Lecture 6: Theory of Generalization

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. When Can Machines Learn?
2. **Why** Can Machines Learn?

Lecture 5: Training versus Testing
- **effective** price of choice in training: *(wishfully)*
- growth function \(m_H(N) \) with a break point

Lecture 6: Theory of Generalization
- Restriction of Break Point
- Bounding Function: Basic Cases
- Bounding Function: Inductive Cases
- A Pictorial Proof

3. How Can Machines Learn?
4. How Can Machines Learn Better?
The Four Break Points

growth function $m_{\mathcal{H}}(N)$: max number of dichotomies

- positive rays: $m_{\mathcal{H}}(2) = 3 < 2^2$: break point at 2
 $m_{\mathcal{H}}(N) = N + 1$

- positive intervals: $m_{\mathcal{H}}(3) = 7 < 2^3$: break point at 3
 $m_{\mathcal{H}}(N) = \frac{1}{2} N^2 + \frac{1}{2} N + 1$

- convex sets: $m_{\mathcal{H}}(N) = 2^N$ always: no break point

- 2D perceptrons: $m_{\mathcal{H}}(4) = 14 < 2^4$: break point at 4
 $m_{\mathcal{H}}(N) < 2^N$ in some cases

break point k, break point $k + 1$, ... what else?
Restriction of Break Point (1/2)

What ‘must be true’ when minimum break point \(k = 2 \)

- \(N = 1 \): every \(m_{\mathcal{H}}(N) = 2 \) by definition
- \(N = 2 \): every \(m_{\mathcal{H}}(N) < 4 \) by definition
 (so maximum possible = 3)

Maximum possible \(m_{\mathcal{H}}(N) \) when \(N = 3 \) and \(k = 2 \)?

1 dichotomy, shatter any two points? No

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bigcirc)</td>
<td>(\bigcirc)</td>
<td>(\bigcirc)</td>
</tr>
</tbody>
</table>
Restriction of Break Point (1/2)

what ‘must be true’ when \textbf{minimum break point} \(k = 2 \)

- \(N = 1 \): every \(m_{\mathcal{H}}(N) = 2 \) by definition
- \(N = 2 \): every \(m_{\mathcal{H}}(N) < 4 \) by definition
 (so \textbf{maximum possible} = 3)

maximum possible \(m_{\mathcal{H}}(N) \) when \(N = 3 \) and \(k = 2 \)?

2 dichotomies , shatter any two points? \textbf{no}

\[
\begin{array}{ccc}
\mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\
\circ & \circ & \circ \\
\circ & \circ & \times \\
\end{array}
\]
Theory of Generalization

Restriction of Break Point

Restriction of Break Point (1/2)

what ‘must be true’ when minimum break point $k = 2$

- $N = 1$: every $m_{\mathcal{H}}(N) = 2$ by definition
- $N = 2$: every $m_{\mathcal{H}}(N) < 4$ by definition
 (so maximum possible = 3)

maximum possible $m_{\mathcal{H}}(N)$ when $N = 3$ and $k = 2$?

3 dichotomies, shatter any two points? no

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
</tbody>
</table>
Theory of Generalization

Restriction of Break Point

Restriction of Break Point (1/2)

what ‘must be true’ when **minimum break point** $k = 2$

- $N = 1$: every $m_H(N) = 2$ by definition
- $N = 2$: every $m_H(N) < 4$ by definition
 (so **maximum possible** = 3)

maximum possible $m_H(N)$ when $N = 3$ and $k = 2$?

4 dichotomies, shatter any two points? **yes**

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Restriction of Break Point (1/2)

what ‘must be true’ when \textbf{minimum break point} $k = 2$

- $N = 1$: every $m_H(N) = 2$ by definition
- $N = 2$: every $m_H(N) < 4$ by definition
 (so \textbf{maximum possible} = 3)

maximum possible $m_H(N)$ when $N = 3$ and $k = 2$?

4 dichotomies, shatter any two points? \textbf{no}

\begin{tabular}{ccc}
 \hline
 x_1 & x_2 & x_3 \\
 \hline
 \circ & \circ & \circ \\
 \circ & \circ & \times \\
 \circ & \times & \circ \\
 \times & \circ & \circ \\
 \hline
\end{tabular}
Restriction of Break Point (1/2)

what ‘must be true’ when minimum break point \(k = 2 \)

- \(N = 1 \): every \(m_\mathcal{H}(N) = 2 \) by definition
- \(N = 2 \): every \(m_\mathcal{H}(N) < 4 \) by definition (so maximum possible = 3)

maximum possible \(m_\mathcal{H}(N) \) when \(N = 3 \) and \(k = 2 \)?

5 dichotomies, shatter any two points? yes

<table>
<thead>
<tr>
<th>(\mathbf{x}_1)</th>
<th>(\mathbf{x}_2)</th>
<th>(\mathbf{x}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>x</td>
<td>o</td>
<td>x</td>
</tr>
</tbody>
</table>
Restriction of Break Point (1/2)

what ‘must be true’ when minimum break point $k = 2$

- $N = 1$: every $m_{\mathcal{H}}(N) = 2$ by definition
- $N = 2$: every $m_{\mathcal{H}}(N) < 4$ by definition
 (so maximum possible = 3)

maximum possible $m_{\mathcal{H}}(N)$ when $N = 3$ and $k = 2$?

5 dichotomies, shatter any two points? yes

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
</tbody>
</table>

Hsuan-Tien Lin (NTU CSIE)
Restriction of Break Point (1/2)

what ‘must be true’ when minimum break point \(k = 2 \)

- \(N = 1 \): every \(m_{\mathcal{H}}(N) = 2 \) by definition
- \(N = 2 \): every \(m_{\mathcal{H}}(N) < 4 \) by definition
 (so maximum possible = 3)

maximum possible \(m_{\mathcal{H}}(N) \) when \(N = 3 \) and \(k = 2 \)?

5 dichotomies, shatter any two points? yes

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Restriction of Break Point (1/2)

what ‘must be true’ when minimum break point \(k = 2 \)

- \(N = 1 \): every \(m_H(N) = 2 \) by definition
- \(N = 2 \): every \(m_H(N) < 4 \) by definition (so maximum possible = 3)

maximum possible \(m_H(N) \) when \(N = 3 \) and \(k = 2 \)?

maximum possible so far: 4 dichotomies

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>2</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

:-) :-) :-)
Restriction of Break Point (2/2)

what ‘must be true’ when minimum break point $k = 2$

- $N = 1$: every $m_H(N) = 2$ by definition
- $N = 2$: every $m_H(N) < 4$ by definition
 (so maximum possible = 3)
- $N = 3$: maximum possible = 4 $\ll 2^3$

—break point k restricts maximum possible $m_H(N)$ a lot for $N > k$

idea: $m_H(N)$

\leq maximum possible $m_H(N)$ given k

$\leq poly(N)$
When minimum break point $k = 1$, what is the maximum possible $m_{\mathcal{H}}(N)$ when $N = 3$?

Reference Answer: 1

Because $k = 1$, the hypothesis set cannot even shatter one point. Thus, every ‘column’ of the table cannot contain both \circ and \times. Then, after including the first dichotomy, it is not possible to include any other different dichotomy. Thus, the maximum possible $m_{\mathcal{H}}(N)$ is 1.
Bounding Function

Bounding function $B(N, k)$:
maximum possible $m_{\mathcal{H}}(N)$ when break point $= k$

- combinatorial quantity:
 maximum number of length-N vectors with (\circ, \times)
 while *no shatter* any length-k subvectors

- irrelevant of the details of \mathcal{H}
 e.g. $B(N, 3)$ bounds both
 - positive intervals ($k = 3$)
 - 1D perceptrons ($k = 3$)

new goal: $B(N, k) \leq \text{poly}(N)$?
Table of Bounding Function (1/4)

<table>
<thead>
<tr>
<th>(B(N, k))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Known

- \(B(2, 2) = 3 \) (maximum < 4)
- \(B(3, 2) = 4 \) (‘pictorial’ proof previously)
Table of Bounding Function (2/4)

<table>
<thead>
<tr>
<th>$B(N, k)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Known

- $B(N, 1) = 1$ (see previous quiz)
Table of Bounding Function (3/4)

<table>
<thead>
<tr>
<th>$B(N, k)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Known

- $B(N, k) = 2^N$ for $N < k$
 —including all dichotomies not violating ‘breaking condition’
Theory of Generalization

Bounding Function: Basic Cases

Table of Bounding Function (4/4)

<table>
<thead>
<tr>
<th>(B(N, k))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>(\ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>31</td>
<td>32</td>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>63</td>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Known

- \(B(N, k) = 2^N - 1\) for \(N = k\)
 - removing a single dichotomy satisfies ‘breaking condition’

more than halfway done! :-)
For the 2D perceptrons, which of the following claim is true?

1. minimum break point \(k = 2 \)
2. \(m_{\mathcal{H}}(4) = 15 \)
3. \(m_{\mathcal{H}}(N) < B(N, k) \) when \(N = k = \) minimum break point
4. \(m_{\mathcal{H}}(N) > B(N, k) \) when \(N = k = \) minimum break point

Reference Answer: 3

As discussed previously, minimum break point for 2D perceptrons is 4, with \(m_{\mathcal{H}}(4) = 14 \). Also, note that \(B(4, 4) = 15 \). So bounding function \(B(N, k) \) can be ‘loose’ in bounding \(m_{\mathcal{H}}(N) \).
Estimating $B(4, 3)$

<table>
<thead>
<tr>
<th>$B(N, k)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>?</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>31</td>
<td>32</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Motivation

- $B(4, 3)$ shall be related to $B(3, ?)$
 —‘adding’ one point from $B(3, ?)$

next: reduce $B(4, 3)$ to $B(3, ?)$
‘Achieving’ Dichotomies of $B(4,3)$

after checking all 2^{24} sets of dichotomies, the winner is ...

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>02</td>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>03</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>04</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>05</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>06</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>07</td>
<td>x</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>08</td>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>09</td>
<td>o</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>11</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
</tbody>
</table>

how to reduce $B(4,3)$ to $B(3,?)$ cases?
Reorganized Dichotomies of $B(4, 3)$

after checking all 2^{24} sets of dichotomies, **the winner is** . . .

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>02</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>03</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>04</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>05</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>06</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>07</td>
<td>×</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>08</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>09</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>11</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

orange: pair; **purple**: single
Estimating Part of $B(4, 3)$ (1/2)

$$B(4, 3) = 11 = 2\alpha + \beta$$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
</tbody>
</table>

- $\alpha + \beta$: dichotomies on (x_1, x_2, x_3)
- $B(4, 3)$ ‘no shatter’ any 3 inputs
 $\implies \alpha + \beta$ ‘no shatter’ any 3

$$\alpha + \beta \leq B(3, 3)$$
Estimating Part of $B(4, 3)$ (2/2)

$B(4, 3) = 11 = 2\alpha + \beta$

- α: dichotomies on (x_1, x_2, x_3) with x_4 paired
- $B(4, 3)$ ‘no shatter’ any 3 inputs $\implies \alpha$ ‘no shatter’ any 2

$\alpha \leq B(3, 2)$
Putting It All Together

\[
B(4, 3) = 2\alpha + \beta
\]

\[
\alpha + \beta \leq B(3, 3)
\]

\[
\alpha \leq B(3, 2)
\]

\[
\Rightarrow B(4, 3) \leq B(3, 3) + B(3, 2)
\]

<table>
<thead>
<tr>
<th>(B(N, k))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(\leq 5)</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(\leq 6)</td>
<td>(\leq 16)</td>
<td>(\leq 26)</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>(\leq 7)</td>
<td>(\leq 22)</td>
<td>(\leq 42)</td>
<td>(\leq 57)</td>
<td>63</td>
</tr>
</tbody>
</table>

now have upper bound of bounding function
Putting It All Together

\[B(N, k) = 2\alpha + \beta \]
\[\alpha + \beta \leq B(N - 1, k) \]
\[\alpha \leq B(N - 1, k - 1) \]
\[\Rightarrow B(N, k) \leq B(N - 1, k) + B(N - 1, k - 1) \]

\[
\begin{array}{cccccc}
B(N, k) & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 2 & 2 & 2 & 2 \\
2 & 1 & 3 & 4 & 4 & 4 & 4 \\
3 & 1 & \text{4} & 7 & \text{8} & 8 & 8 \\
N & 4 & 1 & \leq 5 & 11 & 15 & 16 & 16 \\
5 & 1 & \leq 6 & \leq 16 & \leq 26 & 31 & 32 \\
6 & 1 & \leq 7 & \leq 22 & \leq 42 & \leq 57 & 63 \\
\end{array}
\]

now have upper bound of bounding function
Bounding Function: The Theorem

\[
B(N, k) \leq \sum_{i=0}^{k-1} \binom{N}{i}
\]

- highest term \(N^{k-1}\)

- simple induction using **boundary and inductive formula**
- for fixed \(k\), \(B(N, k)\) upper bounded by \(\text{poly}(N)\)
 \(\implies m_H(N)\) is \(\text{poly}(N)\) if break point exists

\[\leq\] can be \(=\) actually,

go play and prove it if math lover! :-)

Hsuan-Tien Lin (NTU CSIE)
The Three Break Points

\[B(N, k) \leq \sum_{i=0}^{k-1} \binom{N}{i} \]

highest term \(N^{k-1} \)

- **positive rays:**
 \[m_\mathcal{H}(2) = 3 < 2^2: \text{break point at 2} \]
 \[m_\mathcal{H}(3) = 7 < 2^3: \text{break point at 3} \]

- **positive intervals:**
 \[m_\mathcal{H}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \leq \frac{1}{2}N^2 + \frac{1}{2}N + 1 \]

- **2D perceptrons:**
 \[m_\mathcal{H}(N) = ? \leq \frac{1}{6}N^3 + \frac{5}{6}N + 1 \]

\[m_\mathcal{H}(4) = 14 < 2^4: \text{break point at 4} \]

\(\text{can bound } m_\mathcal{H}(N) \text{ by only one break point} \)
For 1D perceptrons (positive and negative rays), we know that $m_{\mathcal{H}}(N) = 2N$. Let k be the minimum break point. Which of the following is not true?

1. $k = 3$
2. for some integers $N > 0$, $m_{\mathcal{H}}(N) = \sum_{i=0}^{k-1} \binom{N}{i}$
3. for all integers $N > 0$, $m_{\mathcal{H}}(N) = \sum_{i=0}^{k-1} \binom{N}{i}$
4. for all integers $N > 2$, $m_{\mathcal{H}}(N) < \sum_{i=0}^{k-1} \binom{N}{i}$

Reference Answer: 3

The proof is generally trivial by listing the definitions. For (2), $N = 1$ or 2 gives the equality. One thing to notice is (4): the upper bound can be ‘loose’.
BAD Bound for General \mathcal{H}

want:

$$\mathbb{P}\left[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2 \cdot m_{\mathcal{H}}(N) \cdot \exp \left(-2 \cdot \epsilon^2 N \right)$$

actually, when N large enough,

$$\mathbb{P}\left[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2 \cdot 2^{m_{\mathcal{H}}(2N)} \cdot \exp \left(-2 \cdot \frac{1}{16} \epsilon^2 N \right)$$

next: **sketch** of proof
Step 1: Replace E_{out} by E_{in}'

\[
\frac{1}{2} \mathbb{P} \left[\exists h \in \mathcal{H} \text{ s.t. } |E_{in}(h) - E_{out}(h)| > \epsilon \right] \\
\leq \mathbb{P} \left[\exists h \in \mathcal{H} \text{ s.t. } |E_{in}(h) - E_{in}'(h)| > \frac{\epsilon}{2} \right]
\]

- $E_{in}(h)$ finitely many, $E_{out}(h)$ infinitely many — replace the evil E_{out} first
- how? sample verification set \mathcal{D}' of size N to calculate E_{in}'
- BAD h of $E_{in} - E_{out}$ probably \implies BAD h of $E_{in} - E_{in}'$

evil E_{out} removed by verification with ‘ghost data’
Step 2: Decompose \mathcal{H} by Kind

BAD $\leq 2 \mathbb{P} \left[\exists h \in \mathcal{H} \text{ s.t. } |E_{in}(h) - E'_{in}(h)| > \frac{\epsilon}{2} \right]$

$\leq 2 m_{\mathcal{H}}(2N) \mathbb{P} \left[\text{fixed } h \text{ s.t. } |E_{in}(h) - E'_{in}(h)| > \frac{\epsilon}{2} \right]$

- E_{in} with \mathcal{D}, E'_{in} with $\mathcal{D'}$
 - now $m_{\mathcal{H}}$ comes to play
- how? infinite \mathcal{H} becomes
 $|\mathcal{H}(x_1, \ldots, x_N, x'_1, \ldots, x'_N)|$
 kinds
- union bound on $m_{\mathcal{H}}(2N)$ kinds

use $m_{\mathcal{H}}(2N)$ to calculate BAD-overlap properly
Step 3: Use Hoeffding without Replacement

\[
\text{BAD} \leq 2m_H(2N) \mathbb{P}\left[\text{fixed } h \text{ s.t. } |E_{\text{in}}(h) - E'_{\text{in}}(h)| > \frac{\epsilon}{2} \right]
\leq 2m_H(2N) \cdot 2 \exp\left(-2 \left(\frac{\epsilon}{4}\right)^2 N\right)
\]

- consider bin of 2N examples, choose N for \(E_{\text{in}}\), leave others for \(E'_{\text{in}}\)
 \(|E_{\text{in}} - E'_{\text{in}}| > \frac{\epsilon}{2} \iff |E_{\text{in}} - \frac{E_{\text{in}} + E'_{\text{in}}}{2}| > \frac{\epsilon}{4}\)
- so? just ‘smaller bin’, ‘smaller \(\epsilon\)’, and Hoeffding without replacement

use Hoeffding after zooming to fixed \(h\)
Vapnik-Chervonenkis (VC) bound:

$$\mathbb{P}\left[\exists h \in \mathcal{H} \text{ s.t. } |E_{in}(h) - E_{out}(h)| > \epsilon \right] \leq 4m_{\mathcal{H}}(2N) \exp \left(-\frac{1}{8} \epsilon^2 N \right)$$

- replace E_{out} by E'_{in}
- decompose \mathcal{H} by kind
- use Hoeffding without replacement

2D perceptron:
- break point? 4
- $m_{\mathcal{H}}(N)$? $O(N^3)$

learning with 2D perceptrons feasible! :-)

That’s All!
For positive rays, \(m_H(N) = N + 1 \). Plug it into the VC bound for \(\epsilon = 0.1 \) and \(N = 10000 \). What is VC bound of BAD events?

\[
\mathbb{P} \left[\exists h \in H \text{ s.t. } |E_{in}(h) - E_{out}(h)| > \epsilon \right] \leq 4m_H(2N) \exp \left(-\frac{1}{8} \epsilon^2 N \right)
\]

1. \(2.77 \times 10^{-87} \)
2. \(5.54 \times 10^{-83} \)
3. \(2.98 \times 10^{-1} \)
4. \(2.29 \times 10^{2} \)

Reference Answer: 3

Simple calculation. Note that the BAD probability bound is not very small even with 10000 examples.
Summary

1. **When Can Machines Learn?**
2. **Why Can Machines Learn?**

Lecture 5: Training versus Testing

Lecture 6: Theory of Generalization

- Restriction of Break Point
 - break point ‘breaks’ consequent points
- Bounding Function: Basic Cases
 - $B(N, k)$ bounds $m_{\mathcal{H}}(N)$ with break point k
- Bounding Function: Inductive Cases
 - $B(N, k)$ is poly(N)
- A Pictorial Proof
 - $m_{\mathcal{H}}(N)$ can replace M with a few changes

- **next: how to ‘use’ the break point?**

3. **How Can Machines Learn?**
4. **How Can Machines Learn Better?**