignment cost; this prevents the program
from computing aimlessly if a pair of unrelated sequences is
inadvertently given.

Sim3 was written in C using the NCBI software toolkit. The
input and output formats are the same as the previously
published sim2 algorithm (Chao et al., 1994). Sim3 is able
to align one target sequence to many related sequences, and
can display the results as one-to-many multiple pairwise
alignments. Also, it can take input sequences either locally,
as FASTA formatted files or structured ASN. 1 files, or
remotely, by retrieving them from Network Entrez (Schuler
et al., 1995) given the locus names or accession numbers.
The results are stored as ASN. 1 Seq-align objects, which
can be viewed textually or exported to such graphic
browsers as ChromoScope (Zhang et al., 1994) or the new
NCBI sequence submission tool, Sequin (Kans, 1996). Sim3
has been run successfully on UNIX machines, on the
Macintosh, and under Microsoft Windows 95 and Windows
NT on the PC.

Algorithm

Let A=apaa; ... aym - 1 andB=b0 b1 b2 bN— 1 be two
sequences of lengths M and N, respectively, where without
loss of generality N = M. The edit graph for sequences A
and B is a directed graph with a vertex at each integer grid
point (x,y),0 =x=Mand0 =y <N,

Let I(k, c) denote the x value of the farthest point in
diagonal & that can be reached from the source [i. e. grid point
(0, 0)] with cost ¢ and that is free to open an insertion gap.
That is, the grid point can be (i) reached by a path of cost ¢
that ends with an insertion, or (ii) reached by any path of cost
¢ — 1 and the gap-open penalty of 1 can be ‘paid in advance’.
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[The more traditional definition, which considers only case
(i), results in the storage of more vectors.] Let D(k, c) denote
the x value of the farthest point in diagonal k that can be
reached from the source with cost ¢ and is free to open a
deletion gap. Let S(k, c) denote the x value of the farthest
point in diagonal k that can be reached from the source with
cost c¢. With proper initializations, these vectors can be
computed by the following recurrence relation:

Ik, c) = max{I(k — 1,c — 1),S(k,c — 1)}

D(k,c) = max{Dk +1,c — 1)+ 1,Stk,c — 1)}

S(k, ¢) = snake(k, max{S(k,c — 1) + 1,I(k,¢),D(k,c)})
where snake(k,x) = max{x,max{z:a,...a,_

=byik--bio 144}

Since vectors at cost ¢ depend only on those at costs ¢ and
¢ — 1, it is straightforward to derive a linear-space version
of the above recurrence relationships.

The heuristic Phase 1

Let f; denote the number of w-mers starting between positions
i and i+ nw — 1 of the longer sequence that are also a w-mer
starting between positions 0 and nw-1 of the shorter
sequences (see Figure 3). (In other words, we count those
w-mers that can be in both the first nw w-mers from position i
of the longer sequences and the first nw w-mers of the shorter
sequence. ) It should be noted that we do not take into account
the order of w-mers. Similarly, let b; denote the number of
w-mers ending between positions i — nw+1 and i of the
longer sequence that are also a w-mer ending between
positions M — nw and M — 1 of the shorter sequences.

Let maxf (maxb) be the maximum value of all such f; (b;)
values. We want to determine an ordered list FRONT
containing all those positions i such that f;=maxf and an
ordered list BACK containing all those positions i such that
b; = maxb. This is done by first building a hash table with 4"
entries, where the entry value can be 0, 1, 2, 3. The entry
value is 3 if its corresponding w-mer occurs inthe first and
the last nw w-mers of the shorter sequence; it is 2 if its
corresponding w-mer occurs only in the last nw w-mers; it is 1
if its corresponding w-mer occurs only in the first aw w-mers;
it is O otherwise. The next step is to compute f, and b;.
Initially, we compute fy and b, 4 » _ 2. With two shift
operations, we can compute f; and b, , ,, _ ;. This procedure
is repeated until we have reached the end of the longer
sequence, updating the lists FRONT and BACK as we go. If
maxf (or maxb) falls below a certain percentage of nw, we

CCATGCAAATGCCAT
—-ATGCA-~--TCCCA~

Fig. 1. The total cost in this example is 4 since a mismatch costs 1 and an
internal gap of length 2 costs 3.

B Phase 2 delivers the alignment
within the shaded area.

Phasc | determines these two points.

Fig. 2. Two-phase approach to aligning a shorter sequence A with a longer
sequence B. The thicker line denotes the alignment.

suggest that an exact Phase 1 should be used. Finally, we
select a pair of positions in FRONT and BACK such that the
distance between them is closest to the length of the shorter
sequence.

The exact Phase 1

Phase 1 can be accomplished by applying the recurrences for
I, D and S, where all costs in row 0 are initialized to 0. Once
row M is reached, the desired interval has been located.
Although the worst-case running time for this approach is
O(MN), the average running time is O(N x Dist), where Dist
is the distance of A and B. This holds because the average
length of a snaked fragment is a small constant. For random
DNA sequences, the average length is § = 7., L.

Phase 2

To deliver the alignment, we divide the problem at the middle
cost, and recursively solve each subproblem, much as was
done by Myers (1986) and Miller and Myers (1988). To do so,
we need the following ‘backward’ vectors. Let I(k, c) denote
the x value of the farthest / node in diagonal k that can reach
the sink [i. e. grid point (M, N )] with cost c. Let D(k, c) denote
the x value of the farthest D node in diagonal & that can reach
the sink with cost c. Let S(k, c) denote the x value of the
farthest S node in diagonal k that can reach the sink with cost
c. With proper initializations, these vectors can be computed
by the following recurrence relation:

S(k, ¢) = snake(k, min{S(k,c — 1) — 1, D(k,c — 1),
Itk,c —1)})
D(k,c) = min{D(k — 1,c — 1) — 1, S(k, ¢)}
I(k,c) = min{I(k + 1,c — 1), Sk, c)}
where snake(k,x) = min{x,min{z: a,...a,_,
=b, kb 144l )

As before, it is straightforward to derive a linear-space
version of the recurrence relation.

Figure 4 gives the pseudo-code for delivering the align-
ment in linear space. Line 12 determines the correct partition
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Fig. 3. An illustration of f;.

point because, for any specific diagonal, vectors S, D and / are
monotonically increasing with respect to the cost, while S, D
and T are monotonically decreasing. The time complexity of
Phase 2 is O(N x Dist).

Implementation

The heuristic first phase uses array storage for 4” characters to
represent the hash table. Its time complexity is O(M + N) plus
0O(4") time for building the hash table. FRONT and BACK are
each of size at most M. In contrast, the exact first phase uses
array storage for 6M + 6N + 12 integers. The second phase
recycles all the storage from the first phase and allocates array
storage for 12D + 6 integers, where D is the distance between
the sequences.

Example

As molecular biology enters the era of large-scale sequen-
cing, an unprecedented volume of relatively unannotated
sequence data, which includes tens to hundreds of megabases
of human genomic sequences, is expected to be submitted to
the public databases each year. It is almost impossible to
study the biological functions of those large genomic
sequences if they are not integrated with the other related
biological data, such as the cDNA/mRNA sequences, the EST
sequences, and the STS markers mapped by various methods.
Sequence alignment is the most common and essential

procedure path(l,,J,, Type,, I,,J,, Type,, Dist)

computational analysis to establish the relationships within
this vast collection of data. Sim3 is an indispensable tool for
genome research because it can compute alignments for long
DNA sequences and is fast enough to handle the large data
volume. Recently, the National Center for Biotechnology
Information (NCBI) created a Genomes Division (J.Zhang
and J.Ostell, unpublished) for the data retrieval system Entrez
(Schuler et al., 1996), which organizes sequence data for
model organisms and provides an integrated graphic view of
the genetic, physical, cytogenetic and sequence data. Sim3
has been used extensively to compile the non-redundant
sequence maps for model organisms in the Genomes
Division.

It is a daunting task to organize sequence data for a model
organism. The problem is complicated by the huge volume
and rapid growth of the sequence data, the high level of
data redundancy, and the hierarchical relationships between
the genomic sequences, the cDNA/mRNA sequences, and the
EST and STS sequences complicate the problem. The most
complex case is the human genome. As of June 1996, there
were a total of 217 774 765 bp of 497 953 human sequences
with ~7-fold redundancy (J.Zhang, unpublished) in the
public sequence databases. On average, <1% of the genome is
sequenced. Each chromosome consists of islands of known
genomic sequences separated by large, unsequenced gaps.
One genomic sequence may encode multiple genes. One gene
may have several alternatively spliced transcript sequences,

1.

2 { if boundary cases then

3 { Output the edit script; return; )

4 else

5. {

6. mid — Dist/2

7 mid «— Dist — mid

8. A linear-space forward pass computes S(k, mid ), D(k, mid ), and I(k, mud )
9. fordy - —mid=k=J, -1, +mid. __

10. A linear-space backward pass computes S(k, mid ), D(k, mid ), and T(k, mid )
11. ford, — I, —md =k <J, — I, + mid.

12. Let K be the diagonal such that X(K, mid) = X(K,mid), where X is S, D, or 1.
13. path(ly,J,, Type,, X (K, mid), X(K, mid) + K. X, mid)

14. path(X(K,mid), X(K,mid) + K, X,1,,J,, Type,, mid )

}
}

Fig. 4. Delivering the alignment in linear space.
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Fig. 5. Construction of the non-redundant sequence maps for the human genome. The ovals show the algorithms and the rectangles are the input and output data
at each stage. The arrows indicate the directions of the data flow. Local alignments were computed with sim2 to build the contig sequence for a cluster of
transcript or genomic sequences. Each member of the cluster is aligned to the contig with sim3. The contig for a transcript sequence is also aligned to its parental
cluster for the genomic sequences to represent the hierarchical relationship. A more rigorous algorithm is in development to compute the alignment between the

transcript sequence and the genomic sequence.

and one transcript sequence may have fragments that were
sequenced multiple times to give ESTs. In the Genomes
Division, a non-redundant sequence map was compiled for
each chromosome, and the complex relationships among the
sequence data are represented by optimal, gapped alignments
computed with the sim (Huang et al., 1990), sim2 and sim3
programs. Both sim and sim2 compute the top K (arbitrary)
non-intersecting local alignments for very long sequences,
while sim3 computes a global alignment.

Figure 5 illustrates the various stages of the process. We
use the ADH2 gene on human chromosome 4 as an example.

Sequences at the same level of genome organization were
treated as a cluster. For the ADH2 gene, transcript sequences
were grouped as a UniGene (Boguski and Schuler, 1995)
cluster. Local alignments were computed with the sim?2
program to build a contig from the overlapping sequences.
The contig served as the master sequence and each member
was aligned to it with sim3. Figure 6 is the graphic view of
the alignments between the master sequence and the ADH2
transcript sequences. There are four mRNA and three EST
sequences in this cluster. The master sequence gives the
non-redundant view of the data, while the alignments
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Fig. 6. A graphical view of the alignments of the transcript sequences for the ADH2 gene. The master sequence is assigned the UniGene cluster id 4. There are
four mRNAs (accessions X03350, M21692, M24317 and D00137) and three EST sequences (accessions T50861, T50706 and N79771) in the cluster. The dark
lines underneath the contig and the mRNA sequences mark the annotated coding region features. A vertical line attached with a box indicates an insertion in the
aligned sequences. There are insertions at the 3" UTR of X03350 and M21692. Mismatches are marked by vertical bars inside the sequence box. A single line
connecting two adjacent sequence boxes represents a gap (see Figure 8 for the gaps between the genomic sequence and the transcript sequence)
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Fig. 7. Text view of the alignments of the transcript sequences for the ADH2 gene. The first line is the DNA sequence, the second is the protein sequence from the
coding region. The stop codon is marked with the triplet ‘**** symbol. If the aligned nucleotide is identical to the master, it is indicated as a dot; otherwise the
actual base is presented. The boxed region may suggest a potential polymorphism.

show sequence variations. Some of the variations can be
attributed to sequencing errors. There are increased sequence
discrepancies at the 3’ end of the two EST sequences
(accessions N79771 and T50861), which is consistent with
the decreased resolution at the end of the sequencing gel.
Other discrepancies may suggest potential polymorphism. In
the 3’ untranslated region, at position 1253 of the master
sequence (the boxed region in Figure 7), two mRNAs
(accessions X03350 and M21692) have residue ‘g’ and the
other two mRNAs (accessions M24317 and D00137) have
residue ‘a’. One mRNA sequence (accession M24317) has a
shorter 3’ untranslated region than the others because of
alternative splicing.

The same procedure was also applied to the genomic
sequences. Figure 8 shows the alignments for the
genomic cluster of ADH2 sequences, which includes two
genomic sequences (accessions SEG_HUMADH2S0 and
SEG_HUMADH2E) and one STS sequence (accession

G05714). The genomic contig defines an HGM (Human
GenoMic) cluster in the Genomes Division. The speed of
sim3 enables it to complete all the alignments for the entire
human genome overnight. The hierarchical relationship
between the transcript cluster and its parental genomic
cluster is also represented by a sequence alignment. In
Figure 8, the UniGene contig is aligned to the HGM cluster
of the ADH2 gene. The alignment reflects the coding-region
structure of the genomic sequence, with aligned regions
corresponding to exons and gaps covering the introns.
Currently, we do not have a rigorous algorithm to align a
genomic sequence to its transcript sequence if there are large
introns in the coding region. For now, we use sim to compute
the alignment with the gap extension penalty set to zero. A
variation of sim3 is in development which will be able to
handle large gap size. The HGM clusters will then be
localized on the chromosome by a number of methods
(J.Zhang and J.Ostell, in preparation). Entrez Genomes
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Fig. 8. A graphical view of the alignments of the genomic sequences for the ADH2 gene. The master sequence (HGM_4) was constructed by merging the three
overlapping sequences, SEG_HUMADH2S0, SEG_HUMADH2E and G05714. The coding region features are displayed together with the alignments.
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Division can be browsed either via the World Wide Web
(http://www.ncbi.nlm.nih.gov) or with the network Entrez
software, which can be downloaded from the NCBI
anonymous ftp site (ncbi.nlm.nih.gov).

Discussion

Sim3 is one of a suite of pairwise alignment tools that we
have developed. Each of them is designed to deal with
genomic DNA sequences, where a primary concern is with
the potentially huge length of the alignment. Three of the
programs, called blast, sim and sim2, aim to find all of
the significant matching regions, allowing for repeated
regions (such as a family of related genes) within each
sequence. Blast (Schwartz et al., 1991) is a much simplified
version of a database searching program of the same name
(Altschul et al., 1990), and reports only gap-free alignments.
Sim permits gaps, and hence can find matches overlooked
by blast, but typically runs a few thousand times slower
(e.g. 10 h as opposed to 10 s for sequences of length 100 000).
Sim2 (Chao et al., 1995) attempts to attain sim’s sensitivity
with improved time efficiency.

Sim3 provides a very efficient solution for a much more
specialized problem. It computes just a single continuous
alignment that is required to include all of the shorter
sequence. In particular, sim3 is not intended for comparison
of a cDNA sequence with genomic DNA, allowing for
introns. However, in its favor, when the shorter sequence is
very similar to a region of the longer sequence, sim3 runs
faster than even blast, and for certain applications its output is
much more useful. For instance, on our Sparc 5 workstation,
sim3 takes 1.5s to compare the 91414 nucleotides of
GenBank Locus ECOUWSS with a 726039 nucleotide
contig containing it (modulo 23 nucleotides inserted, deleted,
or replaced), whereas blast takes 30s. Moreover, compared
with sim and especially sim2, it is extremely simple to use;
one need not be concerned with correct alignment-scoring
parameters.

The algorithmic underpinnings of sim3 include ‘greedy’
algorithms for solving a simple formulation of the alignment
problem called the ‘longest common subsequence problem’,
which is equivalent to finding the fewest (one-character)
insertion and deletion operations that will convert one given
sequence to another. Let M and N be the two sequence
lengths, and let E denote that minimum number of operations
(i.c. the edit distance between the two sequences). Greedy
alignment algorithms (Ukkonen, 1985; Myers, 1986; Wu
et al., 1990) are ideally suited to the case where E is very
small compared to M and N; they run in worst-case time
O(min (M,N) E) and space O(M +N) [Myers (1986) first
obtained that space bound with a greedy approach]. Greedy
alignment algorithms have been implemented for deter-
mining the lines that need to be inserted or deleted to convert

one given text file to another (Miller and Myers, 1985; Miller,
1987) and can be generalized to produce optimal sets of
editing operations when substitutions are counted and when a
run of k consecutive inserted (or deletions) letters is given
the score o + (k for fixed « and 8 (Myers and Miller, 1989).
Greedy algorithms can also accommodate symbol-dependent
substitution costs (e.g. a penalty for transversions that differs
from the penalty for transitions), but we have not chosen to
implement that option. Other algorithms (Kumar and Rangan,
1987; Apostolico et al., 1992) have been developed to solve
the longest common subsequence problem in these same
worst-case time and space bounds, but greedy algorithms
have the advantage of a much better expected-case time
bound of O(NE?).
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