Lecture 10: Random Forest

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)
Lecture 10: Random Forest

- Basic Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection
Random Forest

Basic Random Forest Algorithm

Recall: Bagging and Decision Tree

Bagging

function Bag(\(\mathcal{D}, \mathcal{A}\))
For \(t = 1, 2, \ldots, T\)

1. request size-\(N\) data \(\tilde{\mathcal{D}}_t\) by bootstrapping with \(\mathcal{D}\)
2. obtain base \(g_t\) by \(\mathcal{A}(\tilde{\mathcal{D}}_t)\)

return \(G = \text{Uniform}(g_t)\)

—reduces variance by voting/averaging

Decision Tree

function DT\(\text{Tree}(\mathcal{D})\)
if termination return base \(g_t\)
else

1. learn \(b(x)\) and split \(\mathcal{D}\) to \(\mathcal{D}_c\) by \(b(x)\)
2. build \(G_c \leftarrow \text{DT\text{ree}(\mathcal{D}_c)}\)
3. return \(G(x) = \sum_{c=1}^{C} [b(x) = c] G_c(x)\)

—large variance especially if fully-grown

putting them together?
(i.e. aggregate two aggregation models : -))
Random Forest

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\(\mathcal{D}\))
For \(t = 1, 2, \ldots, T\)
1. request size-\(N\) data \(\tilde{\mathcal{D}}_t\) by bootstrapping with \(\mathcal{D}\)
2. obtain base \(G_t\) by DTree(\(\tilde{\mathcal{D}}_t\))
return \(G = \text{Uniform}(G_t)\)

function DTree(\(\mathcal{D}\))
if termination return base \(g_t\)
else
1. learn \(b(x)\) and split \(\mathcal{D}\) to \(\mathcal{D}_c\) by \(b(x)\)
2. build \(G_c \leftarrow \text{DTree}(\mathcal{D}_c)\)
3. return \(G(x) = \sum_{c=1}^{C} [b(x) = c] G_c(x)\)

• highly parallel/efficient to learn
• inherit pros of C&RT
• eliminate cons of fully-grown tree
Diversifying by Feature Projection

recall: **data randomness** for **diversity** in bagging

randomly sample N examples from \mathcal{D}

other possibility:

randomly sample d' features from \mathbf{x}

- chosen index $i_1, i_2, \ldots, i_{d'}$

 $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, \ldots, x_{i_{d'}})$

- $\mathcal{Z} \in \mathbb{R}^{d'}$: a **random subspace** of $\mathcal{X} \in \mathbb{R}^d$

- often $d' \ll d$, efficient when d large

 —can be generally used for other learning models

- original RF re-sample new subspace for each $b(\mathbf{x})$ in C&RT

RF = bagging + random-subspace C&RT
Diversifying by Feature Expansion

randomly sample d' features from \mathbf{x}: $\Phi(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} randomly \in natural basis

more powerful features: row i of \mathbf{P} other than natural basis

- low-dimensional random projection (combination) with \mathbf{u}:

$$\phi_i(\mathbf{x}) = \sum_{j=1}^{d''} u_j x_j$$

- includes random subspace as a special case: $d'' = 1$ and $u_1 = 1$
- original RF consider d' random projections for each $b(\mathbf{x})$ in C&RT

RF = bagging + random-combination C&RT
—randomness everywhere!
Fun Time
Bagging Revisited

Bagging

function \text{Bag}(\mathcal{D}, \mathcal{A})

For \(t = 1, 2, \ldots, T \)

1. request size-\(N \) data \(\tilde{\mathcal{D}}_t \) by bootstrapping with \(\mathcal{D} \)
2. obtain base \(g_t \) by \(\mathcal{A}(\tilde{\mathcal{D}}_t) \)

return \(G = \text{Uniform}(g_t) \)

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(\ldots)</th>
<th>(g_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1))</td>
<td>(\tilde{\mathcal{D}}_1)</td>
<td>(\ast)</td>
<td>(\tilde{\mathcal{D}}_3)</td>
<td>(\tilde{\mathcal{D}}_T)</td>
<td></td>
</tr>
<tr>
<td>((x_2, y_2))</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\tilde{\mathcal{D}}_3)</td>
<td>(\tilde{\mathcal{D}}_T)</td>
<td></td>
</tr>
<tr>
<td>((x_3, y_3))</td>
<td>(\ast)</td>
<td>(\tilde{\mathcal{D}}_1)</td>
<td>(\ast)</td>
<td>(\tilde{\mathcal{D}}_T)</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td></td>
</tr>
<tr>
<td>((x_N, y_N))</td>
<td>(\tilde{\mathcal{D}}_1)</td>
<td>(\tilde{\mathcal{D}}_2)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td></td>
</tr>
</tbody>
</table>

\(\ast \): not used for obtaining \(g_t \)
—called out-of-bag (OOB) examples
Number of OOB Examples

OOB (in ⋄) ⇐⇒ not sampled after N **drawings**

- probability for (x_n, y_n) to be OOB for g_t: $(1 - \frac{1}{N})^N$
- if N large:

$$
\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N} \approx \frac{1}{e}
$$

OOB size per $g_t \approx \frac{1}{e} N$
Random Forest

Out-Of-Bag Estimate

OOB versus Validation

OOB

<table>
<thead>
<tr>
<th></th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>...</th>
<th>g_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1, y_1)</td>
<td>\tilde{D}_1</td>
<td>\star</td>
<td>\tilde{D}_3</td>
<td>\tilde{D}_T</td>
<td></td>
</tr>
<tr>
<td>(x_2, y_2)</td>
<td>\star</td>
<td>\star</td>
<td>\tilde{D}_3</td>
<td>\tilde{D}_T</td>
<td></td>
</tr>
<tr>
<td>(x_3, y_3)</td>
<td>\star</td>
<td>\tilde{D}_1</td>
<td>\star</td>
<td>\tilde{D}_T</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_N, y_N)</td>
<td>\tilde{D}_1</td>
<td>\tilde{D}_2</td>
<td>\star</td>
<td>\star</td>
<td></td>
</tr>
</tbody>
</table>

Validation

<table>
<thead>
<tr>
<th></th>
<th>g_1^-</th>
<th>g_2^-</th>
<th>...</th>
<th>g_M^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{D}_{\text{train}}$</td>
<td>$\mathcal{D}_{\text{train}}$</td>
<td>$\mathcal{D}_{\text{train}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{D}_{val}</td>
<td>\mathcal{D}_{val}</td>
<td>\mathcal{D}_{val}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{D}_{val}</td>
<td>\mathcal{D}_{val}</td>
<td>\mathcal{D}_{val}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{D}_{\text{train}}$</td>
<td>$\mathcal{D}_{\text{train}}$</td>
<td>$\mathcal{D}_{\text{train}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \star like \mathcal{D}_{val}: ‘enough’ random examples unused during training
- use \star to validate g_t? easy, but rarely needed (why?)
- use \star to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \text{err}(y_n, G^-_n(x_n))$, with G^-_n contains only trees that x_n is OOB of

E_{oob}: self-validation of bagging/RF
Model Selection by OOB Error

Previously: by Best E_{val}

$$g_m^* = A_m^*(\mathcal{D})$$
$$m^* = \arg\min_{1 \leq m \leq M} E_m$$
$$E_m = E_{\text{val}}(A_m(\mathcal{D}_{\text{train}}))$$

RF: by Best E_{oob}

$$g_m^* = RF_m^*(\mathcal{D})$$
$$m^* = \arg\min_{1 \leq m \leq M} E_m$$
$$E_m = E_{\text{oob}}(RF_m(\mathcal{D}))$$

- use E_{oob} for self-validation
- no re-training needed

E_{oob} often accurate in practice
Feature Selection

for $\mathbf{x} = (x_1, x_2, \ldots, x_d)$, want to remove

- redundant features: like keeping one of ‘age’ and ‘full birthday’
- irrelevant features: like insurance type for cancer prediction

and only ‘learn’ a subset-transform $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}})$ with $d' < d$ for the final hypothesis $g(\Phi(\mathbf{x}))$

advantages:
- efficiency: simpler hypothesis and shorter prediction time
- generalization: ‘feature noise’ removed
- interpretability

disadvantages:
- computation: ‘combinatorial’ optimization in training
- overfit: ‘combinatorial’ selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

Hsuan-Tien Lin (NTU CSIE)
Feature Selection by Importance

idea: if possible to estimate

importance(i) for i = 1, 2, . . . , d

then can select i_1, i_2, . . . , i_{d'} of top-d' importance values

Linear Model

\[s = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^{d} w_i x_i \]

• intuitive estimate: importance(i) = |w_i| with some ‘good’ \(\mathbf{w} \)
• ‘good’ \(\mathbf{w} \): learned with full data
• non-linear models? often not easy

next: feature selection in RF
Feature Importance by Permutation Test

idea: random test
— if feature i needed, ‘random’ values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, ...: $P(x_i)$ changed
 - bootstrap, permutation (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i) \approx$ remained

- permutation test:

 $\text{importance}(i) = \text{performance}(\mathcal{D}) - \text{performance}(\mathcal{D}_p)$

with \mathcal{D}_p containing permuted $\{x_{n,i}\}_{n=1}^{N}$

permutation test: a general statistical tool that can be used for arbitrary non-linear models like RF
Feature Importance in Original Random Forest

permutation test:

\[
\text{importance}(i) = \text{performance}(\mathcal{D}) - \text{performance}(\mathcal{D}_p)
\]

with \(\mathcal{D}_p\) containing permuted \(\{x_{n,i}\}_{n=1}^{N}\)

- calculating performance needs re-training and validating on each \(\mathcal{D}_p\) in general
- how to ‘escape’ validation? OOB in RF
- original RF solution:

\[
\text{importance}(i) = E_{oob}(G, \mathcal{D}) - E_{oob}(G, \mathcal{D}_p)
\]

with \(\mathcal{D}_p\) ‘dynamically’ containing permuted \(\{x_{n,i} : n \text{ OOB}\}\) for \(g_t\)

original RF solution often efficient and promising in practice
Fun Time
Lecture 10: Random Forest

- Basic Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection