*traversal:
 a basic operation behind binary tree (or tree) functions

 postorder on expression tree => evaluation
 preorder on two binary trees => equality testing
 inorder on \(\triangleleft \text{root} \triangleleft \) => ordered data

 level-order on a tree => closest leaf to root

* in-order revisited

\[
\text{inorder}(T) = \begin{cases}
\text{output}(T \to \text{data}) & \text{if } \text{inorder}(T \to \text{left}) \\
\text{inorder}(T \to \text{right}) & \text{else}
\end{cases}
\]

while (...) {
 \((T, \text{state}) \leftarrow \text{pop from stack} \)
 switch (state) {
 0: push(T, i); push(T \to \text{left}, 0); \text{break};
 1: output(T \to \text{data}); push(T \to \text{right}, 0); \text{break};
 2: push(T \to \text{right}, 0); \text{break};
 }
}

(2) can be mixed w/ 1 (push immediately popped)
 0: push(T, i); push(T \to \text{left}, 0); \text{break};
 1: output(T \to \text{data}); push(T \to \text{right}, 0); \text{break};

(b) \[\square | \square | \square | \square \] can be replaced by a while
 0: while(T) { push(T, i); T = T \to \text{left}; } \text{break};

(c) \[\square \] can be replaced by next while
 1: output(T \to \text{data}); T = T \to \text{right}; while(T) { ... } \text{break};

(d) only state 1 left, can be removed

while(T) { ... }
* why need stack in in-order traversal?

C needs to visit B next, so B on stack to wait
D needs to visit A next, so A on stack to wait

what if C "links" to B and B "links" to A?

start \(\rightarrow \) C \(\rightarrow \) B \(\rightarrow \) D \(\rightarrow \) A \(\rightarrow \) left-right F \(\rightarrow \) E

an implicit linked list of in-order traversal results.
no need for stack!

if next one is left \(\rightarrow \) lead \(\rightarrow \) nongrid \(\rightarrow \)
otherwise, next one is right \(\rightarrow \) right-left \(\rightarrow \) right

* how to store \(\rightarrow \) (successor of the node)

\[
\begin{array}{c|c|c}
\text{L} & \text{R} & \\
\hline
A & &
\end{array}
\]

but either \(R = \text{NULL} \) or \(\rightarrow = \text{NULL} \)

\[
\begin{array}{c|c|c}
\text{L} & \text{R} & \\
\hline
A & &
\end{array}
\]

shared, need \(\oplus \) to know which (one bit)

right-threaded binary tree

* what if we want inverse inorder traversal (right before left)

\(\leftarrow \) for predecessor

left-threaded binary tree

\[
\begin{array}{c|c|c}
\text{L} & \text{R} & \\
\hline
A & &
\end{array}
\]

* threaded binary tree: left- and right-threaded

all the NULL links in original binary tree replaced with \(\leftarrow \rightarrow \) and the purpose of NULL done by \(\oplus \)

"Subsec. 5.5.3: insert to threaded READING ASSIGNMENT"
* pre-order revisited

\[
\text{preorder}(T) = \begin{cases}
\text{output}(T \to \text{data}) ; \\
\text{preorder}(T \to \text{left}) ; \\
\text{preorder}(T \to \text{right}) ;
\end{cases}
\]

\[
\text{while}(\cdots) \{
\begin{array}{l}
(T, \text{state}) = \text{pop from stack} \\
0: \text{output}(T \to \text{data}) ; \text{push}(T, 1) ; \text{break} \\
1: \text{push}(T, 2) ; \text{push}(T \to \text{left}, 0) ; \text{break} \\
2: \text{push}(T \to \text{right}, 0) ; \text{break} \\
\end{array}
\}
\]

same as

\[
\text{while}(\cdots) \{
\begin{array}{l}
T = \text{pop from stack} \\
\text{output}(T \to \text{data}) ; \\
\text{push}(T \to \text{right}) ; \text{push}(T \to \text{left}) ;
\end{array}
\}
\]

* if use queue instead of stack

\[
\begin{array}{c}
A \text{ in} \\
B \text{ in} \\
C \text{ in} \\
E \text{ in} \\
D \text{ in} \\
F \text{ in} \\
G \text{ in} \\
\end{array}
\]

level-order traversal

e.g. for finding the leaf closest to root

* recall: maze search

level-order: shortest path out
recursive (in/pre/post-order): left-most path out
* * A * so far

will deal with

<table>
<thead>
<tr>
<th>key</th>
<th>data</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>r</td>
<td>l</td>
</tr>
</tbody>
</table>

goal: find the node with key property **??** efficiently within some (special) binary tree

* case 4: **??** = largest

e.g. key means priority
data is an entry to an item in your todo list

idea: put the node w/ largest key close to the root

(how about the root directly ?)

but after getting **14(...)**, hard to get next (second largest) node

* binary max-tree:

 1. root key larger than key of other node (or equal to)
 2. every sub-tree is a max-tree

Get-Largest(T) { return T; }

Remove-Largest(T) {
 check the larger key of T→left or T→right; call it node
 replace T→key, T→data w/ node→key, node→data;
 Remove-Largest(node);
}