Acceleration

Digital Image Synthesis

Yung-Yu Chuang

10/5/2006

with slides by Mario Costa Sousa, Gordon Stoll and Pat Hanrahan
Classes

- **Primitive** (in core/primitive.*)
 - GeometricPrimitive
 - InstancePrimitive
 - Aggregate

- Two types of accelerators are provided (in accelerators/*.cpp)
 - GridAccel
 - KdTreeAccel
class Primitive : public ReferenceCounted {
 <Primitive interface>
}

Hierarchy

- Geometric Primitive
 - Material
 - Shape
- Primitive
- Instance Primitive
- Aggregate

T
interface

BBox WorldBound();
bool CanIntersect();
bool Intersect(const Ray &r, // update max t
Intersection *in);
bool IntersectP(const Ray &r);
void Refine(vector<Reference<Primitive>>
 &refined);
void FullyRefine(vector<Reference<Primitive>>
 &refined);
AreaLight *GetAreaLight();
BSDF *GetBSDF(const DifferentialGeometry &dg,
const Transform &WorldToObject);
Intersection

- **primitive** stores the actual intersecting primitive, hence Primitive->GetAreaLight and GetBSDF can only be called for GeometricPrimitive

```c
struct Intersection {
    <Intersection interface>
    DifferentialGeometry dg;
    const Primitive *primitive;
    Transform WorldToObject;
};
```
GeometricPrimitive

- represents a single shape
- holds a reference to a Shape and its Material, and a pointer to an AreaLight

 Reference<Shape> shape;
 Reference<Material> material;
 AreaLight *areaLight;

- Most operations are forwarded to shape
Object instancing

61 unique plant models, 1.1M triangles, 300MB
4000 individual plants, 19.5M triangles
InstancePrimitive

Reference<Primitive> instance;
Transform InstanceToWorld, WorldToInstance;

Ray ray = WorldToInstance(r);
if (!instance->Intersect(ray, isect))
 return false;

r.maxt = ray.maxt;
isect->WorldToObject = isect->WorldToObject * WorldToInstance;
Aggregates

• Acceleration is a heart component of a ray tracer because ray/scene intersection accounts for the majority of execution time

• Goal: reduce the number of ray/primitive intersections by quick simultaneous rejection of groups of primitives and the fact that nearby intersections are likely to be found first

• Two main approaches: spatial subdivision, object subdivision

• No clear winner
Acceleration techniques

Ray Tracing Acceleration Techniques

Fast Intersections
- Faster ray-object intersection
 - Examples: 1 Object bounding volumes
 - Efficient intersector for parametric surfaces, fractals, etc.

Fewer Rays
- Fewer ray-object intersections
 - Examples: 2 Bounding volume hierarchies
 - Space subdivision
 - Directional techniques

Generalized Rays
- Examples: 3 Adaptive tree-depth control
- Statistical optimizations for anti-aliasing
- Bean tracing
- Cone tracing
- Pencil tracing
Bounding volume hierarchy
Bounding volume hierarchy

1) Find bounding box of objects
Bounding volume hierarchy

1) Find bounding box of objects
2) Split objects into two groups
Bounding volume hierarchy

1) Find bounding box of objects
2) Split objects into two groups
3) Recurse
Bounding volume hierarchy

1) Find bounding box of objects
2) Split objects into two groups
3) Recurse
Bounding volume hierarchy

1) Find bounding box of objects
2) Split objects into two groups
3) Recurse
Bounding volume hierarchy

1) Find bounding box of objects
2) Split objects into two groups
3) Recurse
Where to split?

- At midpoint
- Sort, and put half of the objects on each side
- Use modeling hierarchy
BVH traversal

- If hit parent, then check all children
BVH traversal

- Don't return intersection immediately because the other subvolumes may have a closer intersection
Bounding volume hierarchy

- Build hierarchy of bounding volumes
 - Bounding volume of interior node contains all children
Bounding volume hierarchy

- Use hierarchy to accelerate ray intersections
 - Intersect node contents only if hit bounding volume
Space subdivision approaches

Unifrom grid

Quadtree (2D)
Octree (3D)
Space subdivision approaches

KD tree

BSP tree
Uniform grid
Uniform grid

Preprocess scene
1. Find bounding box
Uniform grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
Uniform grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its bounding box overlaps the cell
Uniform grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its bounding box overlaps the cell
4. Check that object overlaps cell (expensive!)
Uniform grid traversal

Preprocess scene

Traverse grid

3D line = 3D-DDA
Octree
Leaf nodes correspond to unique regions in space
K-d tree

Leaf nodes correspond to unique regions in space
Leaf nodes correspond to unique regions in space
K-d tree
K-d tree
K-d tree
Leaf nodes correspond to unique regions in space

K-d tree
K-d tree traversal

Leaf nodes correspond to unique regions in space
BSP tree
BSP tree

inside ones

outside ones
BSP tree
BSP tree
BSP tree traversal
BSP tree traversal
BSP tree traversal
Ray-Box intersections

• Both GridAccel and KdTreeAccel require it
• Quick rejection, use enter and exit point to traverse the hierarchy
• AABB is the intersection of three slabs
Ray-Box intersections

\[t_1 = \frac{x_1 - O_x}{D_x} \]
bool BBox::IntersectP(const Ray &ray,
 float *hitt0, float *hitt1)
{
 float t0 = ray.mint, t1 = ray.maxt;
 for (int i = 0; i < 3; ++i) {
 float invRayDir = 1.f / ray.d[i];
 float tNear = (pMin[i] - ray.o[i]) * invRayDir;
 float tFar = (pMax[i] - ray.o[i]) * invRayDir;

 if (tNear > tFar) swap(tNear, tFar);
 t0 = tNear > t0 ? tNear : t0;
 t1 = tFar < t1 ? tFar : t1;
 if (t0 > t1) return false;
 }

 if (hitt0) *hitt0 = t0;
 if (hitt1) *hitt1 = t1;
 return true;
}
Grid accelerator

- Uniform grid
Teapot in a stadium problem

- Not adaptive to distribution of primitives.
- Have to determine the number of voxels.
GridAccel

Class GridAccel:public Aggregate {
 <GridAccel methods>
 u_int nMailboxes;
 MailboxPrim *mailboxes;
 int NVoxels[3];
 BBox bounds;
 Vector Width, InvWidth;
 Voxel **voxels;
 ObjectArena<Voxel> voxelArena;
 static int curMailboxId;
}
struct MailboxPrim {
 Reference<Primitive> primitive;
 Int lastMailboxId;
}
Determine number of voxels

- Too many voxels \rightarrow slow traverse, large memory consumption (bad cache performance)
- Too few voxels \rightarrow too many primitives in a voxel
- Let the axis with the largest extent have $3^{\frac{3}{N}}$ voxels

Vector delta = bounds.pMax - bounds.pMin;
int maxAxis=bounds.MaximumExtent();
float invMaxWidth=1.f/delta[maxAxis];
float cubeRoot=3.f*powf(float(prims.size()),1.f/3.f);
float voxelsPerUnitDist=cubeRoot * invMaxWidth;
Calculate voxel size and allocate voxels

for (int axis=0; axis<3; ++axis) {
 NVoxels[axis]=Round2Int(delta[axis]*voxelsPerUnitDist);
 NVoxels[axis]=Clamp(NVoxels[axis], 1, 64);
}

for (int axis=0; axis<3; ++axis) {
 Width[axis]=delta[axis]/NVoxels[axis];
 InvWidth[axis]=
 (Width[axis]==0.f)?0.f:1.f/Width[axis];
}

int nVoxels = NVoxels[0] * NVoxels[1] * NVoxels[2];
voxels=(Voxel **)AllocAligned(nVoxels*sizeof(Voxel *));
memset(voxels, 0, nVoxels * sizeof(Voxel *));
Conversion between voxel and position

```cpp
int PosToVoxel(const Point &P, int axis) {
    int v = Float2Int((P[axis] - bounds.pMin[axis]) * InvWidth[axis]);
    return Clamp(v, 0, NVoxels[axis] - 1);
}

float VoxelToPos(int p, int axis) const {
    return bounds.pMin[axis] + p * Width[axis];
}
Point VoxelToPos(int x, int y, int z) const {
    return bounds.pMin +
            Vector(x*Width[0], y*Width[1], z*Width[2]);
}
inline int Offset(int x, int y, int z) {
    return z*NVoxels[0]*NVoxels[1] + y*NVoxels[0] + x;
}
```
Add primitives into voxels

for (u_int i=0; i<prims.size(); ++i) {
 <Find voxel extent of primitive>
 <Add primitive to overlapping voxels>
}
Voxel structure

```c
struct Voxel {
    <Voxel methods>
    union {
        MailboxPrim *onePrimitive;
        MailboxPrim **primitives;
    };
    u_int allCanIntersect:1;
    u_int nPrimitives:31;
}
```

Packed into 64 bits
GridAccel traversal

bool GridAccel::Intersect(
 Ray &ray, Intersection *isect) {
 // Check ray against overall grid bounds
 // Get ray mailbox id
 // Set up 3D DDA for ray
 // Walk ray through voxel grid
}

Check against overall bound

float rayT;
if (bounds.Inside(ray(ray.mint)))
 rayT = ray.mint;
else if (!bounds.IntersectP(ray, &rayT))
 return false;
Point gridIntersect = ray(rayT);
Set up 3D DDA (Digital Differential Analyzer)

• Similar to Bresenhm’s line drawing algorithm
Set up 3D DDA (Digital Differential Analyzer)

blue values changes along the traversal

NextCrossingT[1]

DeltaT[0]

rayT

Pos

NextCrossingT[0]

Out voxel index

Step[0]=1

delta: the distance change when voxel changes 1 in that direction
Set up 3D DDA

for (int axis=0; axis<3; ++axis) {
 Pos[axis] = PosToVoxel(gridIntersect, axis);
 if (ray.d[axis]>=0) {
 NextCrossingT[axis] = rayT+
 (VoxelToPos(Pos[axis]+1,axis)-gridIntersect[axis])
 /ray.d[axis];

 Step[axis] = 1;
 Out[axis] = NVoxels[axis];
 } else {
 ...
 Step[axis] = -1;
 Out[axis] = -1;
 }
}

\[l \]

\[D_x \]

\[\text{Width}[0] \]
Walk through grid

for (;;) {
 *voxel = voxels[Offset(Pos[0], Pos[1], Pos[2])];
 if (voxel != NULL)
 hitSomething |=
 voxel->Intersect(ray, isect, rayId);
 <Advance to next voxel>
}

return hitSomething;

Do not return; cut tmax instead
int bits=((NextCrossingT[0]<NextCrossingT[1])<<2) +
((NextCrossingT[0]<NextCrossingT[2])<<1) +
((NextCrossingT[1]<NextCrossingT[2]));
const int cmpToAxis[8] = { 2, 1, 2, 1, 2, 2, 0, 0 };

int stepAxis=cmpToAxis[bits];

if (ray.maxt < NextCrossingT[stepAxis]) break;

Pos[stepAxis]+=Step[stepAxis];

if (Pos[stepAxis] == Out[stepAxis]) break;

NextCrossingT[stepAxis] += DeltaT[stepAxis];
conditions

<table>
<thead>
<tr>
<th>x<y</th>
<th>x<z</th>
<th>y<z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x≥y≥z 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x≥z>y 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>z>x≥y 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>y>x≥z 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>y≥z>x 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z>y>x 0</td>
</tr>
</tbody>
</table>
KD-Tree accelerator

- Non-uniform space subdivision (for example, kd-tree and octree) is better than uniform grid if the scene is irregularly distributed.
Spatial hierarchies

Letters correspond to planes (A)
Point Location by recursive search
Letters correspond to planes (A, B)
Point Location by recursive search
Spatial Hierarchies

Letters correspond to planes (A, B, C, D)
Point Location by recursive search
Variations

kd-tree octree bsp-tree
“Hack” kd-tree building

- Split Axis
 - Round-robin; largest extent

- Split Location
 - Middle of extent; median of geometry (balanced tree)

- Termination
 - Target # of primitives, limited tree depth

- All of these techniques stink.
Building good kd-trees

- What split do we really want?
 - Clever Idea: The one that makes ray tracing cheap
 - Write down an expression of cost and minimize it
 - Greedy Cost Optimization

- What is the cost of tracing a ray through a cell?

 \[\text{Cost(cell)} = C_{\text{trav}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)} \]
Splitting with cost in mind
Split in the middle

To get through this part of empty space, you need to test all triangles on the right.

- Makes the L & R probabilities equal
- Pays no attention to the L & R costs
Split at the median

- Makes the L & R costs equal
- Pays no attention to the L & R probabilities
Cost-optimized split

Since Cost(R) is much higher, make it as small as possible

- Automatically and rapidly isolates complexity
- Produces large chunks of empty space
Building good kd-trees

- Need the probabilities
 - Turns out to be proportional to surface area

- Need the child cell costs
 - Simple triangle count works great (very rough approx.)
 - Empty cell “boost”

\[
\text{Cost(cell)} = C_{\text{trav}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)}
\]

\[
= C_{\text{trav}} + \text{SA(L)} \times \text{TriCount(L)} + \text{SA(R)} \times \text{TriCount(R)}
\]

\(C_{\text{trav}}\) is the ratio of the cost to traverse to the cost to intersect

\(C_{\text{trav}} = 1:80\) in pbrt (found by experiments)
Surface area heuristic

\[p_a = \frac{S_a}{S} \quad \quad \quad p_b = \frac{S_b}{S} \]

2n splits
Termination criteria

• When should we stop splitting?
 - Bad: depth limit, number of triangles
 - Good: when split does not help any more.

• Threshold of cost improvement
 - Stretch over multiple levels
 - For example, if cost does not go down after three splits in a row, terminate

• Threshold of cell size
 - Absolute probability $SA(\text{node})/SA(\text{scene})$ small
Basic building algorithm

1. Pick an axis, or optimize across all three
2. Build a set of candidate split locations (cost extrema must be at bbox vertices)
3. Sort or bin the triangles
4. Sweep to incrementally track L/R counts, cost
5. Output position of minimum cost split

Running time: \(T(N) = N \log N + 2T(N/2) \)
\[
T(N) = N \log^2 N
\]

- Characteristics of highly optimized tree
 - very deep, very small leaves, big empty cells
Ray traversal algorithm

- Recursive inorder traversal

\[
\begin{align*}
\text{Intersect}(L,t_{\text{min}},t_{\text{max}}) & \quad \text{Intersect}(L,t_{\text{min}},t^*) \quad \text{Intersect}(R,t_{\text{min}},t_{\text{max}}) \\
\text{Intersect}(R,t^*,t_{\text{max}}) & \\
\end{align*}
\]

a video for kdtree
Tree representation

8-byte (reduced from 16-byte, 20% gain)

```c
struct KdAccelNode {
    ...,
    union {
        u_int flags; // Both
        float split; // Interior
        u_int nPrims; // Leaf
    };
    union {
        u_int aboveChild; // Interior
        MailboxPrim *onePrimitive; // Leaf
        MailboxPrim **primitives; // Leaf
    };
}
```
Tree representation

Flag: 0,1,2 (interior x, y, z) 3 (leaf)
KdTreeAccel construction

- Recursive top-down algorithm
- max depth = $8 + 1.3 \log(N)$

If (nPrims <= maxPrims || depth==0) {
 <create leaf>
}

Interior node

- Choose split axis position
 - Medpoint
 - Medium cut
 - Area heuristic

- Create leaf if no good splits were found
- Classify primitives with respect to split
Choose split axis position

Cost of no split: \[\sum_{k=1}^{N} t_i(k) \]

Cost of split: \[t_t + P_B \sum_{k=1}^{N_B} t_i(b_k) + P_A \sum_{k=1}^{N_A} t_i(a_k) \]

Assumptions:
1. \(t_i \) is the same for all primitives
2. \(t_t : t_i = 80 : 1 \) (determined by experiments, main factor for the performance)

Cost of no split: \(t_iN \)

Cost of split: \(t_t + t_i(1-b_e)(p_B N_B + p_A N_A) \)

\[p(B \mid A) \propto \frac{S_B}{S_A} \]
Choose split axis position

Start from the axis with maximum extent, sort all edge events and process them in order
Choose split axis position

If there is no split along this axis, try other axes. When all fail, create a leaf.
KdTreeAccel traversal
KdTreeAccel traversal

t_max

far

near

ToDo stack

\(t_{plane} \)

\(t_{min} \)

\(t_{max} \)
KdTreeAccel traversal

far \quad near

t_{\text{max}}

t_{\text{min}}

ToDo stack
KdTreeAccel traversal

The diagram illustrates the traversal of a KdTree, showing the near and far regions. The points t_{max}, t_{plane}, and t_{min} are marked on a line, with t_{max} being the farthest point and t_{min} being the closest. The t_{plane} indicates the plane where the traversal changes direction.

The `ToDo stack` is indicated on the right side of the diagram, suggesting a stack structure for managing the traversal process.
KdTreeAccel traversal

t_{max}

t_{min}

ToDo stack
KdTreeAccel traversal

t_{max}

t_{min}

ToDo stack
bool KdTreeAccel::Intersect
 (const Ray &ray, Intersection *isect)
{
 if (!bounds.IntersectP(ray, &tmin, &tmax))
 return false;

 KdAccelNode *node=&nodes[0];
 while (node!=NULL) {
 if (ray.maxt<tmin) break;
 if (!node->IsLeaf()) <Interior>
 else <Leaf>
 }
}
Leaf node

1. Check whether ray intersects primitive(s) inside the node; update ray’s max t

2. Grab next node from ToDo queue
Interior node

1. Determine near and far

\[\text{below} \quad \text{above} \]

\[\text{node+1} \quad \& \quad (\text{nodes}[\text{node} \rightarrow \text{aboveChild}]) \]

2. Determine whether we can skip a node

\(t_{\text{min}} \quad t_{\text{plane}} \quad t_{\text{max}} \)

\(t_{\text{plane}} \quad t_{\text{max}} \quad t_{\text{min}} \)
Acceleration techniques

Ray Tracing Acceleration Techniques

Fast Intersections
- Faster ray-object intersection
 - Examples: 1 Object bounding volumes
 - Efficient intersectors for parametric surfaces, fractals, etc.
 - Examples: 2 Bounding volume hierarchies
 - Space subdivision
 - Directional techniques

Fewer Rays
- Fewer ray-object intersections
 - Examples: 3 Adaptive tree-depth control
 - Statistical optimizations for anti-aliasing

Generalized Rays
- Examples: 4 Bean tracing
 - Cone tracing
 - Pencil tracing
Best efficiency scheme
References

• A. Glassner, Space subdivision for fast ray tracing. IEEE CG&A, 4(10), 1984