17.3-6
Show how to implement a queue with two ordinary stacks (Exercise 10.1-6) so that the amortized cost of each ENQUEUE and each DEQUEUE operation is $O(1)$.

17.3-7
Design a data structure to support the following two operations for a dynamic multiset S of integers, which allows duplicate values:

- $\textsc{Insert}(S, x)$ inserts x into S.
- $\textsc{Delete-Larger-Half}(S)$ deletes the largest $\lceil |S|/2 \rceil$ elements from S.

Explain how to implement this data structure so that any sequence of m \textsc{Insert} and $\textsc{Delete-Larger-Half}$ operations runs in $O(m)$ time. Your implementation should also include a way to output the elements of S in $O(|S|)$ time.

17.4 Dynamic tables

We do not always know in advance how many objects some applications will store in a table. We might allocate space for a table, only to find out later that it is not enough. We must then reallocate the table with a larger size and copy all objects stored in the original table over into the new, larger table. Similarly, if many objects have been deleted from the table, it may be worthwhile to reallocate the table with a smaller size. In this section, we study this problem of dynamically expanding and contracting a table. Using amortized analysis, we shall show that the amortized cost of insertion and deletion is only $O(1)$, even though the actual cost of an operation is large when it triggers an expansion or a contraction. Moreover, we shall see how to guarantee that the unused space in a dynamic table never exceeds a constant fraction of the total space.

We assume that the dynamic table supports the operations $\textsc{Table-Insert}$ and $\textsc{Table-Delete}$. $\textsc{Table-Insert}$ inserts into the table an item that occupies a single slot, that is, a space for one item. Likewise, $\textsc{Table-Delete}$ removes an item from the table, thereby freeing a slot. The details of the data-structuring method used to organize the table are unimportant; we might use a stack (Section 10.1), a heap (Chapter 6), or a hash table (Chapter 11). We might also use an array or collection of arrays to implement object storage, as we did in Section 10.3.

We shall find it convenient to use a concept introduced in our analysis of hashing (Chapter 11). We define the load factor $\alpha(T)$ of a nonempty table T to be the number of items stored in the table divided by the size (number of slots) of the table. We assign an empty table (one with no items) size 0, and we define its load factor to be 1. If the load factor of a dynamic table is bounded below by a constant,
the unused space in the table is never more than a constant fraction of the total amount of space.

We start by analyzing a dynamic table in which we only insert items. We then consider the more general case in which we both insert and delete items.

17.4.1 Table expansion

Let us assume that storage for a table is allocated as an array of slots. A table fills up when all slots have been used or, equivalently, when its load factor is 1. In some software environments, upon attempting to insert an item into a full table, the only alternative is to abort with an error. We shall assume, however, that our software environment, like many modern ones, provides a memory-management system that can allocate and free blocks of storage on request. Thus, upon inserting an item into a full table, we can expand the table by allocating a new table with more slots than the old table had. Because we always need the table to reside in contiguous memory, we must allocate a new array for the larger table and then copy items from the old table into the new table.

A common heuristic allocates a new table with twice as many slots as the old one. If the only table operations are insertions, then the load factor of the table is always at least 1/2, and thus the amount of wasted space never exceeds half the total space in the table.

In the following pseudocode, we assume that T is an object representing the table. The attribute $T.table$ contains a pointer to the block of storage representing the table, $T.num$ contains the number of items in the table, and $T.size$ gives the total number of slots in the table. Initially, the table is empty: $T.num = T.size = 0$.

```
TABLE-INSERT (T, x)
1   if T.size == 0
2       allocate T.table with 1 slot
3       T.size = 1
4   if T.num == T.size
5       allocate new-table with 2 * T.size slots
6       insert all items in T.table into new-table
7       free T.table
8       T.table = new-table
9       T.size = 2 * T.size
10      insert x into T.table
11     T.num = T.num + 1
```

1In some situations, such as an open-address hash table, we may wish to consider a table to be full if its load factor equals some constant strictly less than 1. (See Exercise 17.4-1.)
Notice that we have two “insertion” procedures here: the TABLE-INSERT procedure itself and the elementary insertion into a table in lines 6 and 10. We can analyze the running time of TABLE-INSERT in terms of the number of elementary insertions by assigning a cost of 1 to each elementary insertion. We assume that the actual running time of TABLE-INSERT is linear in the time to insert individual items, so that the overhead for allocating an initial table in line 2 is constant and the overhead for allocating and freeing storage in lines 5 and 7 is dominated by the cost of transferring items in line 6. We call the event in which lines 5–9 are executed an expansion.

Let us analyze a sequence of \(n \) TABLE-INSERT operations on an initially empty table. What is the cost \(c_i \) of the \(i \)th operation? If the current table has room for the new item (or if this is the first operation), then \(c_i = 1 \), since we need only perform the one elementary insertion in line 10. If the current table is full, however, and an expansion occurs, then \(c_i = i \): the cost is 1 for the elementary insertion in line 10 plus \(i - 1 \) for the items that we must copy from the old table to the new table in line 6. If we perform \(n \) operations, the worst-case cost of an operation is \(O(n) \), which leads to an upper bound of \(O(n^2) \) on the total running time for \(n \) operations.

This bound is not tight, because we rarely expand the table in the course of \(n \) TABLE-INSERT operations. Specifically, the \(i \)th operation causes an expansion only when \(i - 1 \) is an exact power of 2. The amortized cost of an operation is in fact \(O(1) \), as we can show using aggregate analysis. The cost of the \(i \)th operation is

\[
c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of } 2, \\
 1 & \text{otherwise}.
\end{cases}
\]

The total cost of \(n \) TABLE-INSERT operations is therefore

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{[\lg n]} 2^j \\
< n + 2n \\
= 3n,
\]

because at most \(n \) operations cost 1 and the costs of the remaining operations form a geometric series. Since the total cost of \(n \) TABLE-INSERT operations is bounded by \(3n \), the amortized cost of a single operation is at most 3.

By using the accounting method, we can gain some feeling for why the amortized cost of a TABLE-INSERT operation should be 3. Intuitively, each item pays for 3 elementary insertions: inserting itself into the current table, moving itself when the table expands, and moving another item that has already been moved once when the table expands. For example, suppose that the size of the table is \(m \) immediately after an expansion. Then the table holds \(m/2 \) items, and it contains
no credit. We charge 3 dollars for each insertion. The elementary insertion that occurs immediately costs 1 dollar. We place another dollar as credit on the item inserted. We place the third dollar as credit on one of the \(\frac{m}{2} \) items already in the table. The table will not fill again until we have inserted another \(\frac{m}{2} - 1 \) items, and thus, by the time the table contains \(m \) items and is full, we will have placed a dollar on each item to pay to reinsert it during the expansion.

We can use the potential method to analyze a sequence of \(n \) \textsc{Table-Insert} operations, and we shall use it in Section 17.4.2 to design a \textsc{Table-Delete} operation that has an \(O(1) \) amortized cost as well. We start by defining a potential function \(\Phi \) that is 0 immediately after an expansion but builds to the table size by the time the table is full, so that we can pay for the next expansion by the potential. The function

\[
\Phi(T) = 2 \cdot T.num - T.size
\]

(17.5)

is one possibility. Immediately after an expansion, we have \(T.num = T.size/2 \), and thus \(\Phi(T) = 0 \), as desired. Immediately before an expansion, we have \(T.num = T.size \), and thus \(\Phi(T) = T.num \), as desired. The initial value of the potential is 0, and since the table is always at least half full, \(T.num \geq T.size/2 \), which implies that \(\Phi(T) \) is always nonnegative. Thus, the sum of the amortized costs of \(n \) \textsc{Table-Insert} operations gives an upper bound on the sum of the actual costs.

To analyze the amortized cost of the \(i \)th \textsc{Table-Insert} operation, we let \(num_i \) denote the number of items stored in the table after the \(i \)th operation, \(size_i \) denote the total size of the table after the \(i \)th operation, and \(\Phi_i \) denote the potential after the \(i \)th operation. Initially, we have \(num_0 = 0, size_0 = 0 \), and \(\Phi_0 = 0 \).

If the \(i \)th \textsc{Table-Insert} operation does not trigger an expansion, then we have \(size_i = size_{i-1} \) and the amortized cost of the operation is

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \\
= 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) \\
= 1 + (2 \cdot num_i - size_i) - (2(num_i - 1) - size_i) \\
= 3.
\]

If the \(i \)th operation does trigger an expansion, then we have \(size_i = 2 \cdot size_{i-1} \) and \(size_{i-1} = num_{i-1} = num_i - 1 \), which implies that \(size_i = 2 \cdot (num_i - 1) \). Thus, the amortized cost of the operation is

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \\
= num_i + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) \\
= num_i + (2 \cdot num_i - 2 \cdot (num_i - 1)) - (2(num_i - 1) - (num_i - 1)) \\
= num_i + 2 - (num_i - 1) \\
= 3.
\]
Figure 17.3 The effect of a sequence of \texttt{n TABLE-INSERT} operations on the number \texttt{num}_i of items in the table, the number \texttt{size}_i of slots in the table, and the potential \(\Phi_i = 2 \cdot \text{num}_i - \text{size}_i \), each being measured after the \(i \)th operation. The thin line shows \texttt{num}_i, the dashed line shows \texttt{size}_i, and the thick line shows \(\Phi_i \). Notice that immediately before an expansion, the potential has built up to the number of items in the table, and therefore it can pay for moving all the items to the new table. Afterwards, the potential drops to 0, but it is immediately increased by 2 upon inserting the item that caused the expansion.

Figure 17.3 plots the values of \texttt{num}_i, \texttt{size}_i, and \(\Phi_i \) against \(i \). Notice how the potential builds to pay for expanding the table.

17.4.2 Table expansion and contraction

To implement a \texttt{TABLE-DELETE} operation, it is simple enough to remove the specified item from the table. In order to limit the amount of wasted space, however, we might wish to \texttt{contract} the table when the load factor becomes too small. Table contraction is analogous to table expansion: when the number of items in the table drops too low, we allocate a new, smaller table and then copy the items from the old table into the new one. We can then free the storage for the old table by returning it to the memory-management system. Ideally, we would like to preserve two properties:

- the load factor of the dynamic table is bounded below by a positive constant, and
- the amortized cost of a table operation is bounded above by a constant.
We assume that we measure the cost in terms of elementary insertions and deletions.

You might think that we should double the table size upon inserting an item into a full table and halve the size when a deleting an item would cause the table to become less than half full. This strategy would guarantee that the load factor of the table never drops below $1/2$, but unfortunately, it can cause the amortized cost of an operation to be quite large. Consider the following scenario. We perform n operations on a table T, where n is an exact power of 2. The first $n/2$ operations are insertions, which by our previous analysis cost a total of $\Theta(n)$. At the end of this sequence of insertions, $T.num = T.size = n/2$. For the second $n/2$ operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,

The first insertion causes the table to expand to size n. The two following deletions cause the table to contract back to size $n/2$. Two further insertions cause another expansion, and so forth. The cost of each expansion and contraction is $\Theta(n)$, and there are $\Theta(n)$ of them. Thus, the total cost of the n operations is $\Theta(n^2)$, making the amortized cost of an operation $\Theta(n)$.

The downside of this strategy is obvious: after expanding the table, we do not delete enough items to pay for a contraction. Likewise, after contracting the table, we do not insert enough items to pay for an expansion.

We can improve upon this strategy by allowing the load factor of the table to drop below $1/2$. Specifically, we continue to double the table size upon inserting an item into a full table, but we halve the table size when deleting an item causes the table to become less than $1/4$ full, rather than $1/2$ full as before. The load factor of the table is therefore bounded below by the constant $1/4$.

Intuitively, we would consider a load factor of $1/2$ to be ideal, and the table’s potential would then be 0. As the load factor deviates from $1/2$, the potential increases so that by the time we expand or contract the table, the table has garnered sufficient potential to pay for copying all the items into the newly allocated table. Thus, we will need a potential function that has grown to $T.num$ by the time that the load factor has either increased to 1 or decreased to $1/4$. After either expanding or contracting the table, the load factor goes back to $1/2$ and the table’s potential reduces back to 0.

We omit the code for TABLE-DELETE, since it is analogous to TABLE-INSERT. For our analysis, we shall assume that whenever the number of items in the table drops to 0, we free the storage for the table. That is, if $T.num = 0$, then $T.size = 0$.

We can now use the potential method to analyze the cost of a sequence of n TABLE-INSERT and TABLE-DELETE operations. We start by defining a potential function Φ that is 0 immediately after an expansion or contraction and builds as the load factor increases to 1 or decreases to $1/4$. Let us denote the load fac-
Figure 17.4 The effect of a sequence of \textit{n} \textsc{table-insert} and \textsc{table-delete} operations on the number \textit{num}_i of items in the table, the number \textit{size}_i of slots in the table, and the potential

\begin{equation*}
\Phi_i = \begin{cases}
2 \cdot \text{num}_i - \text{size}_i & \text{if } \alpha_i \geq 1/2, \\
\text{size}_i/2 - \text{num}_i & \text{if } \alpha_i < 1/2,
\end{cases}
\end{equation*}

each measured after the \textit{i}th operation. The thin line shows \text{num}_i, the dashed line shows \text{size}_i, and the thick line shows \Phi_i. Notice that immediately before an expansion, the potential has built up to the number of items in the table, and therefore it can pay for moving all the items to the new table. Likewise, immediately before a contraction, the potential has built up to the number of items in the table.

The load factor of a nonempty table \textit{T} by \(\alpha(T) = \text{T.num}/\text{T.size}\). Since for an empty table, \(\text{T.num} = \text{T.size} = 0\) and \(\alpha(T) = 1\), we always have \(\text{T.num} = \alpha(T) \cdot \text{T.size}\), whether the table is empty or not. We shall use as our potential function

\begin{equation*}
\Phi(T) = \begin{cases}
2 \cdot \text{T.num} - \text{T.size} & \text{if } \alpha(T) \geq 1/2, \\
\text{T.size}/2 - \text{T.num} & \text{if } \alpha(T) < 1/2.
\end{cases}
\end{equation*}

(17.6)

Observe that the potential of an empty table is 0 and that the potential is never negative. Thus, the total amortized cost of a sequence of operations with respect to \(\Phi\) provides an upper bound on the actual cost of the sequence.

Before proceeding with a precise analysis, we pause to observe some properties of the potential function, as illustrated in Figure 17.4. Notice that when the load factor is 1/2, the potential is 0. When the load factor is 1, we have \(\text{T.size} = \text{T.num}\), which implies \(\Phi(T) = \text{T.num}\), and thus the potential can pay for an expansion if an item is inserted. When the load factor is 1/4, we have \(\text{T.size} = 4 \cdot \text{T.num}\), which
implies $\Phi(T) = T.num$, and thus the potential can pay for a contraction if an item is deleted.

To analyze a sequence of n TABLE-INSERT and TABLE-DELETE operations, we let c_i denote the actual cost of the ith operation, \hat{c}_i denote its amortized cost with respect to Φ, num_i denote the number of items stored in the table after the ith operation, $size_i$ denote the total size of the table after the ith operation, α_i denote the load factor of the table after the ith operation, and Φ_i denote the potential after the ith operation. Initially, $num_0 = 0$, $size_0 = 0$, $\alpha_0 = 1$, and $\Phi_0 = 0$.

We start with the case in which the ith operation is TABLE-INSERT. The analysis is identical to that for table expansion in Section 17.4.1 if $\alpha_{i-1} \geq 1/2$. Whether the table expands or not, the amortized cost \hat{c}_i of the operation is at most 3. If $\alpha_{i-1} < 1/2$, the table cannot expand as a result of the operation, since the table expands only when $\alpha_{i-1} = 1$. If $\alpha_i < 1/2$ as well, then the amortized cost of the ith operation is

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \\
= 1 + \frac{size_i}{2} - num_i - (size_{i-1}/2 - num_{i-1}) \\
= 1 + \frac{size_i}{2} - num_i - (size_i/2 - (num_i - 1)) \\
= 0.
\]

If $\alpha_{i-1} < 1/2$ but $\alpha_i \geq 1/2$, then

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \\
= 1 + (2 \cdot num_i - size_i) - (size_{i-1}/2 - num_{i-1}) \\
= 1 + 2(num_i - 1) - (size_{i-1}/2 - num_{i-1}) \\
= 3 \cdot num_{i-1} - \frac{3}{2} size_{i-1} + 3 \\
= 3\alpha_{i-1} size_{i-1} - \frac{3}{2} size_{i-1} + 3 \\
< \frac{3}{2} size_{i-1} - \frac{3}{2} size_{i-1} + 3 \\
= 3.
\]

Thus, the amortized cost of a TABLE-INSERT operation is at most 3.

We now turn to the case in which the ith operation is TABLE-DELETE. In this case, $num_i = num_{i-1} - 1$. If $\alpha_{i-1} < 1/2$, then we must consider whether the operation causes the table to contract. If it does not, then $size_i = size_{i-1}$ and the amortized cost of the operation is

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \\
= 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1}) \\
= 1 + (size_i/2 - num_i) - (size_i/2 - (num_i + 1)) \\
= 2.
\]
If $\alpha_{i-1} < 1/2$ and the ith operation does trigger a contraction, then the actual cost of the operation is $c_i = \text{num}_i + 1$, since we delete one item and move num_i items. We have $\text{size}_i/2 = \text{size}_{i-1}/4 = \text{num}_{i-1} = \text{num}_i + 1$, and the amortized cost of the operation is

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1}$$

$$= (\text{num}_i + 1) + (\text{size}_i/2 - \text{num}_i) - (\text{size}_{i-1}/2 - \text{num}_{i-1})$$

$$= (\text{num}_i + 1) + ((\text{num}_i + 1) - \text{num}_i) - ((2 \cdot \text{num}_i + 2) - (\text{num}_i + 1))$$

$$= 1.$$

When the ith operation is a TABLE-DELETE and $\alpha_{i-1} \geq 1/2$, the amortized cost is also bounded above by a constant. We leave the analysis as Exercise 17.4-2.

In summary, since the amortized cost of each operation is bounded above by a constant, the actual time for any sequence of n operations on a dynamic table is $O(n)$.

Exercises

17.4-1
Suppose that we wish to implement a dynamic, open-address hash table. Why might we consider the table to be full when its load factor reaches some value α that is strictly less than 1? Describe briefly how to make insertion into a dynamic, open-address hash table run in such a way that the expected value of the amortized cost per insertion is $O(1)$. Why is the expected value of the actual cost per insertion not necessarily $O(1)$ for all insertions?

17.4-2
Show that if $\alpha_{i-1} \geq 1/2$ and the ith operation on a dynamic table is TABLE-DELETE, then the amortized cost of the operation with respect to the potential function (17.6) is bounded above by a constant.

17.4-3
Suppose that instead of contracting a table by halving its size when its load factor drops below $1/4$, we contract it by multiplying its size by $2/3$ when its load factor drops below $1/3$. Using the potential function

$$\Phi(T) = |2 \cdot T.\text{num} - T.\text{size}|,$$

show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded above by a constant.
Problems

17-1 **Bit-reversed binary counter**
Chapter 30 examines an important algorithm called the fast Fourier transform, or FFT. The first step of the FFT algorithm performs a **bit-reversal permutation** on an input array \(A[0..n-1]\) whose length is \(n = 2^k\) for some nonnegative integer \(k\). This permutation swaps elements whose indices have binary representations that are the reverse of each other.

We can express each index \(a\) as a \(k\)-bit sequence \(\langle a_{k-1}, a_{k-2}, \ldots, a_0\rangle\), where \(a = \sum_{i=0}^{k-1} a_i 2^i\). We define

\[
\text{rev}_k(\langle a_{k-1}, a_{k-2}, \ldots, a_0\rangle) = \langle a_0, a_1, \ldots, a_{k-1}\rangle;
\]

thus,

\[
\text{rev}_k(a) = \sum_{i=0}^{k-1} a_{k-i-1}2^i.
\]

For example, if \(n = 16\) (or, equivalently, \(k = 4\)), then \(\text{rev}_k(3) = 12\), since the 4-bit representation of 3 is 0011, which when reversed gives 1100, the 4-bit representation of 12.

a. Given a function \(\text{rev}_k\) that runs in \(\Theta(k)\) time, write an algorithm to perform the bit-reversal permutation on an array of length \(n = 2^k\) in \(O(nk)\) time.

We can use an algorithm based on an amortized analysis to improve the running time of the bit-reversal permutation. We maintain a “bit-reversed counter” and a procedure \(\text{BIT-REVERSED-INCREMENT}\) that, when given a bit-reversed-counter value \(a\), produces \(\text{rev}_k(\text{rev}_k(a) + 1)\). If \(k = 4\), for example, and the bit-reversed counter starts at 0, then successive calls to \(\text{BIT-REVERSED-INCREMENT}\) produce the sequence

0000, 1000, 0100, 1100, 0010, 1010, \ldots = 0, 8, 4, 12, 2, 10, \ldots.

b. Assume that the words in your computer store \(k\)-bit values and that in unit time, your computer can manipulate the binary values with operations such as shifting left or right by arbitrary amounts, bitwise-AND, bitwise-OR, etc. Describe an implementation of the \(\text{BIT-REVERSED-INCREMENT}\) procedure that allows the bit-reversal permutation on an \(n\)-element array to be performed in a total of \(O(n)\) time.

c. Suppose that you can shift a word left or right by only one bit in unit time. Is it still possible to implement an \(O(n)\)-time bit-reversal permutation?
17-2 Making binary search dynamic

Binary search of a sorted array takes logarithmic search time, but the time to insert a new element is linear in the size of the array. We can improve the time for insertion by keeping several sorted arrays.

Specifically, suppose that we wish to support SEARCH and INSERT on a set of \(n \) elements. Let \(k = \lceil \lg(n + 1) \rceil \), and let the binary representation of \(n \) be \(\langle n_{k-1}, n_{k-2}, \ldots, n_0 \rangle \). We have \(k \) sorted arrays \(A_0, A_1, \ldots, A_{k-1} \), where for \(i = 0, 1, \ldots, k - 1 \), the length of array \(A_i \) is \(2^i \). Each array is either full or empty, depending on whether \(n_i = 1 \) or \(n_i = 0 \), respectively. The total number of elements held in all \(k \) arrays is therefore \(\sum_{i=0}^{k-1} n_i 2^i = n \). Although each individual array is sorted, elements in different arrays bear no particular relationship to each other.

a. Describe how to perform the SEARCH operation for this data structure. Analyze its worst-case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-case and amortized running times.

c. Discuss how to implement DELETE.

17-3 Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by adding to each node \(x \) the attribute \(x\.size \) giving the number of keys stored in the subtree rooted at \(x \). Let \(\alpha \) be a constant in the range \(1/2 \leq \alpha < 1 \). We say that a given node \(x \) is \(\alpha \)-balanced if \(x\.left\.size \leq \alpha \cdot x\.size \) and \(x\.right\.size \leq \alpha \cdot x\.size \). The tree as a whole is \(\alpha \)-balanced if every node in the tree is \(\alpha \)-balanced. The following amortized approach to maintaining weight-balanced trees was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given a node \(x \) in an arbitrary binary search tree, show how to rebuild the subtree rooted at \(x \) so that it becomes 1/2-balanced. Your algorithm should run in time \(\Theta(x\.size) \), and it can use \(O(x\.size) \) auxiliary storage.

b. Show that performing a search in an \(n \)-node \(\alpha \)-balanced binary search tree takes \(O(\lg n) \) worst-case time.

For the remainder of this problem, assume that the constant \(\alpha \) is strictly greater than 1/2. Suppose that we implement INSERT and DELETE as usual for an \(n \)-node binary search tree, except that after every such operation, if any node in the tree is no longer \(\alpha \)-balanced, then we “rebuild” the subtree rooted at the highest such node in the tree so that it becomes 1/2-balanced.
We shall analyze this rebuilding scheme using the potential method. For a node \(x \) in a binary search tree \(T \), we define
\[
\Delta(x) = |x \cdot \text{left.size} - x \cdot \text{right.size}|
\]
and we define the potential of \(T \) as
\[
\Phi(T) = c \sum_{x \in T : \Delta(x) \geq 2} \Delta(x),
\]
where \(c \) is a sufficiently large constant that depends on \(\alpha \).

c. Argue that any binary search tree has nonnegative potential and that a \(1/2 \)-balanced tree has potential 0.

d. Suppose that \(m \) units of potential can pay for rebuilding an \(m \)-node subtree. How large must \(c \) be in terms of \(\alpha \) in order for it to take \(O(1) \) amortized time to rebuild a subtree that is not \(\alpha \)-balanced?

e. Show that inserting a node into or deleting a node from an \(n \)-node \(\alpha \)-balanced tree costs \(O(\lg n) \) amortized time.

17-4 The cost of restructuring red-black trees
There are four basic operations on red-black trees that perform structural modifications: node insertions, node deletions, rotations, and color changes. We have seen that RB-INSERT and RB-DELETE use only \(O(1) \) rotations, node insertions, and node deletions to maintain the red-black properties, but they may make many more color changes.

a. Describe a legal red-black tree with \(n \) nodes such that calling RB-INSERT to add the \((n + 1) \)st node causes \(\Omega(\lg n) \) color changes. Then describe a legal red-black tree with \(n \) nodes for which calling RB-DELETE on a particular node causes \(\Omega(\lg n) \) color changes.

Although the worst-case number of color changes per operation can be logarithmic, we shall prove that any sequence of \(m \) RB-INSERT and RB-DELETE operations on an initially empty red-black tree causes \(O(m) \) structural modifications in the worst case. Note that we count each color change as a structural modification.

b. Some of the cases handled by the main loop of the code of both RB-INSERT-FIXUP and RB-DELETE-FIXUP are terminating: once encountered, they cause the loop to terminate after a constant number of additional operations. For each of the cases of RB-INSERT-FIXUP and RB-DELETE-FIXUP, specify which are terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7.)
We shall first analyze the structural modifications when only insertions are performed. Let \(T \) be a red-black tree, and define \(\Phi(T) \) to be the number of red nodes in \(T \). Assume that 1 unit of potential can pay for the structural modifications performed by any of the three cases of RB-INSERT-FIXUP.

c. Let \(T' \) be the result of applying Case 1 of RB-INSERT-FIXUP to \(T \). Argue that \(\Phi(T') = \Phi(T) - 1 \).

d. When we insert a node into a red-black tree using RB-INSERT, we can break the operation into three parts. List the structural modifications and potential changes resulting from lines 1–16 of RB-INSERT, from nonterminating cases of RB-INSERT-FIXUP, and from terminating cases of RB-INSERT-FIXUP.

e. Using part (d), argue that the amortized number of structural modifications performed by any call of RB-INSERT is \(O(1) \).

We now wish to prove that there are \(O(m) \) structural modifications when there are both insertions and deletions. Let us define, for each node \(x \),

\[
w(x) = \begin{cases}
0 & \text{if } x \text{ is red}, \\
1 & \text{if } x \text{ is black and has no red children}, \\
0 & \text{if } x \text{ is black and has one red child}, \\
2 & \text{if } x \text{ is black and has two red children}.
\end{cases}
\]

Now we redefine the potential of a red-black tree \(T \) as

\[
\Phi(T) = \sum_{x \in T} w(x),
\]

and let \(T' \) be the tree that results from applying any nonterminating case of RB-INSERT-FIXUP or RB-DELETE-FIXUP to \(T \).

f. Show that \(\Phi(T') \leq \Phi(T) - 1 \) for all nonterminating cases of RB-INSERT-FIXUP. Argue that the amortized number of structural modifications performed by any call of RB-INSERT-FIXUP is \(O(1) \).

g. Show that \(\Phi(T') \leq \Phi(T) - 1 \) for all nonterminating cases of RB-DELETE-FIXUP. Argue that the amortized number of structural modifications performed by any call of RB-DELETE-FIXUP is \(O(1) \).

h. Complete the proof that in the worst case, any sequence of \(m \) RB-INSERT and RB-DELETE operations performs \(O(m) \) structural modifications.
17-5 Competitive analysis of self-organizing lists with move-to-front

A self-organizing list is a linked list of \(n \) elements, in which each element has a unique key. When we search for an element in the list, we are given a key, and we want to find an element with that key.

A self-organizing list has two important properties:

1. To find an element in the list, given its key, we must traverse the list from the beginning until we encounter the element with the given key. If that element is the \(k \)th element from the start of the list, then the cost to find the element is \(k \).

2. We may reorder the list elements after any operation, according to a given rule with a given cost. We may choose any heuristic we like to decide how to reorder the list.

Assume that we start with a given list of \(n \) elements, and we are given an access sequence \(\sigma = \langle \sigma_1, \sigma_2, \ldots, \sigma_m \rangle \) of keys to find, in order. The cost of the sequence is the sum of the costs of the individual accesses in the sequence.

Out of the various possible ways to reorder the list after an operation, this problem focuses on transposing adjacent list elements—switching their positions in the list—with a unit cost for each transpose operation. You will show, by means of a potential function, that a particular heuristic for reordering the list, move-to-front, entails a total cost no worse than 4 times that of any other heuristic for maintaining the list order—even if the other heuristic knows the access sequence in advance! We call this type of analysis a competitive analysis.

For a heuristic \(H \) and a given initial ordering of the list, denote the access cost of sequence \(\sigma \) by \(C_H(\sigma) \). Let \(m \) be the number of accesses in \(\sigma \).

\(\textbf{a.} \) Argue that if heuristic \(H \) does not know the access sequence in advance, then the worst-case cost for \(H \) on an access sequence \(\sigma \) is \(C_H(\sigma) = \Omega(mn) \).

With the \textit{move-to-front} heuristic, immediately after searching for an element \(x \), we move \(x \) to the first position on the list (i.e., the front of the list).

Let \(\text{rank}_L(x) \) denote the rank of element \(x \) in list \(L \), that is, the position of \(x \) in list \(L \). For example, if \(x \) is the fourth element in \(L \), then \(\text{rank}_L(x) = 4 \). Let \(c_i \) denote the cost of access \(\sigma_i \) using the move-to-front heuristic, which includes the cost of finding the element in the list and the cost of moving it to the front of the list by a series of transpositions of adjacent list elements.

\(\textbf{b.} \) Show that if \(\sigma_i \) accesses element \(x \) in list \(L \) using the move-to-front heuristic, then \(c_i = 2 \cdot \text{rank}_L(x) - 1 \).

Now we compare move-to-front with any other heuristic \(H \) that processes an access sequence according to the two properties above. Heuristic \(H \) may transpose
elements in the list in any way it wants, and it might even know the entire access sequence in advance.

Let L_i be the list after access σ_i using move-to-front, and let L_i^* be the list after access σ_i using heuristic H. We denote the cost of access σ_i by c_i for move-to-front and by c_i^* for heuristic H. Suppose that heuristic H performs t_i^* transpositions during access σ_i.

c. In part (b), you showed that $c_i = 2 \cdot \text{rank}_{L_{i-1}}(x) - 1$. Now show that $c_i^* = \text{rank}_{L_{i-1}^*}(x) + t_i^*$.

We define an inversion in list L_i as a pair of elements y and z such that y precedes z in L_i and z precedes y in list L_i^*. Suppose that list L_i has q_i inversions after processing the access sequence $\langle \sigma_1, \sigma_2, \ldots, \sigma_i \rangle$. Then, we define a potential function Φ that maps L_i to a real number by $\Phi(L_i) = 2q_i$. For example, if L_i has the elements (e, c, a, d, b) and L_i^* has the elements (c, a, b, d, e), then L_i has 5 inversions $((e, c), (e, a), (e, d), (e, b), (d, b))$, and so $\Phi(L_i) = 10$. Observe that $\Phi(L_i) \geq 0$ for all i and that, if move-to-front and heuristic H start with the same list L_0, then $\Phi(L_0) = 0$.

d. Argue that a transposition either increases the potential by 2 or decreases the potential by 2.

Suppose that access σ_i finds the element x. To understand how the potential changes due to σ_i, let us partition the elements other than x into four sets, depending on where they are in the lists just before the ith access:

- Set A consists of elements that precede x in both L_{i-1} and L_{i-1}^*.
- Set B consists of elements that precede x in L_{i-1} and follow x in L_{i-1}^*.
- Set C consists of elements that follow x in L_{i-1} and precede x in L_{i-1}^*.
- Set D consists of elements that follow x in both L_{i-1} and L_{i-1}^*.

e. Argue that $\text{rank}_{L_{i-1}}(x) = |A| + |B| + 1$ and $\text{rank}_{L_{i-1}^*}(x) = |A| + |C| + 1$.

f. Show that access σ_i causes a change in potential of

$$\Phi(L_i) - \Phi(L_{i-1}) \leq 2(|A| - |B| + t_i^*) \, ,$$

where, as before, heuristic H performs t_i^* transpositions during access σ_i.

Define the amortized cost \hat{c}_i of access σ_i by $\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$.

g. Show that the amortized cost \hat{c}_i of access σ_i is bounded from above by $4c_i^*$.

h. Conclude that the cost $C_{\text{MTF}}(\sigma)$ of access sequence σ with move-to-front is at most 4 times the cost $C_H(\sigma)$ of σ with any other heuristic H, assuming that both heuristics start with the same list.