1 Probability and Statistics

(1) (combinatorics)
Let $C(N,K) = 1$ for $K = 0$ or $K = N$, and $C(N,K) = C(N-1,K) + C(N-1,K-1)$ for $N \geq 1$.
Prove that $C(N,K) = \frac{N!}{K!(N-K)!}$ for $N \geq 1$ and $0 \leq K \leq N$.

(2) (counting)
What is the probability of getting exactly 4 heads when flipping 10 fair coins?

What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of
a deck of 52 cards?

(3) (conditional probability)
If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what
is the probability that all three tosses resulted in heads?

(4) (Bayes theorem)
A program selects a random integer X like this: a random bit is first generated uniformly. If the bit
is 0, X is drawn uniformly from $\{0,1,\ldots,7\}$; otherwise, X is drawn uniformly from $\{0,-1,-2,-3\}$.
If we get an X from the program with $|X| = 1$, what is the probability that X is negative?

(5) (union/intersection)
If $P(A) = 0.3$ and $P(B) = 0.4$,
what is the maximum possible value of $P(A \cap B)$?

what is the minimum possible value of $P(A \cap B)$?

what is the maximum possible value of $P(A \cup B)$?

what is the minimum possible value of $P(A \cup B)$?

(6) (mean/variance)
Let mean $\mu = \frac{1}{N} \sum_{n=1}^{N} X_n$ and variance $\sigma_X^2 = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \mu)^2$.
Prove that
$\sigma_X^2 = \frac{N}{N-1} \left(\frac{1}{N} \sum_{n=1}^{N} X_n^2 - \mu^2 \right)$.

(7) (Gaussian distribution)
If X_1 and X_2 are independent random variables, where $p(X_1)$ is Gaussian with mean 2 and variance 1,
$p(X_2)$ is Gaussian with mean -3 and variance 4. Let $Z = X_1 + X_2$. Prove $p(Z)$ is Gaussian, and
determine its mean and variance.

2 Linear Algebra

(1) (rank)
What is the rank of
\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & 0 & 3 \\
1 & 1 & 2
\end{pmatrix}
\]

(2) (inverse)
What is the inverse of
\[
\begin{pmatrix}
0 & 2 & 4 \\
2 & 4 & 2 \\
3 & 3 & 1
\end{pmatrix}
\]
(3) (eigenvalues/eigenvectors)

What are the eigenvalues and eigenvectors of
\[
\begin{pmatrix}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1 \\
\end{pmatrix}
\]

(4) (singular value decomposition)

(a) For a real matrix M, let M = UΣVT be its singular value decomposition. Define M† = VΣ†UT, where Σ†[i][j] = \frac{1}{Σ[i][j]} when Σ[i][j] is nonzero, and 0 otherwise. Prove that MM†M = M.

(b) If M is invertible, prove that M† = M−1.

(5) (PD/PSD)

A symmetric real matrix A is positive definite (PD) iff xTAx > 0 for all x ≠ 0, and positive semi-definite (PSD) if “>” is changed to “≥”. Prove:

(a) For any real matrix Z, ZZT is PSD.

(b) A symmetric A is PD iff all eigenvalues of A are strictly positive.

(6) (inner product)

Consider x ∈ Rd and some u ∈ Rd with ∥u∥ = 1.
What is the maximum value of uTx? What u results in the maximum value?
What is the minimum value of uTx? What u results in the minimum value?
What is the minimum value of |uTx|? What u results in the minimum value?

(7) (distance)

Consider two parallel hyperplanes in Rd:
\[H_1 : w^T x = +3,\]
\[H_2 : w^T x = -2,\]
where w is the norm vector. What is the distance between H1 and H2?

3 Calculus

(1) (differential and partial differential)

Let f(x) = ln(1 + e−2x). What is \(\frac{df(x)}{dx} \)? Let g(x, y) = e^x + e^2y + e^3xy^2. What is \(\frac{\partial g(x, y)}{\partial y} \)?

(2) (chain rule)

Let f(x, y) = xy, x(u, v) = cos(u + v), y(u, v) = sin(u − v). What is \(\frac{\partial f}{\partial v} \)?

(3) (integral)

What is \(\int_5^{10} \frac{2}{x - 3} \, dx \)?

(4) (gradient and Hessian)

Let E(u, v) = (uev − 2ve−u)^2. Calculate the gradient \(\nabla E \) and the Hessian \(\nabla^2 E \) at u = 1 and v = 1.

(5) (Taylor’s expansion)

Let E(u, v) = (uev − 2ve−u)^2. Write down the second-order Taylor’s expansion of E around u = 1 and v = 1.

(6) (optimization)

For some given A > 0, B > 0, solve
\[
\min_{\alpha} \alpha A e^\alpha + B e^{-2\alpha}.
\]
(7) (vector calculus)
Let \(\mathbf{w} \) be a vector in \(\mathbb{R}^d \) and \(E(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} \) for some symmetric matrix \(\mathbf{A} \) and vector \(\mathbf{b} \).
Prove that the gradient \(\nabla E(\mathbf{w}) = \mathbf{A} \mathbf{w} + \mathbf{b} \) and the Hessian \(\nabla^2 E(\mathbf{w}) = \mathbf{A} \).

(8) (quadratic programming)
Following the previous question, if \(\mathbf{A} \) is not only symmetric but also positive definite (PD), prove that the solution of \(\text{argmin}_{\mathbf{w}} E(\mathbf{w}) \) is \(-\mathbf{A}^{-1} \mathbf{b} \).

(9) (optimization with linear constraint)
Consider
\[
\min_{w_1, w_2, w_3} \frac{1}{2} (w_1^2 + 2w_2^2 + 3w_3^2) \text{ subject to } w_1 + w_2 + w_3 = 11.
\]
Refresh your memory on “Lagrange multipliers” and show that the optimal solution must happen on \(w_1 = \lambda, 2w_2 = \lambda, 3w_3 = \lambda \). Use the property to solve the problem.

(10) (optimization with linear constraints)
Let \(\mathbf{w} \) be a vector in \(\mathbb{R}^d \) and \(E(\mathbf{w}) \) be a convex differentiable function of \(\mathbf{w} \). Prove that the optimal solution to
\[
\min_{\mathbf{w}} E(\mathbf{w}) \text{ subject to } \mathbf{A} \mathbf{w} + \mathbf{b} = \mathbf{0}.
\]
must happen at \(\nabla E(\mathbf{w}) + \lambda^T \mathbf{A} = \mathbf{0} \) for some vector \(\lambda \). (Hint: If not, let \(\mathbf{u} \) be the residual when projecting \(\nabla E(\mathbf{w}) \) to the span of the rows of \(\mathbf{A} \). Show that for some very small \(\eta \), \(\mathbf{w} - \eta \cdot \mathbf{u} \) is a feasible solution that improves \(E \).)