Some applications involve grouping n distinct elements into a collection of disjoint sets. These applications often need to perform two operations in particular: finding the unique set that contains a given element and unifying two sets. This chapter explores methods for maintaining a data structure that supports these operations.

Section 21.1 describes the operations supported by a disjoint-set data structure and presents a simple application. In Section 21.2, we look at a simple linked-list implementation for disjoint sets. Section 21.3 presents a more efficient representation using rooted trees. The running time using the tree representation is theoretically superlinear, but for all practical purposes it is linear. Section 21.4 defines and discusses a very quickly growing function and its very slowly growing inverse, which appears in the running time of operations on the tree-based implementation, and then, by a complex amortized analysis, proves an upper bound on the running time that is just barely superlinear.

21.1 Disjoint-set operations

A **disjoint-set data structure** maintains a collection $\mathcal{S} = \{S_1, S_2, \ldots, S_k\}$ of disjoint dynamic sets. We identify each set by a **representative**, which is some member of the set. In some applications, it doesn’t matter which member is used as the representative; we care only that if we ask for the representative of a dynamic set twice without modifying the set between the requests, we get the same answer both times. Other applications may require a prespecified rule for choosing the representative, such as choosing the smallest member in the set (assuming, of course, that the elements can be ordered).

As in the other dynamic-set implementations we have studied, we represent each element of a set by an object. Letting x denote an object, we wish to support the following operations:
Chapter 21 Data Structures for Disjoint Sets

MAKE-SET(x) creates a new set whose only member (and thus representative) is x. Since the sets are disjoint, we require that x not already be in some other set.

UNION(x, y) unites the dynamic sets that contain x and y, say S_x and S_y, into a new set that is the union of these two sets. We assume that the two sets are disjoint prior to the operation. The representative of the resulting set is any member of S_x \cup S_y, although many implementations of UNION specifically choose the representative of either S_x or S_y as the new representative. Since we require the sets in the collection to be disjoint, conceptually we destroy sets S_x and S_y, removing them from the collection \$. In practice, we often absorb the elements of one of the sets into the other set.

FIND-SET(x) returns a pointer to the representative of the (unique) set containing x.

Throughout this chapter, we shall analyze the running times of disjoint-set data structures in terms of two parameters: n, the number of MAKE-SET operations, and m, the total number of MAKE-SET, UNION, and FIND-SET operations. Since the sets are disjoint, each UNION operation reduces the number of sets by one. After n - 1 UNION operations, therefore, only one set remains. The number of UNION operations is thus at most n - 1. Note also that since the MAKE-SET operations are included in the total number of operations m, we have m \geq n. We assume that the n MAKE-SET operations are the first n operations performed.

An application of disjoint-set data structures

One of the many applications of disjoint-set data structures arises in determining the connected components of an undirected graph (see Section B.4). Figure 21.1(a), for example, shows a graph with four connected components.

The procedure CONNECTED-COMPONENTS that follows uses the disjoint-set operations to compute the connected components of a graph. Once CONNECTED-COMPONENTS has preprocessed the graph, the procedure SAME-COMPONENT answers queries about whether two vertices are in the same connected component.\(^1\) (In pseudocode, we denote the set of vertices of a graph G by G.V and the set of edges by G.E.)

\(^1\)When the edges of the graph are static— not changing over time—we can compute the connected components faster by using depth-first search (Exercise 22.3-12). Sometimes, however, the edges are added dynamically and we need to maintain the connected components as each edge is added. In this case, the implementation given here can be more efficient than running a new depth-first search for each new edge.
21.1 Disjoint-set operations

Figure 21.1 (a) A graph with four connected components: \{a, b, c, d\}, \{e, f, g\}, \{h, i\}, and \{j\}. (b) The collection of disjoint sets after processing each edge.

CONNECTED-COMPONENTS(G)
1 for each vertex v ∈ G.V
2 MAKE-SET(v)
3 for each edge (u, v) ∈ G.E
4 if FIND-SET(u) ≠ FIND-SET(v)
5 UNION(u, v)

SAME-COMPONENT(u, v)
1 if FIND-SET(u) == FIND-SET(v)
2 return TRUE
3 else return FALSE

The procedure CONNECTED-COMPONENTS initially places each vertex v in its own set. Then, for each edge (u, v), it unites the sets containing u and v. By Exercise 21.1-2, after processing all the edges, two vertices are in the same connected component if and only if the corresponding objects are in the same set. Thus, CONNECTED-COMPONENT computes sets in such a way that the procedure SAME-COMPONENT can determine whether two vertices are in the same con-
nected component. Figure 21.1(b) illustrates how CONNECTED-COMPONENTS computes the disjoint sets.

In an actual implementation of this connected-components algorithm, the representations of the graph and the disjoint-set data structure would need to reference each other. That is, an object representing a vertex would contain a pointer to the corresponding disjoint-set object, and vice versa. These programming details depend on the implementation language, and we do not address them further here.

Exercises

21.1-1
Suppose that CONNECTED-COMPONENTS is run on the undirected graph \(G = (V, E) \), where \(V = \{a, b, c, d, e, f, g, h, i, j, k\} \) and the edges of \(E \) are processed in the order \((d, i), (f, k), (g, i), (b, g), (a, h), (i, j), (d, k), (b, j), (d, f), (g, j), (a, e)\). List the vertices in each connected component after each iteration of lines 3–5.

21.1-2
Show that after all edges are processed by CONNECTED-COMPONENTS, two vertices are in the same connected component if and only if they are in the same set.

21.1-3
During the execution of CONNECTED-COMPONENTS on an undirected graph \(G = (V, E) \) with \(k \) connected components, how many times is FIND-SET called? How many times is UNION called? Express your answers in terms of \(|V|, |E|, \) and \(k \).

21.2 Linked-list representation of disjoint sets

Figure 21.2(a) shows a simple way to implement a disjoint-set data structure: each set is represented by its own linked list. The object for each set has attributes head, pointing to the first object in the list, and tail, pointing to the last object. Each object in the list contains a set member, a pointer to the next object in the list, and a pointer back to the set object. Within each linked list, the objects may appear in any order. The representative is the set member in the first object in the list.

With this linked-list representation, both MAKE-SET and FIND-SET are easy, requiring \(O(1) \) time. To carry out MAKE-SET(\(x \)), we create a new linked list whose only object is \(x \). For FIND-SET(\(x \)), we just follow the pointer from \(x \) back to its set object and then return the member in the object that head points to. For example, in Figure 21.2(a), the call FIND-SET(\(g \)) would return \(f \).
21.2 **Linked-list representation of disjoint sets**

![Figure 21.2](image)

Figure 21.2 (a) Linked-list representations of two sets. Set S_1 contains members d, f, and g, with representative f, and set S_2 contains members b, c, e, and h, with representative c. Each object in the list contains a set member, a pointer to the next object in the list, and a pointer back to the set object. Each set object has pointers head and tail to the first and last objects, respectively. (b) The result of $\text{UNION}(g, e)$, which appends the linked list containing e to the linked list containing g. The representative of the resulting set is f. The set object for e’s list, S_2, is destroyed.

A simple implementation of union

The simplest implementation of the UNION operation using the linked-list set representation takes significantly more time than MAKE-SET or FIND-SET. As Figure 21.2(b) shows, we perform $\text{UNION}(x, y)$ by appending y’s list onto the end of x’s list. The representative of x’s list becomes the representative of the resulting set. We use the tail pointer for x’s list to quickly find where to append y’s list. Because all members of y’s list join x’s list, we can destroy the set object for y’s list. Unfortunately, we must update the pointer to the set object for each object originally on y’s list, which takes time linear in the length of y’s list. In Figure 21.2, for example, the operation $\text{UNION}(g, e)$ causes pointers to be updated in the objects for b, c, e, and h.

In fact, we can easily construct a sequence of m operations on n objects that requires $Ω(n^2)$ time. Suppose that we have objects x_1, x_2, \ldots, x_n. We execute the sequence of n MAKE-SET operations followed by $n - 1$ UNION operations shown in Figure 21.3, so that $m = 2n - 1$. We spend $Ω(n)$ time performing the n MAKE-SET operations. Because the ith UNION operation updates i objects, the total number of objects updated by all $n - 1$ UNION operations is
Chapter 21 Data Structures for Disjoint Sets

<table>
<thead>
<tr>
<th>Operation</th>
<th>Number of objects updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-SET(x_1)</td>
<td>1</td>
</tr>
<tr>
<td>MAKE-SET(x_2)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MAKE-SET(x_n)</td>
<td>1</td>
</tr>
<tr>
<td>UNION(x_2, x_1)</td>
<td>1</td>
</tr>
<tr>
<td>UNION(x_3, x_2)</td>
<td>2</td>
</tr>
<tr>
<td>UNION(x_4, x_3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>UNION(x_n, x_{n-1})</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Figure 21.3 A sequence of $2n - 1$ operations on n objects that takes $\Theta(n^2)$ time, or $\Theta(n)$ time per operation on average, using the linked-list set representation and the simple implementation of UNION.

$$
\sum_{i=1}^{n-1} i = \Theta(n^2).
$$

The total number of operations is $2n - 1$, and so each operation on average requires $\Theta(n)$ time. That is, the amortized time of an operation is $\Theta(n)$.

A weighted-union heuristic

In the worst case, the above implementation of the UNION procedure requires an average of $\Theta(n)$ time per call because we may be appending a longer list onto a shorter list; we must update the pointer to the set object for each member of the longer list. Suppose instead that each list also includes the length of the list (which we can easily maintain) and that we always append the shorter list onto the longer, breaking ties arbitrarily. With this simple **weighted-union heuristic**, a single UNION operation can still take $\Omega(n)$ time if both sets have $\Omega(n)$ members. As the following theorem shows, however, a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, takes $O(m + n \log n)$ time.

Theorem 21.1

Using the linked-list representation of disjoint sets and the weighted-union heuristic, a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, takes $O(m + n \log n)$ time.
21.2 Linked-list representation of disjoint sets

Proof Because each UNION operation unites two disjoint sets, we perform at most \(n - 1 \) UNION operations over all. We now bound the total time taken by these UNION operations. We start by determining, for each object, an upper bound on the number of times the object’s pointer back to its set object is updated. Consider a particular object \(x \). We know that each time \(x \)’s pointer was updated, \(x \) must have started in the smaller set. The first time \(x \)’s pointer was updated, therefore, the resulting set must have had at least 2 members. Similarly, the next time \(x \)’s pointer was updated, the resulting set must have had at least 4 members. Continuing on, we observe that for any \(k \leq n \), after \(x \)’s pointer has been updated \(\lfloor \lg k \rfloor \) times, the resulting set must have at least \(k \) members. Since the largest set has at most \(n \) members, each object’s pointer is updated at most \(\lfloor \lg n \rfloor \) times over all the UNION operations. Thus the total time spent updating object pointers over all UNION operations is \(O(n \lg n) \). We must also account for updating the tail pointers and the list lengths, which take only \(\Theta(1) \) time per UNION operation. The total time spent in all UNION operations is thus \(O(n \lg n) \).

The time for the entire sequence of \(m \) operations follows easily. Each MAKE-SET and FIND-SET operation takes \(O(1) \) time, and there are \(O(m) \) of them. The total time for the entire sequence is thus \(O(m + n \lg n) \).

Exercises

21.2-1 Write pseudocode for MAKE-SET, FIND-SET, and UNION using the linked-list representation and the weighted-union heuristic. Make sure to specify the attributes that you assume for set objects and list objects.

21.2-2 Show the data structure that results and the answers returned by the FIND-SET operations in the following program. Use the linked-list representation with the weighted-union heuristic.

```plaintext
1  for i = 1 to 16
2       MAKE-SET(x_i)
3  for i = 1 to 15 by 2
4          UNION(x_i, x_{i+1})
5  for i = 1 to 13 by 4
6          UNION(x_i, x_{i+2})
7          UNION(x_1, x_5)
8          UNION(x_11, x_{13})
9          UNION(x_1, x_{10})
10         FIND-SET(x_2)
11         FIND-SET(x_9)
```
Assume that if the sets containing \(x_i\) and \(x_j\) have the same size, then the operation \(\text{UNION}(x_i, x_j)\) appends \(x_j\)'s list onto \(x_i\)'s list.

21.2-3
Adapt the aggregate proof of Theorem 21.1 to obtain amortized time bounds of \(O(1)\) for \(\text{MAKE-SET}\) and \(\text{FIND-SET}\) and \(O(\lg n)\) for \(\text{UNION}\) using the linked-list representation and the weighted-union heuristic.

21.2-4
Give a tight asymptotic bound on the running time of the sequence of operations in Figure 21.3 assuming the linked-list representation and the weighted-union heuristic.

21.2-5
Professor Gompers suspects that it might be possible to keep just one pointer in each set object, rather than two (head and tail), while keeping the number of pointers in each list element at two. Show that the professor’s suspicion is well founded by describing how to represent each set by a linked list such that each operation has the same running time as the operations described in this section. Describe also how the operations work. Your scheme should allow for the weighted-union heuristic, with the same effect as described in this section. (Hint: Use the tail of a linked list as its set’s representative.)

21.2-6
Suggest a simple change to the \(\text{UNION}\) procedure for the linked-list representation that removes the need to keep the tail pointer to the last object in each list. Whether or not the weighted-union heuristic is used, your change should not change the asymptotic running time of the \(\text{UNION}\) procedure. (Hint: Rather than appending one list to another, splice them together.)

21.3 Disjoint-set forests

In a faster implementation of disjoint sets, we represent sets by rooted trees, with each node containing one member and each tree representing one set. In a disjoint-set forest, illustrated in Figure 21.4(a), each member points only to its parent. The root of each tree contains the representative and is its own parent. As we shall see, although the straightforward algorithms that use this representation are no faster than ones that use the linked-list representation, by introducing two heuristics—“union by rank” and “path compression”—we can achieve an asymptotically optimal disjoint-set data structure.
21.3 Disjoint-set forests

Figure 21.4 A disjoint-set forest. (a) Two trees representing the two sets of Figure 21.2. The tree on the left represents the set \{b, c, e, h\}, with c as the representative, and the tree on the right represents the set \{d, f, g\}, with f as the representative. (b) The result of UNION(e, g).

We perform the three disjoint-set operations as follows. A MAKE-SET operation simply creates a tree with just one node. We perform a FIND-SET operation by following parent pointers until we find the root of the tree. The nodes visited on this simple path toward the root constitute the find path. A UNION operation, shown in Figure 21.4(b), causes the root of one tree to point to the root of the other.

Heuristics to improve the running time

So far, we have not improved on the linked-list implementation. A sequence of \(n - 1\) UNION operations may create a tree that is just a linear chain of \(n\) nodes. By using two heuristics, however, we can achieve a running time that is almost linear in the total number of operations \(m\).

The first heuristic, union by rank, is similar to the weighted-union heuristic we used with the linked-list representation. The obvious approach would be to make the root of the tree with fewer nodes point to the root of the tree with more nodes. Rather than explicitly keeping track of the size of the subtree rooted at each node, we shall use an approach that eases the analysis. For each node, we maintain a rank, which is an upper bound on the height of the node. In union by rank, we make the root with smaller rank point to the root with larger rank during a UNION operation.

The second heuristic, path compression, is also quite simple and highly effective. As shown in Figure 21.5, we use it during FIND-SET operations to make each node on the find path point directly to the root. Path compression does not change any ranks.
Figure 21.5 Path compression during the operation \texttt{FIND-SET}. Arrows and self-loops at roots are omitted. (a) A tree representing a set prior to executing \texttt{FIND-SET(a)}. Triangles represent subtrees whose roots are the nodes shown. Each node has a pointer to its parent. (b) The same set after executing \texttt{FIND-SET(a)}. Each node on the find path now points directly to the root.

Pseudocode for disjoint-set forests

To implement a disjoint-set forest with the union-by-rank heuristic, we must keep track of ranks. With each node x, we maintain the integer value $x.rank$, which is an upper bound on the height of x (the number of edges in the longest simple path between x and a descendant leaf). When \texttt{MAKE-SET} creates a singleton set, the single node in the corresponding tree has an initial rank of 0. Each \texttt{FIND-SET} operation leaves all ranks unchanged. The \texttt{UNION} operation has two cases, depending on whether the roots of the trees have equal rank. If the roots have unequal rank, we make the root with higher rank the parent of the root with lower rank, but the ranks themselves remain unchanged. If, instead, the roots have equal ranks, we arbitrarily choose one of the roots as the parent and increment its rank.

Let us put this method into pseudocode. We designate the parent of node x by $x.p$. The \texttt{LINK} procedure, a subroutine called by \texttt{UNION}, takes pointers to two roots as inputs.
21.3 Disjoint-set forests

MAKE-SET(x)
1 x.p = x
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)
1 if x.rank > y.rank
2 y.p = x
3 else x.p = y
4 if x.rank == y.rank
5 y.rank = y.rank + 1

The FIND-SET procedure with path compression is quite simple:

FIND-SET(x)
1 if x ≠ x.p
2 x.p = FIND-SET(x.p)
3 return x.p

The FIND-SET procedure is a two-pass method: as it recurses, it makes one pass up the find path to find the root, and as the recursion unwinds, it makes a second pass back down the find path to update each node to point directly to the root. Each call of FIND-SET(x) returns x.p in line 3. If x is the root, then FIND-SET skips line 2 and instead returns x.p, which is x; this is the case in which the recursion bottoms out. Otherwise, line 2 executes, and the recursive call with parameter x.p returns a pointer to the root. Line 2 updates node x to point directly to the root, and line 3 returns this pointer.

Effect of the heuristics on the running time

Separately, either union by rank or path compression improves the running time of the operations on disjoint-set forests, and the improvement is even greater when we use the two heuristics together. Alone, union by rank yields a running time of $O(m \log n)$ (see Exercise 21.4-4), and this bound is tight (see Exercise 21.3-3). Although we shall not prove it here, for a sequence of n MAKE-SET operations (and hence at most $n - 1$ UNION operations) and f FIND-SET operations, the path-compression heuristic alone gives a worst-case running time of $\Theta(n + f \cdot (1 + \log_2 f/n))$.
When we use both union by rank and path compression, the worst-case running time is $O(m \alpha(n))$, where $\alpha(n)$ is a very slowly growing function, which we define in Section 21.4. In any conceivable application of a disjoint-set data structure, $\alpha(n) \leq 4$; thus, we can view the running time as linear in m in all practical situations. Strictly speaking, however, it is superlinear. In Section 21.4, we prove this upper bound.

Exercises

21.3-1
Redo Exercise 21.2-2 using a disjoint-set forest with union by rank and path compression.

21.3-2
Write a nonrecursive version of FIND-SET with path compression.

21.3-3
Give a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, that takes $\Omega(m \lg n)$ time when we use union by rank only.

21.3-4
Suppose that we wish to add the operation PRINT-SET(x), which is given a node x and prints all the members of x’s set, in any order. Show how we can add just a single attribute to each node in a disjoint-set forest so that PRINT-SET(x) takes time linear in the number of members of x’s set and the asymptotic running times of the other operations are unchanged. Assume that we can print each member of the set in $O(1)$ time.

21.3-5
Show that any sequence of m MAKE-SET, FIND-SET, and LINK operations, where all the LINK operations appear before any of the FIND-SET operations, takes only $O(m)$ time if we use both path compression and union by rank. What happens in the same situation if we use only the path-compression heuristic?