Problem 1 (15 pts)

Prove that the inverse image of a convex set in \mathbb{R}^n under a perspective function, $f : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}$, is convex.

Answer

The definition of inverse image of a set C under a mapping f is

$$f^{-1}(C) = \{ x \mid x \in \text{dom}(f) \}.$$

The perspective mapping is defined by $f(x, t) = \frac{1}{t}x$ of which domain is $\mathbb{R}^n \times \mathbb{R}_{++}$. Therefore, the corresponding inverse image of a set C under perspective mapping is

$$f^{-1}(C) = \left\{ (x, t) \mid x \in \mathbb{R}^n, t \in \mathbb{R}_{++}, \frac{1}{t}x \in C \right\}.$$

To check the convexity of the inverse image, we arbitrarily select two elements, (x_1, t_1), (x_2, t_2), in $f^{-1}(C)$, and then prove that their convex combination is still in the inverse image. Convex combination of these two element is

$$(x, t) = \theta(x_1, t_1) + (1 - \theta)(x_2, t_2)$$

$$= (\theta x_1 + (1 - \theta)x_2, \theta t_1 + (1 - \theta)t_2),$$
where \(\theta \in [0, 1] \). First, \(x \) and \(t \) are still in \(\mathbb{R}^n \) and \(\mathbb{R}_{++} \) respectively, because both \(\mathbb{R}^n \) and \(\mathbb{R}_{++} \) are closed under scaling and addition. Second, we have

\[
\frac{x}{t} = \frac{\theta x_1 + (1 - \theta) x_2}{\theta t_1 + (1 - \theta) t_2} = \frac{\theta x_1}{\theta t_1 + (1 - \theta) t_2} + \frac{(1 - \theta) x_2}{\theta t_1 + (1 - \theta) t_2}
\]

\[
= \frac{x_1}{\theta t_1 + (1 - \theta) t_2} t_1 + \frac{x_2}{\theta t_1 + (1 - \theta) t_2} t_2
\]

\[
= \frac{\theta}{\theta t_1 + (1 - \theta) t_2} x_1 t_1 + \frac{1 - \theta}{\theta t_1 + (1 - \theta) t_2} x_2 t_2,
\]

where \(\hat{\theta} \in [0, 1] \). Equation (1) shows that \(x/t \) can be represented as a convex combination of two elements in \(C \), and therefore \(x/t \) belongs to \(C \) due to the convexity of \(C \). We have proved that \((x, t) \) satisfies all constraints of the inverse image of \(C \), so the inverse image is a convex set.

Problem 2 (20 pts)

Let \(x \in \mathbb{R}^n \).

(a) Is \(f(x) = \|x\|_2^4 \) a strictly convex function?

(b) Is \(\nabla^2 f(x) \succ 0 \quad \forall x? \)

Answer

(a) We have known that \(x^T x \) is a strictly convex function because its Hessian matrix is \(2I \), where \(I \) is an identity matrix. Therefore, we have

\[
(\theta x_1 + (1 - \theta) x_2)^T (\theta x_1 + (1 - \theta) x_2) < \theta x_1^T x_1 + (1 - \theta) x_2^T x_2
\]

when \(x_1 \neq x_2 \). We can show that \(\|x\|_2^4 \) is strictly convex because

\[
\left[(\theta x_1 + (1 - \theta) x_2)^T (\theta x_1 + (1 - \theta) x_2) \right]^2 < \left[\theta x_1^T x_1 + (1 - \theta) x_2^T x_2 \right]^2
\]

\[
\leq \theta (x_1^T x_1)^2 + (1 - \theta) (x_2^T x_2)^2.
\]

The last inequality has only “\(\leq \)” because \(x_1^T x_1 = x_2^T x_2 \) may occur.

(b) Let \(n = 1 \).

\[\nabla^2 f(x) = 12x^2 = 0 \text{ if } x = 0. \]

Thus, \(\nabla^2 f(x) \) is not always positive definite.
Common mistake:

- If f and g are strictly convex, $f \circ g$ may not be.

Problem 3 (15 pts)

A differentiable function f is defined as a strongly convex function if there exists a constant $m > 0$ such that for all points x, y in its domain

$$(\nabla f(x) - \nabla f(y))^T(x - y) \geq m\|x - y\|^2.$$

Consider the following one-variable functions and answer questions.

(a) Is e^x strongly convex?

(b) Is x^2 strongly convex?

(c) Is x^4 strongly convex?

You cannot just answer Yes or No. You need to prove your results.

Answer

(a) Assume e^x is strongly convex. Then there exists an $m > 0$ such that

$$(e^x - e^y)(x - y) \geq m(x - y)^2, \quad \forall x > y.$$

Consider $y = x - 1$. Then

$$e^x - e^{x-1} \geq m, \quad \forall x.$$

That is,

$$e^{x-1}(e - 1) \geq m, \quad \forall x.$$

Taking limit on both sides

$$0 = \lim_{x \to -\infty} e^{x-1}(e - 1) \geq \lim_{x \to -\infty} m = m.$$

We obtain a contradiction. Therefore, e^x is not strongly convex.

(b) Consider $f(x) = x^2$.

$$(f'(x) - f'(y))(x - y) = (2x - 2y)(x - y) = 2(x - y)^2.$$

Set $m = 2$. Then we have

$$(f'(x) - f'(y))(x - y) \geq m(x - y)^2, \quad \forall x, y.$$

Thus, x^2 is strongly convex.
(c) Consider \(f(x) = x^4 \).

\[
(f'(x) - f'(y))(x - y) = (4x^3 - 4y^3)(x - y) = 4(x - y)^2(x^2 + xy + y^2).
\]

Assume \(f(x) \) is strongly convex. There exists an \(m > 0 \) such that

\[
4(x^2 + xy + y^2)(x - y)^2 \geq m(x - y)^2, \quad \forall x > y.
\]

By \(x > y \), we have

\[
4(x^2 + xy + y^2) \geq m, \quad \forall x > y.
\]

If we set \(x \to 0, y \to 0 \),

\[
0 = 4(x^2 + xy + y^2) \geq m.
\]

\(x^4 \) is not strongly convex because there is no \(m > 0 \) satisfying the inequality condition.

Problem 4 (20 pts)

Let

\[
B_1 = \{(x, y)|x^2 + y^2 \leq 1\}
\]
\[
B_2 = \{(x, y)|(x - 2)^2 + y^2 \leq 1\}
\]

(a) Show that \(B_1 \) and \(B_2 \) are convex subsets of \(\mathbb{R}^2 \).

(b) Find a hyperplane properly separating \(B_1 \) and \(B_2 \).

(c) Can you separate \(B_1 \) and \(B_2 \) strictly?

(d) Put \(B'_1 = B_1 \setminus \{(1,0)\} \) and \(B'_2 = B_2 \setminus \{(1,0)\} \). Show that \(B'_1 \) and \(B'_2 \) are convex subsets. Can you separate \(B'_1 \) and \(B'_2 \) strictly? What about \(B'_1 \) and \(B'_2' \)?

You need to rigorously prove your answers.

Answer

(a) Let

\[
B_a = \{(x, y)|(x - a)^2 + y^2 \leq 1\},
\]
where \(a \) is a constant. Assume \((x_1, y_1)\) and \((x_2, y_2)\) belong to \(B_a \). We know

\[
f(x) = x^2
\]

is convex because \(f''(x) = 2 > 0 \). Then

\[
f(x) = (x - a)^2
\]

is also convex by the composition of affine function. With \(0 \leq \theta \leq 1 \), we have

\[
(\theta x_1 + (1-\theta)x_2 - a)^2 + (\theta y_1 + (1-\theta)y_2)^2
\]

\[
= (\theta(x_1 - a) + (1-\theta)(x_2 - a))^2 + (\theta y_1 + (1-\theta)y_2)^2
\]

\[
\leq \theta(x_1 - a)^2 + (1-\theta)(x_2 - a)^2 + \theta y_1^2 + (1-\theta)y_2^2
\]

\[
\leq \theta + (1-\theta) = 1.
\]

Therefore, \(B_a \) is a convex set, and \(B_1 \) and \(B_2 \) are also convex because \(B_1 \) and \(B_2 \) are two special cases of \(B_a \) by setting \(a = 0 \) and \(2 \), respectively.

(b) By the following figure, it is clear that \(x = 1 \) is a hyperplane separating \(B_1 \) and \(B_2 \).

(c) \((1, 0)\) belongs to both \(B_1 \) and \(B_2 \), so we cannot separate \(B_1 \) and \(B_2 \).

(d) We have proved that \(B_1 \) and \(B_2 \) are convex, so we only need to prove that \((1, 0)\) is not in the line segment of any two points in \(B'_1 \) and \(B'_2 \). Assume \((x_1, y_1)\) and \((x_2, y_2)\) belong to \(B'_1 \) and \(x_1 \leq x_2 < 1 \). If there exists \(0 \leq \theta \leq 1 \) such that \(\theta x_1 + (1-\theta)x_2 = 1 \), we have

\[
x_1 \leq \theta x_1 + (1-\theta)x_2 = 1 \leq x_2,
\]

which is a contradiction because \(x_1 \leq x_2 < 1 \). The proof for \(B'_2 \) is similar.

We cannot separate \(B'_1 \) and \(B_2 \) strictly. Assume there exists a hyperplane separating \(B'_1 \) and \(B_2 \) strictly. That is,

\[
ax + by > C \quad \text{if} \ (x, y) \in B'_1 \quad \text{and} \quad ax + by < C \quad \text{if} \ (x, y) \in B_2.
\]
We know that \((1, 0) \in B_2\), so \(a < C\). As \(\{(x, y) | ax + by < C\}\) is open, there exists an \(\epsilon\) such that

\[
ax + by < C, \quad \forall (x, y) \in \{(x, y) | (x - 1)^2 + y^2 < \epsilon\}.
\]

Let \(0 < \epsilon' < \epsilon\). Then we have

\[
a(1 - \epsilon') + b(0) < C,
\]

which is a contradiction to \(a(1 - \epsilon') + b(0) > C\) due to \((1 - \epsilon', 0) \in B'_1\).

\(B'_1\) and \(B'_2\) can be strictly separable by \(x = 1\) because

\[
x < 1 \text{ if } (x, y) \in B'_1, \quad \text{and} \quad x > 1 \text{ if } (x, y) \in B'_2.
\]

Problem 5 (15 pts)

In our lecture, we proved that log-sum-exp \(f(x) = \log \sum_{j=1}^{n} e^{x_j}\) is convex. We are interested in the following maximum entropy problem in machine learning: given training instances \((x_i, y_i), i = 1, \ldots, l\), with \(y_i \in \{1, \ldots, k\}\) to indicate \(x_i\)'s class. Maxent solves

\[
\min_{w_1, \ldots, w_k} \sum_{i=1}^{l} - \log P(y_i | x_i), \tag{3}
\]

where

\[
P(y | x) = \frac{e^{w_{y_i}^T x}}{e^{w_1^T x} + \ldots + e^{w_k^T x}}.
\]

Use “operations that preserve convexity” and the property that log-sum-exp is convex to rigorously prove that (3) is convex in \(w_1, \ldots, w_k\).

Answer

\[
- \log P(y_i | x_i) = - \log \frac{e^{w_{y_i}^T x_i}}{e^{w_1^T x_i} + \ldots + e^{w_k^T x_i}} = -w_{y_i}^T x_i + \log \sum_{j=1}^{k} e^{w_j^T x_i}.
\]

Because the sum of convex functions is convex, it is sufficient to prove that

\[
\log \sum_{j=1}^{k} e^{w_j^T x}
\]

is convex in \(w_1, \ldots, w_k\). Consider

\[
f(z) = \log \sum_{j=1}^{k} e^{z_j} \quad \text{from } \mathbb{R}^n \to \mathbb{R}^1
\]
and
\[
g(w_1, \ldots, w_k) = \begin{bmatrix} x^T & 0 & \cdots & 0 \\ 0 & x^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x^T \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_k \end{bmatrix}
\]
from \(\mathbb{R}^{nk} \to \mathbb{R}^k \),

where \(n \) is the dimension of \(x \). Then
\[
\log \sum_{j=1}^k e^{w_j^T x} = f(g(w_1, \ldots, w_k)).
\]

Because \(f \) is convex and \(g \) is an affine function, we obtain the desired result.

Problem 6 (15 pts)

A function's gradient is Lipschitz continuous if
\[
\| \nabla f(x) - \nabla f(y) \| \leq L \| x - y \|, \forall x, y,
\]
where \(L \) is a constant.

(a) Give a function that is strongly convex and has Lipschitz continuous gradient.

(b) Does the property in (a) hold for any strongly convex function? If yes, prove the property. Otherwise, give a counter example.

Answer

(a) \(f(x) = x^2, x \in \mathbb{R} \) is strongly convex because
\[
(f'(x) - f'(y))(x - y) = 2(x - y)^2 \geq m(x - y)^2 \quad \forall m \leq 2.
\]

This function's gradient is Lipschitz continuous because
\[
f'(x) = 2x \text{ and } \| 2x - 2y \| \leq L \| x - y \|,
\]
where the Lipschitz constant \(L \) can be any positive number larger or equal to 2.

(b) Let \(x, y \in \mathbb{R} \). Consider \(f(x) = x^4 + x^2 \). We have
\[
(f'(x) - f'(y))(x - y) = 2(x - y)^2(2(x + y)^2 + 2x^2 + 2y^2 + 2) \geq m(x - y)^2, \quad \forall m \leq 4,
\]

\[7\]
and therefore f is a strongly convex problem. Assume that f has Lipschitz continuous gradient; that is, for all x and y

$$
\|f'(x) - f'(y)\| = \|x - y\|\|4x^2 + 4xy + 4y^2 + 2\| \leq L\|x - y\|
$$

$$
\Rightarrow \|4x^2 + 4xy + 4y^2 + 2\| \leq L
$$

always holds. The inequality causes a contradiction because for any L, we can find x and y large enough such that

$$
\|4x^2 + 4xy + 4y^2 + 2\| > L.
$$

To sum up, $f(x) = x^4 + x^2$ is strongly convex but does not has Lipschitz continuous gradient. Another example is $f(x) = e^x + e^{-x}$.