Problem 1 (20 points)
Prove or disprove the following statements

- (10 points) \(\text{TIME}(n^{2006}) \) is closed under efficient, i.e., \(O(\log n) \)-space, reductions.
- (10 points) \(\text{NSPACE}(\log n) \) consists of the languages \(L \) such that each positive instance \(x \) of \(L \) has an \(O(\log n) \)-size certificate that can be verified in \(O(\log n) \) space.

Problem 2 (15 points)
Prove or disprove the following statement:

If \(L \) is an \(\text{NP} \)-complete language that also belongs to \(\text{co-NP} \), then \(\text{NP} = \text{co-NP} \).

Problem 3 (20 points)

- (5 points) What is a semantically secure encryption scheme?
- (5 points) What is an unforgeable signature scheme?
- (5 points) What is a secure commitment scheme?
- (5 points) What is a uniform family of polynomial circuits for a language?

Problem 4 (15 points)
Let \(f(n) \geq n \) be a proper complexity function. Prove or disprove that the following language is in \(\text{TIME}(f(\lfloor \frac{n}{4} \rfloor)) \):
\[
\{M; x \mid M \text{ halts on } x \text{ at “no” in } f(|x|) \text{ steps.}\}.
\]

Problem 5 (15 points)

- (5 points) Define the complexity class \(\text{IP} \).
- (10 points) Prove that \(\text{IP} \) is closed under polynomial-time reductions. You may use anything we have seen in class, with or without a proof, in a black-box manner.

Problem 6 (15 points)
Richard Karp proved in his famous 1972 paper that both of the following problems are \(\text{NP} \)-complete.

- \text{FEEDBACK VERTEX SET}: Given a directed graph \(G \) and an integer \(k \), the problem is to determine whether or not there is a subset \(V \) of \(G \)'s nodes with \(|V| \leq k \) such that the deletion of \(V \) (and its incident edges) from \(G \) resulting in an acyclic graph.

- \text{FEEDBACK ARC SET}: Given a directed graph \(G \) and an integer \(k \), the problem is to determine whether or not there is a subset \(E \) of \(G \)'s directed edges with \(|E| \leq k \) such that the deletion of \(E \) from \(G \) resulting in an acyclic graph.

You are asked to prove that one of the above two problems is \(\text{NP} \)-hard. You can choose any one you like. You may prove from sketch or by a reduction from any problem whose \(\text{NP} \)-hardness has been ensured in our class. (Hint: Karp’s proofs are reductions from Vertex Cover.)