Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. **When Can Machines Learn?**
 - **Lecture 1: The Learning Problem**
 \[A \text{ takes } D \text{ and } H \text{ to get } g \]
 - **Lecture 2: Learning to Answer Yes/No**
 - Perceptron Hypothesis Set
 - Perceptron Learning Algorithm (PLA)
 - Guarantee of PLA
 - Non-Separable Data

2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?
Credit Approval Problem Revisited

unknown target function $f : \mathcal{X} \rightarrow \mathcal{Y}$

(ideal credit approval formula)

training examples $\mathcal{D} : (x_1, y_1), \ldots, (x_N, y_N)$

(historical records in bank)

Applicant Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

learning algorithm \mathcal{A}

final hypothesis $g \approx f$

('learned' formula to be used)

hypothesis set \mathcal{H}

(set of candidate formula)

what hypothesis set can we use?
A Simple Hypothesis Set: the ‘Perceptron’

- **For** $\mathbf{x} = (x_1, x_2, \cdots, x_d)$ ‘features of customer’, compute a weighted ‘score’ and

 approve credit if $\sum_{i=1}^{d} w_i x_i > \text{threshold}$

 deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

- $\mathcal{Y}: \{+1(\text{good}), -1(\text{bad})\}$, 0 ignored—linear formula $h \in \mathcal{H}$ are

 $$h(\mathbf{x}) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \right)$$

called ‘perceptron’ hypothesis historically
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\sum_{i=1}^{d} w_i x_i - \text{threshold} \right) \]

\[= \text{sign} \left(\sum_{i=1}^{d} w_i x_i + \left(-\text{threshold} \right) \cdot (+1) \right) \]

\[= \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right) \]

\[= \text{sign} (w^T x) \]

- each ‘tall’ \(w \) represents a hypothesis \(h \) & is multiplied with ‘tall’ \(x \)—will use tall versions to simplify notation

what do perceptrons \(h \) ‘look like’?
Learning to Answer Yes/No

Perceptron Hypothesis Set

Perceptrons in \(\mathbb{R}^2 \)

\[
h(x) = \text{sign} \left(w_0 + w_1 x_1 + w_2 x_2 \right)
\]

- **customer features** \(\mathbf{x} \): points on the plane (or points in \(\mathbb{R}^d \))
- **labels** \(y \): \(\circ (+1), \times (-1) \)
- **hypothesis** \(h \): **lines** (or hyperplanes in \(\mathbb{R}^d \)) —positive on one side of a line, negative on the other side
- different line classifies customers differently

\[\text{perceptrons} \Leftrightarrow \text{linear (binary) classifiers}\]

Hsuan-Tien Lin (NTU CSIE)
Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output $+1$ indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

1. coffee, tea, hamburger, steak
2. free, drug, fantastic, deal
3. machine, learning, statistics, textbook
4. national, Taiwan, university, coursera

Reference Answer: 2

The occurrence of keywords with positive weights increase the ‘spam score’, and hence those keywords should often appear in spams.
Select \(g \) from \(\mathcal{H} \)

\[\mathcal{H} = \text{all possible perceptrons, } g = ? \]

- want: \(g \approx f \) (hard when \(f \) unknown)
- almost necessary: \(g \approx f \) on \(\mathcal{D} \), ideally \(g(x_n) = f(x_n) = y_n \)
- difficult: \(\mathcal{H} \) is of **infinite** size
- idea: start from some \(g_0 \), and 'correct' its mistakes on \(\mathcal{D} \)

will represent \(g_0 \) by its weight vector \(w_0 \)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Perceptron Learning Algorithm

start from some \(w_0 \) (say, \(0 \)), and ‘correct’ its mistakes on \(D \)

For \(t = 0, 1, \ldots \)

1. find a mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)}) \)

\[
\text{sign} \left(w^T_t x_{n(t)} \right) \neq y_{n(t)}
\]

2. (try to) correct the mistake by

\[
w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
\]

\(\ldots \) until no more mistakes

return last \(w \) (called \(w_{\text{PLA}} \)) as \(g \)

That’s it!

—A fault confessed is half redressed. :-)

Hsuan-Tien Lin (NTU CSIE)
Practical Implementation of PLA

start from some \(w_0 \) (say, \(0 \)), and ‘correct’ its mistakes on \(D \)

Cyclic PLA

For \(t = 0, 1, \ldots \)

1. find the next mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)})\)

 \[
 \text{sign} \left(w_T x_{n(t)} \right) \neq y_{n(t)}
 \]

2. correct the mistake by

 \[
 w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
 \]

\[\ldots \text{until a full cycle of not encountering mistakes}\]

\[\text{next} \text{ can follow naïve cycle } (1, \ldots, N)\]
\[\text{or precomputed random cycle}\]
Seeing is Believing

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Seeing is Believing

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Learning to Answer Yes/No
Perceptron Learning Algorithm (PLA)

Seeing is Believing

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[x_1, w(t), x_2, w(t+1) \]

update: 3

\[x_{14}, w(t), x_{15}, w(t+1) \]

update: 3

\[x_9, w(t), x_{10}, w(t+1) \]

update: 5

\[x_{14}, w(t), x_{15}, w(t+1) \]

update: 6

\[x_9, w(t), x_{10}, w(t+1) \]

update: 7

\[x_{14}, w(t), x_{15}, w(t+1) \]

update: 8

\[x_9, w(t), x_{10}, w(t+1) \]

update: 9

\[w(t) \]

\[w(t+1) \]

\[w_{PLA} \]

\[w_{PLA} \]

worked like a charm with \(< 20\) lines!!

(note: made \(x_i \gg x_0 = 1\) for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[w(t+1) = w(t) + x \]

\[x_1, x_2, x_3, \ldots \]

update: 1

\[x_9, x_14, x_3, x_9, x_14, x_9, x_14, x_9, x_14 \]

update: 2

update: 3

update: 4

update: 5

update: 6

update: 7

update: 8

update: 9

worked like a charm with < 20 lines!!

(note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Learning to Answer Yes/No
Perceptron Learning Algorithm (PLA)

Seeing is Believing

update: 5

Hsuan-Tien Lin (NTU CSIE)
Seeing is Believing

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[x_1 \]

update: 1

\[w(t) \]

update: 2

\[x_9 \]

update: 3

\[w(t) \]

update: 4

\[x_{14} \]

update: 5

\[w(t) \]

update: 6

\[x_9 \]

update: 7

\[w(t) \]

update: 8

\[x_{14} \]

update: 9

\[w(t+1) \]

worked like a charm with \(< 20 \) lines!!

(note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[w(t+1) = w(t) + x \]

\[x_{14} \]

update: 8

worked like a charm with < 20 lines!!

(note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

update: 9

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

finally

\[w_{PLA} \]

worked like a charm with \(< 20\) lines!!

(note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Some Remaining Issues of PLA

‘correct’ mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?
- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?
- on \mathcal{D}, if halt, yes (no mistake)
- outside \mathcal{D}: ??
- if not halting: ??

[to be shown] if (...), after ‘enough’ corrections, any PLA variant halts
Let’s try to think about why PLA may work.

Let \(n = n(t) \), according to the rule of PLA below, which formula is true?

\[
\text{sign} \left(w^T_t x_n \right) \neq y_n, \quad w_{t+1} \leftarrow w_t + y_n x_n
\]

1. \(w^T_{t+1} x_n = y_n \)
2. \(\text{sign}(w^T_{t+1} x_n) = y_n \)
3. \(y_n w^T_{t+1} x_n \geq y_n w^T_t x_n \)
4. \(y_n w^T_{t+1} x_n < y_n w^T_t x_n \)

Reference Answer: ③ Simply multiply the second part of the rule by \(y_n x_n \). The result shows that the rule somewhat ‘tries to correct the mistake.’
Linear Separability

- **if** PLA halts (i.e. no more mistakes), **(necessary condition)** D allows some w to make no mistake
- call such D **linear separable**

(assuming D, does PLA always halt?)
PLA Fact: w_t Gets More Aligned with w_f

- w_f perfect hence every x_n correctly away from line:

$$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

- $w_f^T w_t$ ↑ by updating with any $(x_{n(t)}, y_{n(t)})$

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$
$$\geq w_f^T w_t + \min_n y_n w_f^T x_n$$
$$> w_f^T w_t + 0.$$

w_t appears more aligned with w_f after update (really?)
PLA Fact: w_t Does Not Grow Too Fast

w_t changed only when mistake

$\iff \text{sign} (w_t^T x_{n(t)}) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0$

- mistake ‘limits’ $\|w_t\|^2$ growth, even when updating with ‘longest’ x_n

\[
\begin{align*}
\|w_{t+1}\|^2 &= \|w_t + y_{n(t)}x_{n(t)}\|^2 \\
&= \|w_t\|^2 + 2y_{n(t)}w_t^T x_{n(t)} + \|y_{n(t)}x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + 0 + \|y_{n(t)}x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + \max_n \|y_n x_n\|^2
\end{align*}
\]

start from $w_0 = 0$, after T mistake corrections,

\[
\frac{w_f^T}{\|w_f\|} \frac{w_f^T}{\|w_f\|} \geq \sqrt{T} \cdot \text{constant}
\]
Learning to Answer Yes/No

Guarantee of PLA

Fun Time

Let's upper-bound T, the number of mistakes that PLA ‘corrects’.

Define $R^2 = \max_n \|x_n\|^2$ \hspace{1cm} \rho = \min_n y_n \frac{w^T_f}{\|w_f\|} x_n$

We want to show that $T \leq \Box$. Express the upper bound \Box by the two terms above.

1. R/ρ
2. R^2/ρ^2
3. R/ρ^2
4. ρ^2/R^2

Reference Answer: 2

The maximum value of $\frac{w^T_f}{\|w_f\|} \frac{w^T_t}{\|w_t\|}$ is 1. Since T mistake corrections increase the inner product by $\sqrt{T} \cdot \text{constant}$, the maximum number of corrected mistakes is $1/\text{constant}^2$.
More about PLA

Guarantee
as long as linear separable and correct by mistake
- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA ‘lines’ are more and more aligned with w_f ⇒ halts

Pros
simple to implement, fast, works in any dimension d

Cons
- ‘assumes’ linear separable D to halt
 —property unknown in advance (no need for PLA if we know w_f)
- not fully sure how long halting takes (ρ depends on w_f)
 —though practically fast

what if D not linear separable?
Learning to Answer Yes/No

Non-Separable Data

Learning with **Noisy Data**

unknown target function
\[f : \mathcal{X} \rightarrow \mathcal{Y} \]
+ noise

(ideal credit approval formula)

training examples
\[\mathcal{D} : (x_1, y_1), \ldots, (x_N, y_N) \]
(historical records in bank)

learning algorithm \(\mathcal{A} \)

final hypothesis
\[g \approx f \]
('learned' formula to be used)

hypothesis set \(\mathcal{H} \)
(set of candidate formula)

how to at least get \(g \approx f \) **on noisy** \(\mathcal{D} \)?
Line with Noise Tolerance

- assume ‘little’ noise: \(y_n = f(x_n) \) usually
- if so, \(g \approx f \) on \(D \) ⇔ \(y_n = g(x_n) \) usually
- how about

\[
\mathbf{w}_g \leftarrow \arg\min_{\mathbf{w}} \sum_{n=1}^{N} \left[y_n \neq \text{sign}(\mathbf{w}^T \mathbf{x}_n) \right]
\]

—NP-hard to solve, unfortunately

Can we modify PLA to get an ‘approximately good’ \(g \)?
Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights \(\hat{w} \)

For \(t = 0, 1, \ldots \)

1. find a (random) mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)}) \)
2. (try to) correct the mistake by

\[
 w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
\]

3. if \(w_{t+1} \) makes fewer mistakes than \(\hat{w} \), replace \(\hat{w} \) by \(w_{t+1} \)

...until enough iterations

return \(\hat{w} \) (called \(w_{POCKET} \)) as \(g \)

a simple modification of PLA to find (somewhat) ‘best’ weights
Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

1. pocket on \mathcal{D} is slower than PLA
2. pocket on \mathcal{D} is faster than PLA
3. pocket on \mathcal{D} returns a better g in approximating f than PLA
4. pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: 1

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D}, $\mathbf{w}_{\text{POCKET}}$ is the same as \mathbf{w}_{PLA}, both making no mistakes.
Summary

1. **When Can Machines Learn?**

 Lecture 1: The Learning Problem
 - Perceptron Hypothesis Set
 - hyperplanes/linear classifiers in \mathbb{R}^d
 - Perceptron Learning Algorithm (PLA)
 - correct mistakes and improve iteratively
 - Guarantee of PLA
 - no mistake eventually if linear separable
 - Non-Separable Data
 - hold somewhat ‘best’ weights in pocket

 - next: the zoo of learning problems

2. Why Can Machines Learn?

3. How Can Machines Learn?

4. How Can Machines Learn Better?