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Concept-based video indexing generates a matrix of scores predicting the possibilities of concepts occurring in video shots.

Based on the idea of collaborative filtering, this paper presents unsupervised methods to refine the initial scores generated by

concept classifiers by taking into account the concept-to-concept correlation and shot-to-shot similarity embedded within the
score matrix. Given a noisy matrix, we refine the inaccurate scores via matrix factorization. This method is further improved

by learning multiple local models and incorporating contextual-temporal structures. Experiments on the TRECVID 2006–2008

datasets demonstrate relative performance gains ranging from 13% to 52% without using any user annotations or external
knowledge resources.
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1. INTRODUCTION

The advancement of content acquisition devices and data storage technologies in recent years has
resulted in rapid growth in the number of videos. In particular, with the popularity of Internet sharing
platforms like YouTube has come an exponential number of publicly accessible videos. The resulting
broad availability of videos has lead to a strong demand for effective and efficient access of videos [Lew
et al. 2006]. Query-by-concept-based search addresses this issue by allowing users to find videos that
are conceptually similar to the search query. The success of this paradigm however depends heavily on
concept-based video annotation and indexing to identify whether the pre-defined concepts are present
in a video shot. Unfortunately, because of the discrepancy between low-level feature descriptors and
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high-level semantic concepts, concept-based video indexing remains a critical obstacle to the success of
query-by-concept [Snoek and Worring 2009].

A popular and standardized approach to detect the occurrence of concepts in shots is to employ
machine learning techniques to train concept-specific detectors in a supervised manner [Snoek et al.
2006; Yanagawa et al. 2007; Jiang et al. 2007b]: these detectors are constructed by learning frequent
feature patterns associated with the corresponding concepts. Recent research has shown that ensemble
classifiers help to improve the accuracy of semantic concept detection [Jiang et al. 2008; Snoek et al.
2009]. Such approaches increase the diversity of classifiers. For example, one can sample a subset
of annotated training examples, use a part of feature elements, or use different distance metrics in
the learning phase. Given the individual classification results, simply combining them—e.g., taking
the average of the classifier scores—substantially improves detection accuracy. However, while such
approaches yield improved accuracy, many concepts are still hard to detect when not enough labeled
examples are available, even when utilizing a number of diverse classifiers.

Another type of promising approach involves refining the scores of concept-specific detectors for
better detection accuracy (re-indexing), often by exploring contextual correlation and temporal coher-
ence [Naphade and Huang 2001; Naphade et al. 2002; Jiang et al. 2007a; Jiang et al. 2009]. By contextual
correlation, we mean the co-occurrence between semantic concepts in a shot; temporal coherence relates
to a single concept that occurs in multiple neighboring shots. As discussed in Liu et al.’s paper [2009],
existing re-indexing methods which exploit contextual or temporal relations to refine the initial scores
can be classified into three categories, according to the extra knowledge and resources involved. (1)
Self-refining (unsupervised learning) methods use only initial scores to explore informative cues to
refine indexing performance [Kennedy and Chang 2007; Yang et al. 2009]. (2) Example-based refining
(supervised learning) methods discover relationships from user-provided examples and annotations to
improve initial results [Liu et al. 2008; Weng and Chuang 2008]. (3) Crowd refining methods leverage
external knowledge (e.g., WordNet and Wikipedia), heterogeneous resources (e.g., social media such as
Flickr images and tags), or search engines (e.g., Google, Yahoo!, and Bing) for better performance [Aytar
et al. 2008].

Generally speaking, in refining an initial result obtained from a set of independent concept detectors,
example-based refining methods often yield greater performance gains than self-refining techniques if
the discrepancy between training and test data distributions is small. However, supervised example-
based methods rely heavily on expensive user annotation to acquire reliable knowledge for video
re-indexing. From this perspective, self-refining methods are good because they do not require expensive
manual annotation. Crowd refining methods, which utilize web-based or other easily accessible knowl-
edge resources, share this advantage. However, these approaches suffer from potential cross-domain
problems when the data distributions of the external sources do not match those of the target domain.
Such domain gaps can seriously degrade performance [Jiang et al. 2008; Jiang et al. 2009]. Unsupervised
self-refining methods do not have these problems because they acquire the knowledge directly from the
input initial scores themselves. Furthermore, unsupervised methods are often more flexible, as they
require only the initial scores as inputs.

This paper presents an unsupervised video re-indexing method which refines the detection scores
generated by concept classifiers by exploiting structures embedded within the score matrix based on the
idea of collaborative filtering [Su and Khoshgoftaar 2009]. Collaborative filtering has been used in many
applications, two notable examples of which are recommender systems [Koren et al. 2009] and image
de-noising [Ji et al. 2010]. In recommender systems, collaborative filtering utilizes user-user similarity
and item-item correlation to predict missing preferences. Users with similar purchase patterns in the
past will likely buy the same items in the future. Similarly, some items are often purchased together
with other correlated items. Such patterns can often be discovered from the given sparse preference
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matrix. We observe that the occurrence patterns of semantic concepts in videos closely match this
characteristic of recommender systems. We treat video shots as users and concepts in the lexicon as
items. There exists shot-to-shot similarity; shots with similar scores on a set of concepts are likely to
behave similarly for another set of concepts. In addition, there is concept-to-concept correlation; many
concepts are dependent to each other [Snoek and Worring 2009]. When a concept occurs, this often
signifies the presence of other concepts: such correlation is also referred as a contextual or semantic
relationship. Despite these similarities, the preference matrix is often sparse and accurate while the
score matrix is dense and noisy.

Another notable application of collaborative filtering is image de-noising. In this setting, similar
image patches are collected and collaboratively fitted with a linear model. The collaboratively learned
linear model is then used to predict smooth patches without noise. Unlike recommender systems which
adopt a single global model, image de-noising is usually performed by learning multiple local models,
each for an individual group of similar patches. Local modeling is preferred, because modeling all the
patches with a single linear model could lead to a compromised global structure, thus destroying salient
local structures. Inspired by the concept of patch-based image de-noising, we divide the score matrix
into several local blocks according to the observed temporal and contextual relationships, where a block
corresponds to the concept presence profile of a clip (a sequence of adjacent shots) for a group of relevant
concepts. We cluster similar blocks and fit a linear model for each cluster of similar blocks. This strategy
enables us to incorporate not only contextual structures but also temporal ones, thus further improving
the performance of semantic video indexing.

The main contributions of this paper are (1) the application of collaborative filtering to the video re-
indexing problem and a demonstration of its effectiveness; and (2) the concept of clips, which incorporate
temporal information into the collaborative filtering framework. In addition, this paper describes
several ways to apply localized collaborative filtering, including selecting a subset of relevant concepts,
grouping similar profiles, and prediction combination, to further improve the performance. As a result,
the proposed collaborative video re-indexing method represents the first unsupervised approach that
simultaneously utilizes both contextual and temporal information for video re-indexing. Our method is
effective, improving the baselines 13.2%∼51.7%, measured by mean inferred average precision, without
using any external knowledge resources or user annotations.

2. RELATED WORK

The fundamental task of semantic video indexing can be formulated as a set of pattern recognition
problems, in which various supervised learning methods, e.g., support vector machines, are used to build
feature-based concept classifiers [Amir et al. 2005; Jiang et al. 2007b]. Although many techniques for
feature extraction, feature fusion, and classifier combination have been proposed to improve detection
accuracy [Snoek and Worring 2009], unfortunately, most concepts are still not easily detected even after
utilizing a number of diverse classifiers in an ensemble classifier [Snoek et al. 2009]. A recent trend
for concept detection research is to utilize the consolidation of kernel-based learning. These methods,
however, only take into account patterns of low-level features associated with specific concepts. This is
likely to yield suboptimal performance.

In recent years, much research has been focused on adding high-level relationships to the inference
process by leveraging context. In their work, Jiang et al. [2007a] explore contextual relations by cap-
turing co-occurrences between concepts using user-labeled annotations. Recently, Jiang et al. [2009]
proposed semantic diffusion which gradually enhances the consistency of detection scores among con-
cepts. The investigation into integrating contextual correlation and temporal coherence was pioneered
by Naphade and Huang [2001]. Qi et al. [2007] proposed a correlative multi-label framework to si-
multaneously explore interactions between concepts and mappings between low-level features and
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Table I. Categorization of relation learning approaches for semantic video re-indexing; g-CVR, c-CVR and l-CVR
represent three variants of the proposed collaborative video re-indexing approach.

Learning sources

Target relations
Contextual relation Contextual-temporal relation

User-provided annotations

Naphade and Huang 2001; Naphade
et al. 2002; Jiang et al. 2007a; Qi et al.
2007; 2008; Liu et al. 2008; Weng and

Chuang 2008; Jiang et al. 2009.

Naphade and Huang 2001; Naphade
et al. 2002; Liu et al. 2008; Qi et al. 2008;

Weng and Chuang 2008.

Detector-generated predictions Kennedy and Chang 2007; Yang et al.
2009; Jiang et al. 2009; g-CVR; c-CVR. l-CVR.

External knowledge resources Aytar et al. 2008. N/A

single concepts. They further incorporated temporal information with a temporal kernel [Qi et al. 2008].
While these methods yielded good results in experiments with dozens of concepts, they have become
impractical for scenarios with a greater number of concepts because of the inherent complexity in
learning complete relationships.

To allow for tractable computation of relation modeling within a large-scale concept ontology, rather
than explicitly learning a single globally optimal model for all concepts, more efficient alternatives
have emerged that entail the implicitly learning of multiple local models for each single target concept
respectively [Kennedy and Chang 2007; Liu et al. 2008; Yang et al. 2009]. For example, multi-cue fusion
as proposed by Weng and Chuang [2008] is a data-driven approach to implicitly learning semantic and
temporal relations from annotations for each concept. The relation learning process is separated from
detector learning, greatly reducing its complexity. The learnt relationships are then used to refine the
initial detection results. For implicit methods, the low computational cost involved in the learning stage
makes the approach scalable to the number of concepts and more practical for large-scale semantic
concept detection systems. In view of this, our focus here is to develop an implicit method, aiming to
exploit benefits from the integration of contextual and temporal relations in an efficient and effective
way.

As shown in Table I, these methods can be categorized according to their learning sources (user-
provided annotations, detector-generated predictions, or external knowledge resources) and the target
relations (contextual or contextual-temporal relations). For example, Kennedy and Chang [2007] pro-
posed a reranking approach to exploit inter-concept relationships and adopted a classification-based
method to learn concept-specific models using detector-generated predictions. Yang et al. [2009] shared
a similar idea but proposed an ordinal reranking algorithm. The post-filtering method proposed by
Liu et al. [2008] discovers and models both contextual and temporal relations from user-provided
annotations. In general, exploiting knowledge from a manually annotated corpus often yields better
performance than mining information from noisy and relatively unreliable scores [Jiang et al. 2009].
However, as mentioned in Section 1, unsupervised relation learning has the advantages of being free
from the potential domain-shift problem and does not require expensive labeled training data. Further-
more, it is applicable in a wider range of applications, such as image tagging and video search [Kennedy
and Chang 2007; Yang et al. 2009]. As seen in Table I, this paper fills the gap by proposing the first
unsupervised method that simultaneously explores contextual and temporal relationships.

3. PROBLEM STATEMENT

We start by describing the video re-indexing problem and defining notation used in this paper. Assume
that we have a well-defined lexicon C of m semantic concepts to be used to index videos, where
C={c1, c2, . . . , cm}. Let S={s1, s2, . . . , sn} be a collection of the n video shots to be indexed; without loss
of generality, the indices are specified according to their temporal order, i.e., st−1 is the shot previous to
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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st. Given a set of concept-specific detectors, e.g., supervised visual feature classifiers [Yanagawa et al.
2007; Jiang et al. 2007b] or unsupervised text-based relevance scoring functions [Adams et al. 2003],
the output detection score yt,i indicates the possibility that concept ci occurs in shot st. By concatenating
the detection scores of all of the concepts that corresponding to shot st, we obtain an m-dimensional
row vector yt=[yt,1, yt,2, . . . , yt,m]. This can be used to index st for concept-based applications. Thus, a
conventional video indexing algorithm yields the matrix Y =[y1; y2; . . . ; yn] as the vertical concatenation
of those row vectors; this matrix expresses the predicted likelihood for the whole video set based on the
lexicon.

Unfortunately, indexing results that consist of scores generated using concept detectors usually
yield unsatisfactory performance since, in general, concept detectors only utilize cues within a single
shot and a single concept, ignoring intrinsic dependencies among semantic concepts and among video
shots [Weng and Chuang 2008; Snoek and Worring 2009]. Therefore, the goal of video re-indexing is
to explore inter-concept and inter-shot cues beyond low-level features to yield more accurate indexing
results. More specifically, given the initial score matrix Y , video re-indexing is an attempt to find
a refined score matrix Y that yields better performance than Y . As discussed in Section 1, while
approaches that either mine relationships from manually labeled groundtruth or learn knowledge from
external heterogeneous resources improve indexing quality, they are only practical for a limited set of
scenarios and applications. In this paper, we focus on leveraging information within the initial scores to
re-indexing video shots using the collaboratively refined ones.

4. LATENT FACTOR MODELS

Our collaborative video re-indexing method is based on the latent factor model that is widely used in
recommender systems [Su and Khoshgoftaar 2009]. Latent factor models attempt to explain the scores
by characterizing both concepts and shots on factors inferred from the patterns within the initial score
matrix. The discovered factors may have intuitive meanings, or they could be completely uninterpretable.
Matrix factorization is one of the most successful realizations of latent factor models [Koren et al. 2009].
Assuming a p-factor model, given the score matrix Y ∈Rn×m, this approach finds two matrices U ∈Rn×p
and V ∈Rm×p such that

Y ≈ UV T . (1)

This provides a low-rank approximation to the matrix Y since the parameter p is often smaller than
the rank of Y . It essentially maps both shots and concepts to a joint latent factor space in which we can
directly measure their similarity. In this lower dimensional space, each shot st is represented by ut∈Rp
(the t-th row of U ) and each concept ci is modeled as vi ∈Rp (the i-th row of V ). The refined score of
shot st regarding concept ci is just the inner product of their corresponding representations, namely,
yt,i=utv

T
i . Such scores are refined because, ideally, the low-rank approximation removes noise while

preserving the structures within the data.
To understand why the use of matrix factorization is helpful for the removal of inaccurate entries

of the initial score matrix, we take the given Y as a noisy spatial-temporal image. The image is noisy
because the detectors are not perfect. Fortunately, just like regular images, noise can be reduced to some
degree by exploring the structures among detection scores. Because many video shots share similar
content and concepts are often correlated, two types of structures exist within the matrix and can be
used to refining scores. The first type of structure is shot-to-shot similarity: if the content of two video
shots is very similar, they should receive similar scores for all concepts and have similar shot profiles.
Therefore, if two shots have similar detection scores for many concepts, their scores for other concepts
should not differ much. In other words, there is a dependence among rows within the score matrix.
The second type of structure is concept-to-concept correlation: relevant concepts should exhibit similar
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behavior for shots. For example, if the detection scores of car and road for most shots exhibit strong
correlation, their scores should also show the similar correlation for the others. Similarly, the detection
scores of urban and studio could complement each other. In other words, there is a dependence among
columns within the score matrix. Therefore, the score matrix can be de-noised by finding a lower-rank
approximation.

Instead of factorizing the matrix directly using singular value decomposition, to avoid overfitting, the
factorization is formulated as a regularized problem:

arg min
U ,V

∥∥∥UV T − Y
∥∥∥

2

F
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
, (2)

where λ> 0 is a regularization parameter and ‖·‖F is the Frobenius norm. The regularization term
λ
2

(
‖U‖2F +‖V ‖2F

)
restricts the domains of the learned factorization U and V in order to avoid overfitting

the initial scores. Another effect is that, by penalizing the magnitudes of U and V , the regularizer
tends to minimize the trace-norm, leading to a low-rank factorization [Rennie and Srebro 2005]. To
speed up the process, a user-specified constant p, the estimated number of factors, is often given to
constrain matrix sizes. Note that, in this case, the choice of p does not necessarily match the intrinsic
dimensionality of the matrix. We seek to specify a p large enough to retain the intrinsic properties of
the matrix but small enough to allow for more efficient computation.

The formulation of our low-rank approximation is unlike the robust principal component analysis
approach [Candès et al. 2009], which is more appropriate when the sparse data samples are interpreted
as outliers. In contrast, in our case, most of the detection scores are contaminated. To account for this, we
turn to an approximation to noisy data in a least-squares sense. Rather than solving for Equation 2, we
found that a balance of regularization coefficients for both matrices U and V yields better performance.
The actual objective function that we minimize is

J(U ,V ) =
∥∥∥UV T − Y

∥∥∥
2

F
+ λu ‖U‖2F + λv ‖V ‖2F , (3)

in which λu=mλ/2p and λv=nλ/2p. Because of the product of unknowns UV T , Equation 3 is not convex.
Thus, we use the alternating least squares algorithm to solve it; by fixing one of the unknowns, the
optimization becomes quadratic and can be solved optimally. We first randomly initialize two matrices,
and then update U and V alternatively and iteratively until convergence using the conjugate gradient
algorithm implemented by Rennie1. The partial derivatives of the objective function are

1

2

∂J

∂U
=
(
UV T − Y

)
V + λuU , (4)

1

2

∂J

∂V
=
(
UV T − Y

)T
U + λvV . (5)

After finding the solution of U and V , the refined score matrix Y = UV T is calculated as the result of
re-indexing.

Finally, in our experience we have found that it is critical to the performance of the approach to
conduct a simple normalization on an input score matrix before performing matrix factorization. More
specifically, we form a normalized matrix Ỹ consisting of zero-mean and unit-variance column vectors.
That is, if µi and σi are the mean and standard deviation of the detection scores for concept ci, then
we have the normalized score ỹt,i = 1

σi
(yt,i − µi). The main reason for this normalization is that for

many concepts in the lexicon, the distributions of the positive and negative examples are extremely

1Downloaded from http://people.csail.mit.edu/jrennie/matlab/.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.



Collaborative Video Re-indexing via Matrix Factorization • 1:7

Algorithm 1 Global collaborative video re-indexing.
Y =g-CVR(Y , p, λ). Given score matrix Y ∈Rn×m and two parameters, p and λ, which are respectively
the number of latent factors and the regularization coefficient, return refined score matrix Y ∈Rn×m.

1: normalize Y to yield Ỹ
2: λu= m

2pλ, λv= n
2pλ

3: generate random matrices U ∈Rn×p, V ∈Rm×p as the initial guesses
4: solve the unconstrained minimization problem with the conjugate gradient method:

(U ,V )=arg minU ,V

∥∥∥UV T−Ỹ
∥∥∥

2

F
+ λu ‖U‖2F + λv ‖V ‖2F

5: return Y =UV T

imbalanced. That is, the examples predicted to be negative are usually distributed in a much denser
domain and are likely to dominate the ones with positive predictions. Furthermore, concept-specific
detectors can be biased, i.e., detectors for some concepts consistently output higher scores. Thus, to
balance the emphasis on all examples and all concepts in the optimization process, we normalize the
score matrix so that the scores for each concept have similar ranges and statistical properties. We call
the approach described in this section global collaborative video re-indexing (g-CVR) and summarize it
in Algorithm 1.

5. LOCALIZED COLLABORATIVE VIDEO RE-INDEXING

Although the global method described in Section 4 works reasonably well, the use of a single global
model for the entire score matrix restricts the effectiveness of the method, as compromises must be made
to fit everything into a single linear model. In addition, temporal structures of videos are not explored
at all because row (shot) order is ignored during matrix factorization. In this section we describe a
novel algorithm to address these two issues. With this algorithm we take one step further the idea of
collaborative video re-indexing by matrix factorization, yielding additional performance gains.

5.1 Overview

When a single linear model does not adequately represent the underlying structure, a more effective
alternative is to assume the structure is locally linear and thus to model it with a set of linear models.
This is the basic idea behind many nonlinear dimension reduction methods, including locally linear
embedding [Roweis and Saul 2000]. Similarly, for video re-indexing, we would like to use the idea of
multiple linear models for collaborative filtering.

There are many reasons why a single global linear model might be insufficient. First, it is less likely
that all concepts are relevant. For example, the column vector for the occurrence of the concept face
seems largely independent of the one for animal. In contrast, there is a strong dependence among the
column vectors for fire, smoke, and explosion as well as those for car, road, and urban. Therefore, to
better exploit concept-to-concept correlation, it would be more effective to pre-select a set of highly
relevant concepts and to learn a factor model from this set instead of learning from all concepts. Second,
while it is unrealistic to require that all video shots are similar in content, it is reasonable to expect to
see strong shot-to-shot similarity among neighboring shots within a short time frame. Therefore, it is
more effective to discover patterns from a handful of neighboring shots instead of mining them from the
whole video set.

To exploit the structures within a set of neighboring shots for a set of relevant concepts, temporally,
we define a clip as a set of neighboring shots in the video temporal domain; contextually, we define a
concept group as a set of relevant concepts. Therefore, a submatrix of the score matrix Y corresponds
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(a) Y ∈ Rn×m (b) Y Ψ(st) ∈ Rw× (c) Y Φ(ci) ∈ Rn× (d) Y
Φ(ci)
Ψ(st)

∈ Rw×h

Fig. 1. To create a profile for a clip for a concept group, starting from shot st and centered at concept ci, we define row and
column projection functions Ψ and Φ of score matrix Y to select the scores for a span of shots and for a subset of concepts,
respectively. (a) The initial score matrix. Each entry corresponds to the possibility of concept ci occurring in shot st. (b) Submatrix
Y Ψ(st) corresponding to the profile for clip Ψ(st) with respect to the whole lexicon. (c) Submatrix Y Φ(ci) corresponding to the

profile for video shots for the concept group Φ(ci). (d) Submatrix Y
Φ(ci)
Ψ(st)

corresponding to the clip profile of clip Ψ(st) with respect
to the concept group Φ(ci).

to the detection scores of a clip regarding for a concept group. We use the notation Y A
B ∈R|B|×|A| to

represent a submatrix formed by selecting the rows specified in B and the columns specified in A from
Y , where A and B are two sets of indices representing a clip and a concept group respectively. The
functions Ψ(.) and Φ(.) are used to generate sets A and B. Given shot st, function Ψ(st) returns the clip
composed of st and the following w−1 shots; for concept ci, function Φ(ci) returns the concept group
composed of ci and its relevant concepts (relevance is defined in Section 5.2). Assume that the number of
concepts relevant to ci is h−1. Thus, as shown in Figure 1, Y Ψ(st)∈Rw×m contains w rows corresponding
to a clip and Y Φ(ci) ∈ Rn×h selects h columns for a concept group. Finally, submatrix Y

Ψ(st)
Φ(ci)

∈ Rw×h

represents a local profile for the clip consisting of st and its neighboring shots with respect to concept ci
and its relevant concepts.

For a small group of relevant concepts, we expect to discover stronger dependence among neighboring
shots. Therefore, to fully exploit the structure embedded in the score matrix, we use a localized
contextual-temporal model to jointly refine video indexing results. After extracting submatrix Y

Ψ(st)
Φ(ci)

,
which represents the profile of clip Ψ(st) with respect to concept group Φ(ci), in order to reflect the
temporal information, we unroll the submatrix into (w·h)-dimensional vector zst,ci =

∨
(Y

Ψ(st)
Φ(ci)

), where∨
(M) is the unrolling operator which concatenates all rows of matrix M into a long row vector. At

this point, for a collection of n video shots, we have n−w+1 clips and their profile vectors for concept
group Φ(ci). Unrolling submatrices into profile vectors enables us to stack them into a matrix for
factorization. When all of the clip profile vectors are stacked to form a matrix, two extra properties
can be exploited. First, we can explore inter-concept correlation not only within a shot but also across
several neighboring shots. For example, the concept airplane takeoff occurring on a shot is most likely
correlated to concept sky, which appears in the shot following it. The dependency among column vectors
in this matrix confirms the existence of this relationship. Second, we can further assume there are
dependencies among row vectors in the matrix. This implies that if most of the components of two clip
profiles are similar, the remaining components for these profiles should be assigned similar scores. This
property, which we term clip-to-clip similarity, is different from shot-to-shot similarity, because it not
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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only relies on the context within a single shot but also takes into account cues of neighboring shots that
are potentially more robust.

To better discover structures, we group these n−w+1 vectors of the dataset into K clusters of similar
profiles. For each cluster P (k), the clip profile vectors of this cluster are stacked together to form matrix
Z∈Rnk×w·h, where nk is the size of P (k). This matrix is then factorized using Equation 3 to obtain the
refined matrix Z. As Z is formed of clips with similar profiles, the low-rank approximation Z is likely
sufficient to model the intrinsic structure of Z. Each row of Z represents a refined clip profile; we can
replace the original corresponding clip profile in Y with this refined one. The process is repeated by
picking one concept at a time, until all of the elements of the score matrix have been refined at least
once. Some elements might be processed more than once, in which case we take the average of all of the
refined scores for these elements.

We call this method localized collaborative video re-indexing (l-CVR). Algorithm 2 summarizes the
l-CVR method and Figure 2 illustrates its process. Note that, in Algorithm 2, we define

∧
(zst,ci) as an

operator which inverses the unrolling operation by projecting elements of zst,ci back to their positions
in the submatrix Y

Ψ(st)
Φ(ci)

. The details for the method are described in the following sections.
It is also worth mentioning that setting w=1 in l-CVR ignores temporal structures. In this case, the

algorithm does not assume any temporal structures and explores only contextual relations. We call this
contextual collaborative video re-indexing (c-CVR). Note that, although temporal information is ignored,
as later shown in Section 6, c-CVR often yields better performance than g-CVR because it fits multiple
linear models and takes into account only a small set of relevant concepts. This approach may be useful
for applications such as image re-tagging [Chua et al. 2009] in which there is no temporal information;
for such applications discovering contextual structures is still beneficial.

5.2 Contextual and Temporal Neighborhoods

An effective neighborhood system facilitates the discovery of matrix structure. For temporal neighbor-
hoods, an intuitive solution is to use temporally neighboring shots, which are likely to contain similar
contents. The function Ψ(st) simply returns the set of w consecutive shots {st, st+1, . . . , st+w−1}. Note
that we include the shots following st but not the ones preceding it. Since the shot st is used only for in-
dexing clips, it does not matter whether we put st at the front or the middle of the clip. Both placements
result in similar sets of clips, the sole difference being the range of valid shot indices. For example,
the clip set {Ψ(st) | 1≤ t≤n−w+1} we used is equivalent to the clip set

{
Ψ′(st) | 1+bw2 c≤ t≤n−b

w−1
2 c
}

where Ψ′(st)=
{
st−bw2 c, st−b

w
2 c+1, . . . , st+bw−1

2 c

}
.

For contextual neighborhoods, for a given target concept ci, we would like to discover a small number
of concepts which are relevant to it. To this end, we calculate the Pearson product-moment correlation
coefficient (PMCC) to measure the correlation between two concepts ci and cj , which is defined as

r(ci, cj) =

∑n
t=1 ỹt,i ỹt,j
n− 1

, (6)

where r(ci, cj) yields a value between +1 and −1. It should be noted that the detection scores used in
Equation 6 have been normalized, as described in Section 4. In order to build a concept group for ci,
we select the h−1 concepts with the largest correction coefficients with ci as the contextual neighbors.
These concepts and the concept ci form a concept group, namely Φ(ci).

5.3 Grouping Similar Profiles

Due to the diversity of video content, the use of concept groups may not be sufficient to robustly discover
contextual structures. For example, concept car could be judged relevant to either of the concept sets
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Low

-rank 
approxim

ation

Profiling Grouping

Localized clip profiles Profile clusters

ProjectingCombination

Refined clip profiles

Fig. 2. Illustration of the localized collaborative re-indexing method. Submatrices for a concept group are collected and unrolled
into localized clip profiles, which are grouped into clusters. The clip profiles of each cluster are stacked together to form a matrix.
These matrices are factorized to yield low-rank approximations. The new scores are then projected back to their original positions
in the score matrix. Finally, the refined scores are averaged to yield the final scores.

{building, streets, traffic} or {trees, mountain, fields}, depending on whether the video clip describes
a cityscape or an urban scene. Therefore, to better discover an underlying linear model, we seek to
perform collaborative filtering on clips with similar profiles. One way of achieving this is to select a
pivot clip and then find its closest matchings. This process is repeated until no clip remains unprocessed.
This way of find closest matches is however more time-consuming because we need to compare with all
of the remaining clips. Instead, we use the k-means algorithm to group similar clip profiles together for
better efficiency. The number of clusters K is determined by K=d nNc

e, where Nc is the expected size of
a cluster. In our current implementation, we empirically use Nc=2000 for all experiments.

5.4 Optimization and Combination

As shown in Algorithm 2, after clustering, for each cluster P (k), we stack all clip profile vectors in P (k) to
form matrix Z∈Rnk×(w·h) in which nk=

∣∣P (k)
∣∣. Matrix Z is then factorized using the method described

in Section 4. We thus obtain the lower-rank approximated matrix Z, each row of which corresponds
to a vector representing the refined clip profile z̄st,ci . Thus, we update the refined matrix by adding
its rolled version

∧
(z̄st,ci) to the refined score matrix Y as shown in line 19 of Algorithm 2. At the
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Algorithm 2 Localized collaborative video re-indexing.
Y = l-CVR(Y , p, λ, w, h). Given score matrix Y ∈Rn×m and parameters p (number of latent factors),
λ (regularization coefficient), w (number of shots in a clip), and h (number of relevant concepts in a
concept group), return refined score matrix Y ∈Rn×m.

1: Y = 0 . initialization as zero matrix
2: D = 0 .D is the coverage matrix
3: normalize Y to yield Ỹ
4: add all concepts into a queue
5: while (the queue is not empty) do
6: select a concept ci from the queue
7: P = φ . set of clip profiles
8: for t=1 to n−w+1 do . scan over all clips

9: zst,ci =
∨(

Ỹ
Φ(ci)

Ψ(st)

)
. unrolled clip profile vector

10: P = P ∪ {zst,ci}
11: end for
12: partition P into K clusters P (1), · · · , P (K)

13: for each cluster P (k) do
14: Z = the matrix formed by stacking vectors in P (k)

15: compute λu and λv
16: (U ,V )=arg minU ,V

∥∥∥UV T−Z
∥∥∥

2

F
+λu ‖U‖2F +λv ‖V ‖2F

17: Z = UV T

18: for each zst,ci in P (k) do . refine each clip profile
19: Y

Φ(ci)

Ψ(st) = Y
Φ(ci)

Ψ(st) +
∧

(z̄st,ci) . update scores
20: D

Φ(ci)
Ψ(st)

= D
Φ(ci)
Ψ(st)

+ 1 . update coverage
21: end for
22: end for
23: remove concepts in Φ(ci) from the queue
24: end while
25: Y = Y ./D . take average
26: return Y

same time, coverage matrix D is updated to record how many times each element is covered (line 20).
After all of the elements of Y have been covered at least once, the final matrix is formed by taking
averages, Y =Y ./D (line 25); here, the operator ./ represents the element-wise division of matrices, i.e.,
yi,j=yi,j/dij .

6. EXPERIMENTS AND RESULTS

In this section we present the detection performance of the proposed methods and compare this with
other competitive approaches. We first describe the settings of the evaluation, including experimental
datasets, the baseline detectors, and performance metrics in Section 6.1. Then, in Section 6.2 and
Section 6.3 we present the results and the computational times of various methods respectively. Finally,
in Section 6.4 we discuss the sensitivity of our collaborative video re-indexing methods to parameter
settings.
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Table II. The description of the TRECVID datasets used in our experiments. TV06, TV07,
and TV08 denote the annual test collections from 2006 to 2008, respectively.

Dataset TV06 TV07 TV08

Video domain Broadcast News Documentary Documentary
Total number of videos 259 109 219

Length of videos (hours) 159 50 100
Total number of shots 79,484 18,142 35,766

6.1 Experimental Settings

To comprehensively evaluate the proposed approach, we conducted experiments on the TRECVID
benchmarks [Smeaton et al. 2006]. TRECVID is an annual activity which encourages research in content-
based video analysis and retrieval via an open, metrics-based approach. We performed the evaluations
on the official test collections during 2006–2008. These three sets are denoted as TV06, TV07, and TV08,
respectively. There are a few differences among these datasets. For example, TV06 is collected from
multilingual news videos in American, Arabic, and Chinese broadcast channels, while TV07 and TV08
consist mainly of archival videos in Dutch. Furthermore, the sizes of the datasets are also different. The
dataset details are summarized in Table II.

We used the publicly available detection scores of 374 concepts defined in the LSCOM ontol-
ogy [Naphade et al. 2006; Kennedy and Hauptmann 2006], on TV06, TV07, and TV08 as the initial
scores and the baselines. These scores were individually generated by VIREO-374 detectors which
averagely combined the outputs of three feature-based classifiers using color, texture, and local keypoint
features [Jiang et al. 2007b]. The primitive classifiers in VIREO-374 were trained on the TRECVID
2005 development set, along with the annotation data from the released Columbia374 [Naphade et al.
2006; Yanagawa et al. 2007]. The videos collected in this development set are from the same video
domain as TV06; however, this domain is different from those of TV07 and TV08. Thus, to alleviate the
domain-change problems on TV07 and TV08, based on TRECVID’s collaborative annotation efforts, 36 of
the 374 concept detectors in VIREO-374 were retrained using the TRECVID 2007 development data to
ensure better detection scores for the corresponding concepts over TV07 and TV08. These scores are all
publicly accessible in CU-VIREO374 [Jiang et al. 2008]. The baseline performance for TV06 and TV07
are on the very top (among top 10%) of the TRECVID campaigns. However, even after retraining on the
TRECVID 2007 data, the accuracy of the public VIREO-374 benchmark on TV08 is still unsatisfactory.
In order to determine how well our approach works on state-of-the-art detection results for TV08, we
obtained the detection scores from one of the top performers in TRECVID 2008 [Jiang et al. 2010],
which is not publicly available. Basically, most of these scores were generated based on the VIREO-374
detectors as well. However, for better performance, 19 detectors for the evaluated concepts were further
retrained on the TRECVID 2008 development data using a similar method to VIREO-374. We denote this
baseline as TV08+.

Since it is very time-consuming to label groundtruth for a large set of semantic concepts on a huge
test collection, in TRECVID, only a few dozen concepts are selected for evaluation each year. Following
the TRECVID convention, we evaluated the performance of indexing results on the 20 officially selected
concepts in each corresponding year2, and used inferred average precision (infAP) [Yilmaz and Aslam
2006] and the average of multiple infAPs (mean infAP) to report the performance on individual concepts
and overall performance. Note that, owing to the incomplete assessment of the results, infAP has
become the official evaluation metric since TRECVID 2006 [Smeaton et al. 2006].

2We dropped the concept Two People which is selected in TRECVID 2008 in performance evaluation because it is not defined in
LSCOM and not reported in the VIREO-374 baseline.
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6.2 Results

For comparisons, we have implemented several related approaches, including online ordinal rerank-
ing (OOR) [Yang et al. 2009], semantic diffusion (SD) [Jiang et al. 2009], and multi-cue fusion (MCF) [Weng
and Chuang 2008]. In the OOR method, for each target concept, we selected as features the 25 most
peripherally correlated concepts as measured by PMCC and performed reranking on the top 3,000
shots. Due to the sensitivity to parameters such as learning rate, convergence threshold, and fusion
weight, for a fair comparison, we have explored a reasonable parameter space and report the overall
best performance yielded by a unified setting3. In the SD method, we have slightly modified the authors’
released package4 so that the concept affinities are calculated according to the detection scores on each
year’s test data. Since the default parameters have been tested by the authors on the same datasets
and they generally yield good performance, we report the performance using these default settings. The
above two methods are unsupervised video re-indexing methods which explore contextual information
and learn semantic relationships. To the best of our knowledge, as shown in Table I, there is no other
approach that simultaneously utilizes contextual-temporal information in an unsupervised manner.
Thus, as a reference, we have implemented the MCF method which explores the semantic and temporal
relationships from manually annotated groundtruth5.

The parameters in the proposed method include the clip length w, the concept group size h, the
regularization coefficient λ, and the number of latent factors p. We empirically determined their proper
values and discuss the parameter sensitivity for the proposed method in Section 6.4. The results listed
here used {w= 1, h= 374, p= 200} for g-CVR, {w= 1, h= 25, p= 20} for c-CVR, {w= 10, h= 20, p= 50} for
l-CVR, and log2(λ)=2.5 for all experiments.

Table III displays the overall performance gains over the VIREO-374 baselines on TV06, TV07, TV08,
and TV08+, when using our g-CVR, c-CVR, and l-CVR approaches, and comparisons with the OOR, SD,
and MCF methods. When taking into account only contextual information, the proposed g-CVR method
outperforms the other methods (OOR and SD) in most cases. The only exception is SD on TV08, but the
difference is negligible. The localized CVR which uses only contextual relations (c-CVR) extends the
performance gain yielded by g-CVR. Although g-CVR is slightly better than c-CVR on TV06, for the other
three sets, c-CVR yields substantially higher accuracy. This shows the effectiveness of using localized
profiles. The performance of c-CVR is quite similar to that for MCF using only contextual relation. Note
that MCF is a supervised method for exploring the information from user-provided groundtruth while
our method is unsupervised. Also, MCF learns relationships from the TRECVID 2005 development set
and may thus exhibit the domain-shift problem: this might explain why MCF performs worse than
c-CVR on TV08+.

From Table III, we can observe that the overall improvement over the baselines yielded by l-CVR
is significant (21.5%, 26.1%, 51.7%, and 13.2% for TV06, TV07, TV08, and TV08+, respectively). Be-
cause the proposed l-CVR approach simultaneously exploits contextual and temporal information, it
outperforms all methods that use only contextual information on all datasets—even the MCF method
using only contextual information. This result demonstrates that video re-indexing greatly benefits
from the use of temporal relations. From this point of view, our method is useful because it is the only
unsupervised method which explores both temporal and contextual relations. When taking into account
both contextual and temporal relationships, MCF performs better than l-CVR, but not by much. This is

3The overall best performance was obtained with η=10−3, δ=10−4, and α=0.6, which represent learning rate, convergence
threshold, and fusion weight, respectively.
4http://vireo.cs.cityu.edu.hk/research/dasd/dasd.htm
5The annotations for a lexicon of 374 concepts on the TRECVID 2005 development set were obtained from Columbia374 [Naphade
et al. 2006; Yanagawa et al. 2007].
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Table III. Summary of performance gains over the VIREO-374 baselines on TV06, TV07, TV08 and TV08+ when
applying the proposed collaborative video re-indexing approaches (g-CVR, c-CVR, and l-CVR) and comparisons with

online ordinal reranking (OOR) [Yang et al. 2009], semantic diffusion (SD) [Jiang et al. 2009], and multi-cue
fusion (MCF) [Weng and Chuang 2008] approaches. Note that the MCF is a supervised method which utilizes the
contextual and contextual-temporal relations from manually annotated groundtruth while others are unsupervised.

Dataset TV06 TV07 TV08 TV08+

# of evaluation concepts 20 20 19 19

Baseline (mean infAP) 0.1542 0.0984 0.0391 0.1334

Contextual relation

MCF* 16.7% (0.1800) 18.6% (0.1167) 42.1% (0.0556) 4.4% (0.1393)

OOR 10.4% (0.1702) 9.8% (0.1080) 23.3% (0.0482) 4.0% (0.1388)
SD 8.3% (0.1670) 9.6% (0.1078) 35.0% (0.0528) 4.0% (0.1387)

g-CVR 15.3% (0.1778) 12.8% (0.1110) 33.5% (0.0522) 4.5% (0.1394)
c-CVR 14.3% (0.1762) 16.0% (0.1141) 41.9% (0.0555) 6.3% (0.1419)

Contextual-temporal relation MCF* 27.3% (0.1963) 33.7% (0.1316) 57.4% (0.0615) 20.5% (0.1607)

l-CVR 21.5% (0.1874) 26.1% (0.1241) 51.7% (0.0593) 13.2% (0.1510)

remarkable, considering that MCF uses expensive user annotations while our method is unsupervised.
This again confirms the success of our approach in exploring contextual-temporal information as well as
its effectiveness for video re-indexing.

We also noticed that the performance on TV08+ does not benefit as greatly as those on the others.
The main reason is that only 19 classifiers for the evaluated concepts on TV08+ are retrained on new
data. Scores of these 19 concepts are more accurate than the scores of the other concepts which are
not evaluated but could support the evaluated concepts. Therefore, CVR approaches have to use the
supporting concepts with less accurate scores to boost the performance of relatively more accurate
evaluated concepts. This may partially explain why the relative performance gain is not as significant
as others. We believe that performance will further improve given more accurate supporting concepts.

Figure 3 shows the performance of individual concepts on TV06, TV07, TV08 and TV08+, for baseline,
OOR, SD, and the g-CVR, c-CVR, and l-CVR approaches in terms of infAP. From Figure 3(a), for TV06, we
note that some concepts are greatly improved by applying l-CVR, e.g., Weather, Sports, and Car, while
the performance gains of a few concepts are not obvious, e.g., Mountain, Desert, and Corporate-Leader.
Similar results are observed on TV07 and TV08; the performance of Boat Ship and Driver is much
improved but it fails on Office and Hand. There are a number of possible reasons. First, the concepts
in the lexicon are not equally distributed in the semantic space. For instance, we found the semantic
distribution around concept Vehicle is more dense. Therefore, concepts related to this concept, such
as Car and Truck, may benefit from more cues for refinement and thus yield greater improvements.
Second, the degree of noise varies from concept to concept as well as from dataset to dataset. To some
extent, error propagation seems inevitable when noise population increases. Thus, in this situation,
some concepts may suffer from performance degradation. Fortunately, empirical evidence seems to
suggest that this case rarely occurs. As shown in Figure 3, CVR approaches consistently outperform the
baselines.

6.3 Computation Time

We report the computational times of our algorithms on a PC with a 2.66 GHz Pentium Quad CPU and
8GB RAM for TV07 which contains 18,142 shots. The proposed g-CVR, c-CVR, and l-CVR methods took
134.1, 299.8, and 834.3 seconds, respectively. For unsupervised methods which explore only contextual
relations, the proposed g-CVR and c-CVR methods are slower than OOR (101.5 seconds) and SD (8.8 sec-
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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(a) Performance of individual concepts on TV06
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(b) Performance of individual concepts on TV07

Fig. 3. InfAP for the individual concepts in the official evaluation of the TRECVID 2006–2008 benchmarks, using the VIREO-374
baselines, online ordinal reranking (OOR) [Yang et al. 2009], semantic diffusion (SD) [Jiang et al. 2009], and the various versions
of the proposed collaborative video re-indexing (g-CVR, c-CVR, and l-CVR) approaches.
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(c) Performance of individual concepts on TV08
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(d) Performance of individual concepts on TV08+

Fig. 3. InfAP for the individual concepts in the official evaluation of the TRECVID 2006–2008 benchmarks, using the VIREO-374
baselines, online ordinal reranking (OOR) [Yang et al. 2009], semantic diffusion (SD) [Jiang et al. 2009], and the various versions
of the proposed collaborative video re-indexing (g-CVR, c-CVR, and l-CVR) approaches (con’t).
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mance gains of the proposed c-CVR method on TV07 under
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over the baseline and the variances are small. In addition, the
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Fig. 5. The relative performance gains of the proposed CVR
method on TV07 using various numbers of contextual and
temporal neighbors. For exploring the contextual-temporal
relation, our l-CVR yields more than 20% improvement over
the baseline despite of the choices of w and h. Note that for
adapting to various matrix sizes in this experiment, a unified
threshold, i.e., ξ=80%, is used to dynamically determine the
value of p.

onds) because matrix factorization is often more expensive. However, they offer better performance; and
compared with classifier training and prediction, video re-indexing often only represents a small portion
of time. Furthermore, the c-CVR and l-CVR methods can be significantly sped up by utilizing multi-core
CPUs or modern GPUs, because matrix factorizations for clusters can be performed independently.

6.4 Discussion on Parameters

Like most unsupervised methods, our method uses several parameters: the number of clusters K,
the temporal window size w, the number of relevant concepts h, the number of factors p, and the
regularization coefficient λ. One can judge the usefulness of an unsupervised method from three per-
spectives: (1) parameter stability—is the performance sensitive to the parameter setting; (2) parameter
generalization—can one use the same set of parameters for many other different collections; (3) strategy
for selecting parameters—are there general principles or rules for choosing proper parameters. In the
following, we evaluate these three issues of the proposed methods.

In the first study, we study the effect of the cluster numbers and validate the need of profile grouping
by applying the c-CVR method on TV07. Because the results could depend on initial guesses, we repeated
the experiment for each setting five times. Figure 4 reports the means and standard deviations of the
results in terms of relative performance gains over the baseline for different K. First, we notice that, in
all experiments, the gains are more than 12% and the variances are small. This shows that the low-rank
approximation approach is effective and robust to the random initial guess and the numbers of clusters.
In addition, the results with the profile clustering usually yield greater gains than those without
clustering, except when there are too many clusters (K = 32). This indicates that while clustering
generally helps, it is better to avoid creating too many tiny groups, the small shot count of which makes
it difficult to do collaborative filtering. As a rule of thumb, good performance can be obtained if the
average cluster size is around 2,000.
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Fig. 6. Performance measures on TRECVID
2006–2008 test sets under various parameter
settings, in terms of mean inferred average
precision. The tick labels shown in the ver-
tical axis are mean infAP of baselines and
the maximum mean infAP achieved within
this parameter space. For each dataset, the
pair of baseline and improved mean infAP
values are connected by “{”. As an example,
the mean infAP of TV08+ baseline is 0.1334
and the maximal mean infAP for TV08+ in
the parameter space is 0.1510.

Next, we evaluate the effects of contextual and temporal neighborhoods, i.e., the parameters w and
h. Since the choice of the number of latent factors p relies on the matrix dimensionality, to adapt to a
variety of matrix sizes in this study, we dynamically set p as small as possible while keeping the energy
content of the input matrix, i.e., the sum of all singular values, above a certain percentage level ξ. We
set ξ=80% in this experiment. Figure 5 shows the relative performance gains of our l-CVR method for
various values of w and h. Note that l-CVR turns into c-CVR when w=1. In this case, the performance
gain increases along with the number of relevant concepts h since more contextual information is
exploited. It saturates and degrades slightly when h becomes too large and fewer correlated concepts
are included. Nevertheless, the gain is still more than 13% when a large h is selected. The number
of relevant concepts can be determined by using PMCC as described in Section 5. When w increases,
more temporal information can be taken into account, and performance generally improves. Similar
to contextual neighbors, performance can degrade slightly when more remote neighbors are included.
Nevertheless, l-CVR yields greater than 20% gains despite the choice of w and h. This shows that
the algorithm is stable to different parameter settings. We used w= 10 and h= 10 for l-CVR in later
experiments because smaller matrices are more efficient.

There are two more important parameters in our CVR method: the number of factors p and the
regularization coefficient λ. Figure 6 illustrates the impact of these parameters on the proposed
approach by displaying the overall performance on TV06, TV07, TV08, and TV08+ when using different
parameter settings in the parameter space defined by 10≤ p≤ 50 and 0≤ log2(λ)≤ 3. As one can see,
most regions of this space provide similar and substantial performance gains, except for the region
located at the corner with small p and large λ. Both tend to lead to much-lower-rank approximation.
The bad performance of the very low-rank matrix approximation is due to serious intrinsic structure
loss. For robustness, one can determine p by selecting the smallest number such that the energy content
of refined data is still more than that of source data, e.g., above 80%. It is also worth noting that all
of the datasets used in our experiments share similar relationships between parameter settings and
performance gains. Thus we can use a single set of parameters for different datasets with different
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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characteristics. These findings attest to the generalization ability and performance stability of our
collaborative video re-indexing method with respect to parameters.

7. CONCLUSIONS

In this paper, we have introduced an unsupervised method for video re-indexing based on collaborative
filtering. The proposed method offers the following advantages: (1) It is an unsupervised approach that
does not use expensive user annotations or potentially inaccurate external sources. (2) It takes into
account both contextual and temporal cues in a unified way, and thus yields better performance than
other unsupervised approaches. (3) The method is independent of the classifier type and can be applied
to any classification results without re-training models. The decomposition of relation modeling and
detector training makes the proposed method more scalable and easier to use.
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